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Operational Solution of Some Problems in Viscous Fluid
Motion. By A. F. CROSSLEY, B.A., St John's College.

[Received 17 February, read 27 February, 1928.]

Most of the results of this paper have been given before by
Professor T. H. Havelock*, who obtained them by the solution of
a difficult integral equation. The method used here is, however,
much easier to handle than that given by Professor Havelock.

| 1. The first problem is that of determining the. motion
arising from a heavy infinite vertical thin lamina falling through
a viscous liquid confined between two fixed planes parallel to apd
equidistant from the moving one. Take the fixed boundaries to
be the planes x = + h, and the axis of y downwards. If gravity is
the only external force, v the kinematic viscosity, the equation of
fluid motion, which is two-dimensional, is

with boundary conditions v = 0, x = ± h, and v = V, x = 0, for all
values of t, where V is the velocity of the lamina at any time.

We shall take V zero initially. Using p as the symbolic =-, and
ot

writing p = vq1,
the operational form of (1) is

of which the required solution for x > 0 is

v_vmnhqih-.)
sinh^n. v '

If o- is the mass per unit area of the falling plate, ft, the
viscosity, equal to yp, where p is the density, then the velocity of
the plate is given by

at

By (2), (^j^^

therefore V (p + — q coth qh J = g (4).

* Phil. Mag. vol. 42, Nov. 1921.
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If we write qh = iX, -*— = k,

this becomes V= ——-—r̂ — ; — (5),
vX (X sin \ — k cos \ )

which interprets as
gha Igph?
2 * \ 2 { \ 2

where summation is in regard to the positive roots of the equation
\ t a n \ = fc (7).

The restriction to positive roots arises from the substitution
p = vq2 = — v\2/h'. The first term on the right of (6) represents
the limiting steady velocity acquired.

The operational expression for the fluid velocity is obtained
from (2) and (5), and is

— gh?ain\(l - j
v =-

which interprets as'
p\ ( \ sin \ — k cos \ ) '

iin \ [1 — ^1
\ n)

vk \ h) v \ 2
 {\2 + K ( 1 + k)\ s i n \

the values of X being the positive roots of (7), as before.
§ 2. When the fluid extends to infinity on both sides of the

plate, the velocity of the plate is obtained by making h infinite in
equation (4) ; thus

9 -3 1

where o = — .

1_

2p

'vt
We have — =

q
and, putting x = 0 in equation (9) below,

where y = a *Jvt = — \lvt;

whence V = JL \ J l - 1 + exp ̂ . (1 _ Erf 7)1 .
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Making h infinite in (2), and substituting for V from (8), we
find that the fluid velocity is given by

Write

Then*

ctp \q • q + (

Taking the limit of both sides as a-*-0,

therefore

§ 3. If there is a variable acceleration acting on the plate,
say a cos nt, then the equation of motion (4) may be replaced by

V\ p + — o coth ah =L o" J
a cos w£ =

„ — aA.2\8 sin
or V=-

The interpretation of this function by the partial-fraction rule
leads to the result

where
k

( i h 2^ + sin

B = - ^ [2/3 (cosh 2/3 - cos 2/3) + & (sinh 2/3 - sjn 2/3)],

A = 0 [(A2 + 2/3*) cosh 2/3 + (A2 - 20*) cos 2/3
+ k0 (sinh2/3-sin 2/3)],

h

* H. Jeffreys, Operational Methods in Mathematical Physics (Cambridge Tracts),
pp. 59—60.
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The fluid velocity may be obtained similarly by interpreting

- aA'X8 sin

v =
v IX* H j-1 (X sin \ — k cos \ )

§ 4. The problem of a rotating circular cylinder filled with
viscous fluid, the motion being symmetrical about the axis, is
solved in a similar way to those already considered. If r is the
distance from the axis, the equation of fluid motion is

dv /d2v 1 dvdv_ /9^ ldv v\
di~"[dr* + rdr~~?)'

or -—h -
01 r

if P = ~ v(f>
whence v = reo = A Jx (qr),
the velocity remaining finite on the axis. The boundary con-
dition is co = fi at r = a, where fl is the angular velocity of the
cylinder at any time. This gives

JJ-)(x « t/j \Q*) a ~ \ a J

where qa = X. The frictional couple acting on unit length of the
cylinder is

If the cylinder rotates from rest under the action of a con-
stant couple N, and if / be its moment of inertia, both of these
per unit length, the equation of motion is

v. o - Na*IIvwhence 12 = , •—77

where k = 2-7rpa*/I. This function has a double pole at \ = 0.
Since
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it is found by division that near X = 0, XI takes the form

Iv

so that, on evaluating the exponential terms in the usual way, we
have the interpretation of Q,

o _ .Iv [a3 (k + 4) + 6 (* + 4if X2 (\2 + 4Jb
where summation is in regard to the non-zero positive roots of

The operational solution for the angular velocity of the fluid
is, from (10) and (11),

a»= —f—lvr

Using (12) again, we find that near X= 0,

4,Naa I"1_ k + 6 _ 1 ^
a~ Iv(k + 4,) [ x 2 + 12(^ + 4) 8a1

giving, with the exponential terms,

4>N f A + 6 a2 r2

" = — • " l * " l 2 ( f c + 4")7 + 8i

vlr X2 (X2 + 4& + A2) J, (X) '
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