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Operational Solution of Some Problems in Viscous Fluid
Motion. By A. F. CrossLEY, B.A., St John’s College.

[Received 17 February, read 27 February, 1928.]

Most of the results of this paper have been given before by
Professor T. H. Havelock®, who obtained them by the solution of
a difficult integral equation. The method used here is, however,
much easier to handle than that given by Professor Havelock.

1. The first problem is that of determining the. motion
arising from a heavy infinite vertical thin lamina falling through
a viscous liquid confined between two fixed planes parallel to apd
equidistant from the moving one. Take the fixed boundaries to
be the planes = + A, and the axis of y downwards. If gravity is
the only external force, v the kinematic viscosity, the equation of
fluid motion, which is two-dimensional, is

ov_ 0%

ot
with boundary conditions ¥ =0, 2=+ h,and v=V, z= 0, for all
values of ¢, where V is the velocity of the lamina at any time.

We shall take V zero initially. Using p as the symbolic 9 and

ot’
writing pP=vrg,
the operational form of (1) is
o™
T
of which the required solution for >0 1s
popinbatb-a) (2).

sinh gh
If o is the mass per unit area of the falling plate, u the

viscosity, equal to vp, where p is the density, then the velocity of
the plate is given by

oV _ 2u (ov
Ft’ —g + ? (875‘)3_0 ..................... (3)-
By (2), (S—D = — Vg coth gh,
therefore v (p + ?o'—_" q coth qh) =X BTV (4).
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If we write gh=in, 22t
. _ — gh*sin )\
this becomes = s A = Foos ) T (5),
which interprets as
- gho _ 4gpk? gt
V= 5 " ve SNPEFEQAER T (6),
where summation is in regard to the positive roots of the equation
AaD A=K ..coiiiiiiiiiiiniinins (7).

The restriction to positive roots arises from the substitution
p=vg*=—vA*/M. The first term on the right of (6) represents
the limiting steady velocity acquired.

The operational expression for the fluid velocity is obtained
from (2) and (5), and is

—~gh*sin: (1 - %)
v= vA(AsinA—kcosA)’
which interprets as
e MM gin ) (1 - f)

g @\ 29k%k h
v-vlc(l >— v 27\2{)~“+Ic(1+Ic)}sin7V

h
the values of A being the positive roots of (7), as before.

§ 2. When the fluid extends to infinity on both sides of the
plate, the velocity of the plate is obtained by making A infinite in
-equation (4); thus

p-—oi __9_1

p4 2 v3g+a)
g
-9 (__1
-£ (q, qﬂ) ........................... (8),
where a=ge.
o —
We have 1.—:2\/"_t’
q T

and, putting # =0 in equation (9) below,

1 1
ra—a [1—expy?.(1—-Erfqy)],

where q=u«/§2=%”\/ﬁ;
[_22_1+exP..,e.(1 —Erf«y)] .
Var

- whence V= -'Z—
o’y
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Making kb infinite in (2), and substituting for V from (8), we
find that the fluid velocity is given by

_9 1___1_) ez
v_av(q +ta e,

. x
W t = —"=.
e ¢ 2ot
Then*
e

q+a=%[i — Erf& — exp (y* + az). {1 — Ecef (E+9)}] ... (9)-

Taking the limit of both sides as a~>0,
9%

N =—w(1—Erf§)+2\/geXP_(— &),

therefore

U=% [_(1-Erfg)(1+am)+%exp(— £)

+exp(yi+az).{1— Erf(E+7)}] .

§ 8. If there is a variable acceleration acting on the plate,
say a cosnf, then the equation of motion (4) may be replaced by

V[p+g‘—:—"qcothqh]=acosnt=

"2
pﬁ_*_ n;’
—ah*A\*sin A
V= htn? . )

v (7\4+ 7) (AsinA —kcosA)

or

The interpretation of this function by the partial-fraction rule
leads to the result

dvpah® s Aze—rA%m

ah? .
V=—2—v-(A cos nt + Bsinnt) — N TR N EA TR’

where

A= z’i—(sinh 28 +sin 28),

B = - ¥[28(cosh 28 - 05 28) +  (sinh 28 - sjn 28)],

A = B[(k + 28°) cosh 28 + (A — 26?) cos 28
+ kB (sinh 28 — sin 28)],

hen
B=g

* H. Jeffreys, Operational Methods in Mathematical Physics (Cambridge Tracts),
pp. 59—60.
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The fluid velocity may be obtained similarly by interpreting
— ah®\?sin A (1 - %)

v= 492 :
h n)(lsinh—kcosx)

v(h‘-i- -
14
§ 4. The problem of a rotating circular cylinder filled with
viscous fluid, the motion being symmetrical about the axis, is
solved in a similar way to those already considered. If r is the
distance from the axis, the equation of fluid motion is

ov (B’v 1ov v)’

- "\or Trar
ow 1o 1
or ot rat (€ m)0=0
if P=—Vq2,
whence v=ro=4J,(qr),

the velocity remaining finite on the axis. The boundary con-
dition is @ = {} at r =g, where () is the angular velocity of the
cylinder at any time. This gives

AT
_‘_LQJx(qr)_QQJ'(E> 1o
VA7) iy AT¢) B (10),

where ga =\. The frictional couple acting on unit length of the
cylinder is
w] o DS
[27;1.7*3 B_r],-.,_ 2mpatd [ .00 - 1].

If the cylinder rotates from rest under the action of a con-
stant couple N, and if I be its moment of inertia, both of these
per unit length, the equation of motion is

I%‘t_’ = N + 2mpaiQ ["J‘ ) _ 1] ,

Ji(r)
whence O =: — Na*/Iyl
N+ k {1 _AMYQ)
(V)

= _:M)_. 11
_ngl(x)_*-kaa(x) seseborrsses st rsesns ( )’
where k= 2mpa¢/I. This function has a double pole at A =0.
Since
AN AN
Jl(k)=§—1—6+..., Jz(X)=-§—9—6+... ...(12),
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it is found by division that near A =0, { takes the form
Na® (1 4 ko .
b {Flc+4‘ 6(1c+4)z}+0(")’
so that, on evaluating the exponential terms in the usual way, we
have the interpretation of (2,
Q _Na® dot + k. 2ke—r\¢iat
Sy @+ 4) T 6(k+4y TN+’
where summation is in regard to the non-zero positive roots of
M A)Y+ET,(A)=0.

The operational solution for the angular velocity of the fluid
is, from (10) and (11),

AT
ve _ 4(5)
N R ADETYAD)
Using (12) again, we find that near A= 0,
4Na* [1 k+6 172
T+ 4) [ﬁ* 12(k+4) 8 E] +OW),
giving, with the exponential terms,
_ 4N [, _k+6 & »
TG+ | T2k +4) v 8
_ 20°Nk Ji(Ar/a) . =¥t
vlr “NN+ 4+ (V)

=

=
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