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TIGHTER BOUNDS FOR THE DISCREPANCY OF BOXES
AND POLYTOPES
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Abstract. Combinatorial discrepancy is a complexity measure of a collection
of sets which quantifies how well the sets in the collection can be simultaneously
balanced. More precisely, we are given an n-point set P , and a collection F =
{F1, . . . , Fm} of subsets of P , and our goal is color P with two colors, red and
blue, so that the maximum over the Fi of the absolute difference between the
number of red elements and the number of blue elements (the discrepancy) is
minimized. Combinatorial discrepancy has many applications in mathematics and
computer science, including constructions of uniformly distributed point sets, and
lower bounds for data structures and private data analysis algorithms. We investigate
the combinatorial discrepancy of geometrically defined systems, in which P is an
n-point set in d-dimensional space, and F is the collection of subsets of P induced
by dilations and translations of a fixed convex polytope B. Such set systems include
systems of sets induced by axis-aligned boxes, whose discrepancy is the subject
of the well-known Tusnády problem. We prove new discrepancy upper and lower
bounds for such set systems by extending the approach based on factorization norms
previously used by the author, Matoušek, and Talwar. We also outline applications
of our results to geometric discrepancy, data structure lower bounds, and differential
privacy.

§1. Introduction. As usual, we define the combinatorial discrepancy of a
system F of subsets of some finite set P as:

discF := min
χ :P→{−1,1}

max
F∈F

∑
p∈F

χ(p).

Matoušek [26] provides more background on combinatorial and geometric
discrepancy. For a large number of applications of combinatorial discrepancy
to geometric discrepancy, numerical methods, and computer science, see
Chazelle [12]. A recent application to private data analysis is described in the
author’s PhD Thesis [29]. We give more details on applications to geometric
discrepancy, numerical integration, data structures, and differential privacy in §2.

Let Ad be the family of anchored axis-aligned boxes in Rd : Ad := {A(x) :
x ∈ Rd

}, where A(x) := {y ∈ Rd
: yi 6 xi for all i ∈ [d]} and [d] := {1, . . . , d}.

This is a slight abuse of terminology: A(x) is not a box, but rather a polyhedral
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cone. Usually A(x) is defined to be anchored at 0, i.e. it is defined as the set
{y ∈ Rd

: 0 6 yi 6 xi for all i ∈ [d]}. However, we prefer to “anchor” A(x) at
infinity, since this convention does not affect any of the results in the paper, and
allows us to avoid some minor technicalities.

For an n-point set P ⊂ Rd , we denote by Ad(P) := {A(x) ∩ P : x ∈ Rd
}

the set system induced by anchored boxes on P . (Note that this set system
is finite, and, in fact, can have at most nd sets.) Tusnády’s problem asks for
tight bounds on the largest possible combinatorial discrepancy of Ad(P) over
all n-point sets P , i.e. for the order of growth of the function disc(n,Ad) :=

sup{discAd(P) : P ⊂ Rd , |P| = n} with n. The best known upper bound for
the Tusnády problem is disc(n,Ad) = Od(logd n), and was recently proved by
Bansal and Garg [6]. Their result improved on the prior work of Larsen [22]
(see also the proof in [28]), who showed that disc(n,Ad) = Od(logd+1/2 n).
Here, and in the rest of this paper, we use the notation Op(·),�p(·), 2p(·) to
denote the fact that the implicit constant in the asymptotic notation depends on
the parameter p.

In our first result, we improve the upper bounds above.

THEOREM 1. For any d > 2,

disc(n,Ad) = Od(logd−1/2 n).

It was shown in [27, 28] that disc(n,Ad) = �d(logd−1 n), so the upper
bound above is within a Od(

√
log n) factor from the lower bound. This brings us

tantalizingly close to a full resolution of Tusnády’s problem.
More generally, let F be a collection of subsets of Rd , and, for an n-point set

P ⊂ Rd , let F(P) be the set system induced by F on P , i.e. F(P) := {F ∩ P :
F ∈ F}. We are interested in how the worst-case combinatorial discrepancy of
such set systems grows with n. This is captured by the function disc(n,F) :=
sup{discF(P) : P ⊂ Rd , |P| = n}.

Let K ⊆ Rd , and let’s define TK to be the family of images of K under
translations and homothetic transformations: TK := {t K + x : t ∈ R+, x ∈
Rd
}, where R+ is the set of positive reals. If we take Q := [0, 1]d , then it is

well known that disc(n,TQ) 6 2d disc(n,Ad) and, therefore, Theorem 1 implies
disc(n,TQ) = Od(logd−1/2 n). Our next result shows that this bound holds for
any convex polytope B in Rd .

THEOREM 2. For any d > 2, and any closed convex polytope B ⊂ Rd ,

disc(n,TB) = Od,B(logd−1/2 n).

With essentially the same proof we can establish the stronger fact that
disc(n,POL(H)) = Od,H(logd−1/2 n), where H is a family of hyperplanes in
Rd , and POL(H) is the set of all polytopes which can be written as

⋂m
i=1 Hi ,

with each Hi a halfspace whose boundary is parallel to some h ∈ H. The best
previously known upper bound in this setting is also due to Bansal and Garg [6],
and is equal to Od,H(logd n).
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Our final result is a nearly matching lower bound for any generic convex
polytope B. (See Definition 2 for the meaning of “generic”.)

THEOREM 3. For any generic convex polytope with non-empty interior
B ⊆ Rd ,

disc(n,TB) = �d,B(logd−1 n).

The best previously known lower bound on disc(n,TB) was
�d,B(log(d−1)/2 n), which follows from a result of Drmota [13] in geometric
discrepancy theory. This lower bound holds for any convex polytope B, but is
quadratically weaker than our lower bound.

We conjecture that the genericity condition in Theorem 3 is not necessary,
and, furthermore, that the asymptotic constant in the lower bound need not
depend on B. These conjectures would be implied by certain estimates on the
Fourier spectrum of convex polytopes: see §6 for more details. By contrast,
the asymptotic constant in the upper bound in Theorem 2 has to depend on B,
because we can approximate the unit Euclidean ball Dd in Rd arbitrarily well
with a convex polytope, and disc(n,TDd ) = �d(n1/2−1/(2d)) [2].

Our proofs combine the approach to combinatorial discrepancy based on
factorization norms, used previously by the author, Matoušek and Talwar [28,
30], with several new ideas. In the proof of Theorem 1 we use a result from
Banaszczyk [4] on balancing series of vectors, and in the proof of Theorem 2 we
further use a decomposition of polytopes given by Matoušek [25]. The proof of
Theorem 3 combines the factorization norms approach with the Fourier analytic
method pioneered by Roth [33]. In §3.4 we discuss the techniques in more detail,
after we have introduced the relevant background.

Together, these results give nearly tight estimates on the discrepancy function
disc(n,TB) for almost any convex polytope B. Perhaps surprisingly, they imply
that the order of growth of disc(n,TB) with n is essentially independent of the
particular structure of B, at least when B is generic, and, moreover, that order of
growth is achieved by the simplest possible example, a cube. In the next section
we describe applications of our results to geometric discrepancy, quasi-Monte
Carlo methods, data structure lower bounds, and differential privacy.

§2. Applications. In this section we outline several applications of our
discrepancy upper and lower bounds.

2.1. Geometric discrepancy and numerical integration. Geometric discrepancy
measures the irregularity of a distribution of n points in [0, 1]d with respect to a
family of distinguishing sets. In particular, for an n-point set P ⊆ [0, 1]d and a
family of measurable subsets F of Rd , we define the discrepancy

D(P,F) := sup
F∈F
||P ∩ F | − λd(F ∩ [0, 1]d)|,

where λd is the Lebesgue measure on Rd . The smallest achievable discrepancy
over n-point sets with respect to F is denoted D(n,F) := inf { D(P,F) :
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P ⊂ Rd , |P| = n }. A famous result from Schmidt [34] shows that
D(n,A2) = 2(log n). The picture is much less clear in higher dimensions.
In a seminal paper [32], Roth showed that D(n,Ad) = �d(log(d−1)/2 n) for
any d > 2; the best known lower bound in d > 3 is given by Bilyk, Lacey,
and Vagharshakyan [9] and is D(n,Ad) = �d(log(d−1)/2+ηd n), where ηd is a
positive constant depending on d and going to 0 as d goes to infinity. On the
other hand, the best known upper bound is D(n,Ad) = Od(logd−1 n) and can
be achieved in many different ways, one of the simplest being the Halton–
Hammersley construction [19, 20]. Beck and Chen [8] call the problem of
closing this significant gap “the Great Open Problem” (in geometric discrepancy
theory). See Matoušek [26] for further background on geometric discrepancy.

There is a known connection between combinatorial and geometric
discrepancy. Roughly speaking, combinatorial discrepancy is an upper bound
on geometric discrepancy. More precisely, we have the following transference
lemma, which goes back to the work of Beck on Tusnády’s problem [7] (see [26]
for a proof).

LEMMA 4. Let F be a family of measurable sets in Rd such that there is
some F ∈ F which contains [0, 1]d . Assume that D(n,F)/n goes to 0 as n goes
to infinity, and that disc(n,F) 6 f (n) for a function f that satisfies f (2n) 6
(2− δ) f (n) for all n and some fixed δ > 0. Then there exists a constant Cδ that
only depends on δ, for which D(n,F) 6 Cδ f (n).

Lemma 4 and Theorem 2 imply that D(n,TB) = Od,B(logd−1/2 n) for any
convex polytope B in Rd . This bound gets within an Od,B(

√
log n) factor from

the best bound known for axis-aligned boxes in d dimensions. The tightest bound
known prior to our work was Od,B(logd n) and was also implied by the best
previously known upper bound on combinatorial discrepancy.

Geometric discrepancy can be defined with any Borel probability measure ν
on [0, 1]d in place of the Lebesgue measure: let’s call the resulting quantities
D(P,F , ν) and D(n,F , ν). It turns out that Lemma 4 holds with D(n,F)
replaced by D(n,F , ν), and, together with Theorem 1 we get that D(n,Ad ,

ν) = Od(logd−1/2 n) for any Borel probability measure ν on [0, 1]d . This bound
has an application to the quasi-Monte Carlo method in numerical integration.
A version of the Koksma–Hlawka inequality for general measures given by
Götz [18] shows that for any real-valued function f on [0, 1]d of bounded total
variation in the sense of Hardy and Krause, we have∣∣∣∣∫

[0,1]d
f (x) dν(x)−

1
n

∑
x∈P

f (x)
∣∣∣∣ 6 1

n
V ( f )D(P,Ad , ν).

Here, V ( f ) is the Hardy–Krause variation of f . So, our upper bound implies
that for any function f of constant total variation, and any Borel measure ν,
we can numerically estimate the integral of f with respect to ν by averaging the
values of f at n points, and the estimate has error Od(n−1 logd−1/2(n)). Contrast
this with the Od(n−1/2) error rate achieved by the Monte Carlo method. The
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error rate we achieve is within Od(
√

log n) of the best error rate known for the
Lebesgue measure. Integration with respect to measures other than the Lebesgue
measure arises often, and a constructive proof of our upper bound could have
significant impact in practice. We refer to the note [1] for an exposition of these
connections.

2.2. Range searching lower bounds. In the dynamic range searching problem
in computer science, we are given a range space F(P), where F is a collection
of subsets of Rd , and P is an n-point set in Rd ; our goal is to design a data
structure which keeps a set of weightsw ∈ G P under updates, where the weights
come from a commutative group G. An update specifies a point p of P and an
element g ∈ G, and asks to change the weight of p to wp+ g. The data structure
should be able to answer range searching queries, where a query is specified by
a range F ∈ F(P), and must return the answer

∑
p∈F wp. The main question

for this data structure problem is to identify a tight trade-off between the update
time and the query time.

Fredman [17] first observed that many data structures for the dynamic range
searching problem can be identified with a matrix factorization A = U V of the
incidence matrix A of F(P) into two matrices U and V with integer entries.
Following Larsen [22], we define an oblivious data structure with multiplicity
1 for the dynamic range searching problem for the range space F(P) as a
factorization A = U V of the incidence matrix of F(P) into matrices U and
V with integer entries bounded in absolute value by 1. The update time tu for
such a data structure equals the maximum number of non-zero entries in any
column of V ; the query time tq equals the maximum number of non-zero entries
in any row of U .

Our arguments imply the following result.

THEOREM 5. For any generic convex polytope B in Rd there exists a family
of point sets P in Rd so that for any family of oblivious data structures with
multiplicity1 for the dynamic range counting problem with range space TB(P),
we have

√
tu tq = �d,B(1

−1 logd n). Conversely, for any convex polytope B and
any n-point set P in Rd there exists an oblivious data structure with multiplicity
1 = 1 and

√
tu tq = Od,B(logd n).

Theorem 5 implies that, as for the discrepancy question, the geometric mean
of query and update time grows with n at the same rate for any (generic) convex
polytope B, and that order of growth is already achieved for orthogonal range
searching. Our upper and lower bounds are tight up to constants when the
multiplicity is bounded. Our main contributions are the lower bounds, while the
upper bounds follow from standard techniques.

2.3. Differential privacy. Range searching and range counting problems also
naturally arise in the field of private data analysis. The setting here is that, given
the range space F(P) as above, we have as input a database D which is a
multiset of points from P . The goal is to output the number (with multiplicity)
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of points in D that fall in each range F ∈ F(P). However, the database D
could be sensitive because it may, for example, encode the locations of different
people. For this reason, we want to approximate the range counts under the
constraints of differential privacy [14, 15]. Formally, a randomized algorithm M
(“mechanism” in the terminology of differential privacy) is (ε, δ)-differentially
private if, for any two databases D, D′ that differ in the location of single point,
and all measurable subsets S of the range of M, we have

P(M(D) ∈ S) 6 eεP(M(D) ∈ S)+ δ.

We define the error of a mechanism M as the maximum of

E max
F∈F(P)

|M(D)F − |D ∩ F ||

over databases D, where the expectation is with respect to the randomness of
M, and M(D)F is the output that M gives on input D for the range F .
Let optε,δ(F(P)) be the smallest achievable error of an (ε, δ)-differentially
private algorithm on F(P), and let optε,δ(N ,F) = sup optε,δ(F(P)), where
the supremum is over all N -point sets P in Rd .

Our techniques imply the following result.

THEOREM 6. For any generic convex polytope B in Rd , for all small enough
ε, and all δ small enough with respect to ε, we have

optε,δ(N ,TB) = �d,B(ε
−1 logd−1 N ),

optε,δ(N ,TB) = Od,B(ε
−1
√

log 1/δ logd+1/2 N ).

Moreover, the upper bound holds for any (not necessarily generic) convex
polytope B.

Once again, our result shows that the growth of the best possible error
under differential privacy with N for the range counting problem with ranges
induced by a convex polytope B does not depend strongly on the structure of the
particular polytope B.

§3. Preliminaries and techniques. In what follows C p and cp are constants
that depend only on the parameter p and may change from one line to the
next. All logarithms are assumed to be in base e (although usually this does
not matter). We use 〈·, ·〉 for the standard inner product on Rn , and ‖ · ‖2 for
the corresponding Euclidean norm. We use capital letters to denote matrices,
and lower case letters with indexes to denote matrix entries, e.g. ai j to denote
the entry in row i column j of the matrix A. We also use µn for the standard
Gaussian measure on Rn . (We avoid the more standard γn to avoid confusion
with the γ2 factorization norm.) We use σd−1 for the uniform (rotation invariant,
Haussdorff) probability measure on the (d − 1)-dimensional unit Euclidean
sphere Sd−1 in Rd . We use θd for the Haar probability measure on the orthogonal
group O(d).
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3.1. Hereditary discrepancy. Hereditary discrepancy is a robust version of
combinatorial discrepancy. For a set system F of subsets of a set P , the
hereditary discrepancy of F is defined by herdiscF = maxQ⊆P discF(Q).
Hereditary discrepancy is often more tractable than discrepancy itself,
both analytically, and computationally. For example, while a non-trivial
approximation to discrepancy is in general NP-hard [11], hereditary discrepancy
can be approximated up to polylogarithmic factors [28, 30]. Importantly
for us, this robustness comes at no additional cost: for all collections of
sets F that we study, it is easy to see that, for any n-point set P in Rd ,
disc(n,F) > herdiscF(P).

3.2. The γ2 factorization norm. The γ2 norm was introduced in functional
analysis to study operators that factor through Hilbert space. We say that an
operator u : X → Y between Banach spaces X and Y factors through a Hilbert
space if there exists a Hilbert space H and bounded operators u1 : X → H and
u2 : H → Y such that u = u2u1. Then the γ2 norm of u is

γ2(u) := inf ‖u1‖‖u2‖,

where the infimum is taken over all Hilbert spaces H , and all operators u1 and u2
as above. Here ‖u1‖ and ‖u2‖ are the operator norms of u1 and u2, respectively.
Tomczak-Jaegermann’s book [35] is an excellent reference on factorization
norms and their applications in Banach space theory.

In this work we will use the γ2 norm of an m × n matrix A, which is defined
as the γ2 norm of the linear operator u : `n

1 → `m
∞ with matrix A (in the standard

bases of Rm and Rn). In the language of matrices, this means that

γ2(A) := inf{‖U‖2→∞‖V ‖1→2 : A = U V },

where the infimum is taken over matrices U and V , ‖V ‖1→2 equals the largest `2
norm of a column of V , and ‖U‖2→∞ equals the largest `2 norm of a row of U .
By a standard compactness argument, the infimum is achieved; moreover, we can
take U ∈ Rm×r and V ∈ Rr×n , where r is the rank of A. Yet another equivalent
formulation, which will be convenient for us, is that γ2(A) is the smallest non-
negative real t for which there exist vectors u1, . . . , um, v1, . . . , vn ∈ Rr such
that for any i ∈ [m], j ∈ [n], ai j = 〈ui , v j 〉 and ‖ui‖2 6 t , ‖v j‖2 6 1. For a proof
of the not completely trivial fact that γ2 is a norm, see Tomczak-Jaegermann [35].
Given a matrix A, γ2(A) can be computed efficiently by solving a semidefinite
program [24].

Let us further overload the meaning of γ2 by defining γ2(F) = γ2(A) for a
set system F with incidence matrix A. We recall that the incidence matrix of a
system F = {F1, . . . , Fm} of subsets of a set P = {p1, . . . , pn} is defined as

ai j :=

{
1 p j ∈ Fi

0 p j 6∈ Fi .
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In other words, γ2(F) is the smallest non-negative real t such that there exist
vectors u1, . . . , um, v1, . . . , vn satisfying

〈ui , v j 〉 =

{
1 p j ∈ Fi

0 p j 6∈ Fi ,

and ‖ui‖2 6 t , ‖v j‖2 6 1 for all i ∈ [m], j ∈ [n].
In [28, 30] it was shown that γ2(F) is, up to logarithmic factors, equivalent

to hereditary discrepancy:

herdiscF 6 C
√

log mγ2(F), (1)

herdiscF > c
γ2(F)

log rank A
, (2)

where C, c > 0 are absolute constants.
In [27, 28] it was also shown that γ2 satisfies a number of nice properties

which help in estimating the norm of specific matrices or set systems. Here we
only need the following inequality, which holds for a set system F = F1 ∪ · · · ∪

Fk , where F1, . . . ,Fk are set systems over the same set P:

γ2(F) 6

√√√√ k∑
i=1

γ2(Fi )2. (3)

We also need the following simple lemma, which follows, e.g. from the results
in [27, 28], but also appears in a similar form in [22], and follows from standard
dyadic decomposition techniques.

LEMMA 7. For any d > 1 there exists a constant Cd such that for any n-point
set P ⊂ Rd , γ2(Ad(P)) 6 Cd(1+ log n)d . Moreover, there exists a factorization
of the incidence matrix of Ad(P) achieving this bound into matrices U and V
with entries in the set {0, 1}.

To prove lower bounds on discrepancy, we use (2) and a dual formula for γ2:

γ2(A) = max{‖P AQ‖tr : P, Q diagonal, tr P2
= tr Q2

= 1}, (4)

where ‖M‖tr is the trace norm of the matrix M , equal to the sum of singular
values. For a proof of this formula, see [23, 30]. In this paper, we use the easily
proved special case derived from (4) by setting P = Q = (1/n)I :

γ2(A) >
1
n
‖A‖tr. (5)

See [24] for a short direct proof of this inequality.
The γ2 norm is also directly connected to upper and lower bounds for data

structures and differentially private mechanisms for range searching and range
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counting. It follows immediately from the definitions (see §2.2) that the update
time tu and the query time tq for an oblivious range searching data structure
with multiplicity 1 satisfy

√
tu tq > 1−1γ2(F(P)); moreover, if γ2(F(P)) is

achieved by a factorization into matrices with entries in {−1, . . . ,1}, then
√

tu tq 6 γ2(F(P)). In differential privacy, we have the following theorem
(see §2.3 for the definitions).

THEOREM 8. There exists an absolute constant such that the following holds
for all small enough ε, and δ small enough with respect to ε. Let F be a
collection of subsets of Rd and let P be an N-point set in Rd . Then,

1
C log |F(P)|

γ2(F(P))
ε

6 optε,δ(F(P))

6 C
√
(log |F(P)|)(log 1/δ)

γ2(F(P))
ε

.

Theorem 8 was essentially proved, although stated differently, in [31]. For a
statement equivalent to the one above, and a proof, see [29, Theorem 7.1]. Note
that [29] uses the notation ‖ · ‖E∞ in place of the standard γ2(·).

3.3. Signed series of vectors. We will use the following result of
Banaszczyk.

LEMMA 9 [4]. Let v1, . . . , vn ∈ Rm , ∀i : ‖vi‖2 6 1, and let K ⊂ Rm be a
convex body symmetric around the origin. If µm(K ) > 1 − 1/(2n), then there
exists an assignment of signs χ : [n] → {−1, 1} so that

∀ j ∈ {1, . . . , n} :
j∑

i=1

χ(i)vi ∈ 5K .

This lemma was proved in the context of the well-known Steinitz problem:
given vectors v1, . . . , vn , each of Euclidean norm at most 1, such that v1+ · · ·+

vn = 0, find a permutation π on [n] such that for all integers i , 1 6 i 6 n,
‖vπ(1) + · · · + vπ(i)‖2 6 C

√
m, where C is an absolute constant independent of

m or n. Lemma 9 gives the best known partial result in this direction: it can be
used to show a bound of C(

√
m +

√
log n) in place of C

√
m.

Lemma 9 follows relatively easily from a powerful result Banaszczyk proved
in [3]. Unfortunately, the proof of the latter does not suggest any efficient
algorithm to find the signs χ(i), and no such algorithm is yet known, despite
some partial progress [5].

3.4. Techniques. Our approach builds on the connection between the γ2
norm and hereditary discrepancy shown in [28, 30]. The new idea which
enables the tighter upper bound is the use of Banaszczyk’s signed series result
(Lemma 9), in order to get one dimension “for free”. On a very high level, this
is similar to the way one dimension comes for free in constructions of point sets
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with small geometric discrepancy, such as the Halton–Hammersley construction
mentioned before. The proof of Theorem 2 combines the ideas in the proof of
Theorem 1 with a decomposition given by Matoušek [25].

The lower bound for Tusnády’s problem in [28] relies crucially on the product
structure of Ad , and does not easily extend to TB when B is a polytope other than
a box. Instead, for the lower bound in this paper, we combine the factorization
norm approach with the Fourier method, pioneered in discrepancy theory by
Roth [33] and developed further by Beck: see [8] for an exposition. In order to
give a lower bound on γ2, we use (5), and estimate the trace norm of the incidence
matrix M of a set system related to TB(P), where P is a grid in [0, 1)d . We define
M so that it is a convolution matrix (i.e. the matrix of a convolution operator), and
its eigenvalues are given by the discrete Fourier transform. While tight estimates
are known for the average decay of continuous Fourier coefficients of convex
polytopes, we need estimates on discrete Fourier coefficients, about which much
less is known. To bridge this gap, we prove a bound on the convergence rate
of discrete Fourier coefficients of convex polytopes to the continuous Fourier
coefficients. We also use an averaging argument in order to be able to work
with bounds on the average decay of the Fourier spectrum, rather than having
to estimate specific Fourier coefficients. These techniques are general, and may
be more widely applicable to geometric combinatorial discrepancy questions.
Our version of the Fourier method has the curious feature that, even though we
average over rotations of the polytope B, in the end the lower bound holds for
the set system induced only by translations and dilations of B.

§4. Upper bound for Tusnády’s problem. In this section we give the proof of
Theorem 1. Let us fix the n-point set P ⊂ Rd once and for all. Without loss of
generality, assume that each p ∈ P has a distinct last coordinate, and order the
points in P in increasing order of their last coordinate as p1, . . . , pn . Write each
pi as pi = (qi , ri ), where qi ∈ Rd−1 and ri ∈ R. With this notation, and the
ordering we assumed, we have that ri < r j whenever i < j .

Let Q := {qi : 1 6 i 6 n}. Notice that this is an n-point set in Rd−1. Denote
the sets in Ad−1(Q) as A1, . . . , Am (in no particular order). Using Lemma 7,
there exist vectors u1, . . . , um and v1, . . . , vn such that

〈ui , v j 〉 =

{
1 q j ∈ Ai

0 q j 6∈ Ai ,
(6)

and ‖ui‖2 6 Cd(1+ log n)(d−1), ‖v j‖2 6 1 for all i and j . Define the symmetric
polytope

K := {x ∈ Rm
: |〈ui , x〉| 6 C ′d(1+ log n)d−1/2 for all i ∈ {1, . . . ,m}},

where C ′d > Cd is a constant large enough that µm(K ) > 1 − 1/(2n). The
fact that such a constant exists follows from standard concentration of measure
results in Gaussian space. Indeed, using a Bernstein-type inequality for Gaussian
measure, we can show that, for C ′d big enough, µm(Si ) > 1− 1/(2nd+1) for all

https://doi.org/10.1112/S0025579317000250 Published online by Cambridge University Press

https://doi.org/10.1112/S0025579317000250


TIGHTER BOUNDS FOR THE DISCREPANCY OF BOXES AND POLYTOPES 1101

i ∈ [m], where Si := {x : |〈ui , x〉| 6 C ′d(1+ log n)d−1/2
}. By the union bound,

since m 6 nd , this implies µm(K ) = µm(
⋂m

i=1 Si ) > 1− 1/2n.
The body K and the vectors v1, . . . , vn then satisfy the assumptions of

Lemma 9, and, therefore, there exists an assignment of signs χ : [n] → {−1, 1}
such that, for any k, 1 6 k 6 n,

k∑
j=1

χ( j)v j ∈ 5K .

By the definition of K , this is equivalent to

∀i ∈ {1, . . . ,m} :
∣∣∣∣ k∑

j=1

χ( j)〈ui , v j 〉

∣∣∣∣ 6 5C ′d(1+ log n)d−1/2. (7)

For each i , 1 6 i 6 m, let us define A′i = {p j : q j ∈ Ai }. We claim that
for any x ∈ Rd , we can write A(x) ∩ P as A′i ∩ {p1, . . . , pk} for some i and k.
(Here we assume that A(x) ∩ P is non-empty: the other case is irrelevant to the
proof.) To see this, let x = (y, xd), where y ∈ Rd−1 and xd ∈ R. Let i be such
that A(y) ∩ Q = Ai , and let k be the largest integer such that rk 6 xd . Then:

A(x) ∩ P = {p j : q j ∈ A(y), j 6 k} = A′i ∩ {p1, . . . , pk}.

It follows that∣∣∣∣ ∑
j :p j∈A(x)

χ( j)
∣∣∣∣ = ∣∣∣∣ ∑

j :q j∈Ai , j6k

χ( j)
∣∣∣∣

=

∣∣∣∣∑
j6k

χ( j)〈ui , v j 〉

∣∣∣∣ 6 5C ′d(1+ log n)d−1/2,

where the penultimate equality follows from (6), and the final inequality is (7).
Since x was arbitrary, we have shown that discAd(P) 6 5C ′d(1 + log n)d−1/2,
as was required.

§5. Upper bound for an arbitrary polytope. The main ingredient in extending
Theorem 1 to arbitrary polytopes is a geometric decomposition given by
Matoušek. To describe the decomposition we define the admissible k-
composition ACk(F) of sets from a (finite) set system F as follows. For k = 0,
ACk(F) = ∅; for an integer k > 0, we have

ACk(F)
:= {F1 ∪ F2 : F1 ∈ ACk1(F), F2 ∈ ACk2(F), F1 ∩ F2 = ∅, k1 + k2 = k}
∪ {F1 \ F2 : F1 ∈ ACk1(F), F2 ∈ ACk2(F), F2 ⊆ F1, k1 + k2 = k}.

By an easy induction on k, we see that

disc ACk(F) 6 k discF , (8)
γ2(ACk(F)) 6 kγ2(F). (9)
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We also extend the notion of anchored boxes to “corners” whose bounding
hyperplanes are not necessarily orthogonal. Let W = {w1, . . . , wd} be a basis
of Rd . Then we define AW := {AW (x) : x ∈ Rd

}, where AW (x) = {y ∈ Rd
:

〈wi , y〉 6 〈wi , x〉 for all i ∈ [d]}.
The following lemma gives the decomposition result we need.

LEMMA 10 [25]. Let B ⊂ Rd be a convex polytope. There exists a constant k
depending on d and B, and k bases W1, . . . ,Wk of Rd such that every B ′ ∈ TB
belongs to ACk(AW1 ∪ · · · ∪AWk ). Moreover, e1 ∈ W1 ∩W2 ∩ · · · ∩Wk , where
e1 is the first standard basis vector of Rd .

Matoušek does not state the condition after “moreover”; nevertheless, it is
easy to verify this condition holds for the recursive decomposition in his proof
of Lemma 10.

We will also need a bound on γ2(AW (P)) for a basis W and an n-point set P .

LEMMA 11. For any ` > 1 there exists a constant C` such that the following
holds. For any set W of ` linearly independent vectors in Rd , and any n-point
set P, γ2(AW (P)) 6 C`(1+ log n)`.

Proof. Let W = {w1, . . . , w`}, and let u be the linear transformation from
R` to Rd that sends the i th standard basis vector ei to wi for each i ∈ [`]. Let
Q = u∗(P) := {u∗(p) : p ∈ P}, where u∗ is the adjoint of u. It is easy to verify
that AW (P) = A`(Q), and, therefore,

γ2(AW (P)) = γ2(Ad(Q)) 6 C`(1+ log n)`,

where the final inequality follows from Lemma 7. �

As a warm-up, let us first prove an upper bound on γ2(TB(P)).

THEOREM 12. For any d > 1 and any closed convex polytope B ⊂ Rd there
exists a constant Cd,B such that for any set P of n points in Rd ,

γ2(TB(P)) 6 Cd,B(1+ log n)d .

Proof. Let W1, . . . ,Wk be as in Lemma 10. Using (3) and Lemma 11,

γ2(AW1(P) ∪ · · · ∪AWk (P)) 6
√

kCd(1+ log n)d .

Using Lemma 10, TB(P) ⊆ ACk(AW1(P) ∪ · · · ∪AWk (P)). Together with (9)
and the trivial fact that γ2(F ′) 6 γ2(F) whenever F ′ ⊆ F , this implies

γ2(TB(P)) 6 γ2(ACk(AW1(P) ∪ · · · ∪AWk (P)))
6 kγ2(AW1(P) ∪ · · · ∪AWk (P))

6 k
√

kCd(1+ log n)d .

Since k depends on d and B only, this finishes the proof of the theorem. �
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Proof of Theorem 2. As in the proof of Theorem 1, we fix the n-point set
P ⊂ Rd once and for all, and we order P as p1, . . . , pn in increasing order of
the last coordinate. We write each pi as pi = (qi , ri ) for qi ∈ Rd−1 and ri ∈ R,
and define Q := {qi : 1 6 i 6 n}.

Let W1, . . . ,Wk be as in Lemma 10, and let W ′i = Wi \ {e1} for each i ,
1 6 i 6 k. Observe that W ′i is a set of d − 1 linearly independent vectors, and,
using (3) and Lemma 11,

γ2(AW ′1
(Q) ∪ · · · ∪AW ′k

(Q)) 6
√

kCd(1+ log n)d−1.

With an argument using Lemma 9 analogous to the one used in the proof of
Theorem 1, we can then show that there exists a constant C ′d,B depending on B
and d and a coloring χ : [n] → {−1, 1}, such that for any integer i , 1 6 i 6 k,
and any x ∈ Rd , ∣∣∣∣ ∑

j :p j∈AWi (x)

χ( j)
∣∣∣∣ 6 C ′d,B(1+ log n)d−1/2.

Here C ′d,B is implicitly assumed to depend on k as well, which depends on B and
d . This establishes that discF 6 C ′d,B(1 + log n)d−1/2, where F = AW1(P) ∪
· · · ∪AWk (P). Because, using Lemma 10, TB(P) ⊆ ACk(F), (8) implies

discTB(P) 6 disc ACk(F) 6 k discF 6 kC ′d,B(1+ log n)d−1/2.

This finishes the proof of the theorem. �

The same asymptotic bound with TB replaced by POL(H) for a family
of hyperplanes H can be proved by replacing Lemma 10 with an analogous
decomposition lemma for POL(H), also proved in [25].

The upper bound on
√

tu tq in Theorem 5 follows from Theorem 12 and
the observation that the upper bound on γ2 can be achieved by a factorization
into matrices with entries in {0, 1}, which is equivalent to an oblivious data
structure with multiplicity 1. The upper bound on error in Theorem 6 follows
from Theorems 8 and 12.

§6. Lower bound. In this section we prove lower bounds on disc(n,TB)

matching the known lower bounds on disc(n,Ad) up to constants when B is
a generic convex polytope (“generic” is defined below). In order to use Fourier
analytic techniques, it will be convenient to work with a modification of the
incidence matrix of TB(P). To this end, let us call a function f : Rd

→ R
periodic if for every x ∈ [0, 1)d and every vector y in the integer lattice Zd we
have f (x)= f (x+y). Let Qn := {i/n}n−1

i=0 . For a periodic function f : Rd
→ R,

define a real nd
× nd matrix M( f, n) indexed by Qd

n :

mx,y( f, n) := f (x − y),
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1104 A. NIKOLOV

where, x and y range over Qd
n . Of special interest to us are periodic functions

defined by convex polytopes B ⊆ [0, 1)d . Let us define the function fB : Rd
→

R to be equal to the indicator function 1B of B on [0, 1)d , extended periodically
to the rest of Rd . For convenience, we use the notation M(B, n) := M( fB, n).

There are two main observations that motivate studying M(B, n). First, each
row of M(B, n) is the indicator vector of the disjoint union of most 2d sets
from T−B(Qd

n) = TB(−Qd
n) = TB(Qd

n), so any lower bound on the hereditary
discrepancy of M(B, n) implies a lower bound on disc(n,TB). Second, because
M(B, n) is the matrix of a convolution operator, it is diagonalized by the
(discrete multidimensional) Fourier transform, and we can use known results
on the Fourier spectra of convex polytopes to derive bounds on the trace norm of
M(B, n), and therefore on γ2(M(B, n)).

Before we continue, let us introduce the standard notation for the Fourier
coefficients. For the remainder of this section, we use i =

√
−1 to denote the

imaginary unit. For any u ∈ Rd and a periodic function f : Rd
→ R integrable

on [0, 1)d we define the Fourier coefficient

f̂ (ξ) :=
∫
[0,1)d

f (x)e−2π i〈ξ,x〉 dx .

We also define the discrete Fourier coefficients:

f̃ (ξ, n) :=
1

nd

∑
q∈Qn

f (x)e−2π i〈ξ,q〉.

It is well known, and easy to verify, that the eigenvalues of M(B, n) are
given by nd f̃B(ξ, n). There is quite a bit known about the continuous Fourier
coefficients f̂B(ξ), but comparatively less known about the discrete Fourier
coefficients. Intuitively, bounds on the Fourier coefficients are easier to prove
in the continuous domain because powerful tools like the divergence theorem
are available. In order to use the known bounds on f̂B(ξ), we estimate the rate of
convergence of f̃B(ξ, n) to f̂B(ξ) with n. We follow an approach similar to that
used by Epstein [16] in the one-dimensional setting. In order to adapt his results
to our setting, we need two additional ingredients: a higher-dimensional analog
of Jackson’s theorem in approximation theory, and a continuous approximation
to the indicator function fB . Next, we state the higher-dimensional Jackson-type
theorem (given by Yudin, also spelled Judin) that we use.

Definition 1. The modulus of continuity of a continuous function f : Rd
→ R

is defined as ω( f, δ) := sup{| f (x + t)− f (x)| : x, t ∈ Rd , ‖t‖2 6 δ}.

THEOREM 13 [21]. There exists a universal constant C such that for any
function f and any integer n > 1 there exists an order n trigonometric
polynomial p defined by

p(x) =
∑

ν∈Zd :‖ν‖∞6n

cνe2π i〈ν,x〉
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such that

‖ f − p‖∞ := sup
x∈[0,1)d

| f (x)− p(x)| 6 4ω
(

f,
C
√

d
n

)
.

The next lemma is an analogue of [16, Theorem 3.1].

LEMMA 14. There exists a universal constant C such that the following
holds. Let f : Rd

→ R be a continuous periodic function with modulus of
continuity ω( f, δ). Then, for any ξ ∈ Zd such that ‖ξ‖∞ 6 n, we have

| f̃ (ξ, 2n + 1)− f̂ (ξ)| 6 8ω
(

f,
C
√

d
n

)
.

Proof. Let p be the trigonometric polynomial of order n guaranteed by
Theorem 13. Using an elementary calculation, for any ξ ∈ Zd such that ‖ξ‖∞ 6
n, we have p̃(ξ, 2n + 1) = p̂(ξ) = cξ , where cξ is the coefficient of e2π i〈ξ,·〉 in
the expansion of p. For any ξ as above, this gives us:

| p̃(ξ, 2n + 1)− f̂ (ξ)| = | p̂(ξ)− f̂ (ξ)|

=

∣∣∣∣∫
[0,1)d

(p(x)− f (x))e−2π i〈ξ,x〉 dx
∣∣∣∣ 6 ‖ f − p‖∞,

where we used the trivial case of Hölder’s inequality. Similarly,

| f̃ (ξ, 2n + 1)− p̃(ξ, 2n + 1)| =
1

(2n + 1)d

∣∣∣∣∑
q∈Qn

( f (x)− p(x))e−2π i〈ξ,q〉
∣∣∣∣

6 ‖ f − p‖∞.

Combining the two inequalities, and using the bound in Theorem 13, we get

| f̃ (ξ, 2n + 1)− f̂ | 6 | f̃ (ξ, 2n + 1)− p̃(ξ, 2n + 1)| + | p̃(ξ, 2n + 1)− f̂ (ξ)|

6 2‖ f − p‖∞ 6 8ω
(

f,
C
√

d
n

)
.

This completes the proof. �

In the next lemma we prove an explicit bound on how fast f̃B(ξ, n) converges
to f̂B(ξ) with n for a convex polytope B. The bounds are most likely not tight,
but sufficient for our purposes, since we only need that the convergence rate is
polynomial in 1/n.

LEMMA 15. Let B ⊆ [0, 1)d be a convex polytope with non-empty interior.
Then, for any ξ ∈ Zd , ‖ξ‖∞ 6 n, we have

| f̃B(ξ, 2n + 1)− f̂B(ξ)| = Od,B

(
1
√

n

)
.
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Proof. In order to apply Lemma 14, we need a continuous function f which
approximates fB . We construct this approximation by, roughly, a piecewise
linear interpolation along every direction.

Let c lie in the interior of B, and pick a real number r > 0 such that c+r Dd
⊆

B, where Dd is the unit Euclidean ball in Rd centered at the origin. Let us define
the gauge function g by g(x) = inf{t : x ∈ (1− t)c + t B} on [0, 1)d . Note that
g(x) 6 (1/r)‖x−c‖2, further, that for any x, t ∈ Rd , g(x+ t) 6 g(x)+g(t+c).
Using these two observations, we get

g(x + t)− g(x) 6 g(t + c) 6
1
r
‖t‖2.

By symmetry, we also get that g(x) − g(x + t) 6 (1/r)‖t‖2. Therefore,
ω(g, δ) 6 δ/r .

We define a periodic function f on [0, 1)d by

f (x) =


1 g(x) 6 1− ε
1
ε
(1− g(x)) 1− ε < g(x) < 1

0 g(x) > 1,

for a parameter 0 < ε < 1 which depends on n and will be determined later. We
then extend f periodically to the rest of Rd . The function f is defined so that it
is continuous and agrees with fB except for those x for which 1−ε < g(x) < 1.
Moreover, observe that

ω( f, δ) 6
1
ε
ω(g, δ) 6

δ

rε
.

Then, using Lemma 14, for any ξ ∈ Zd such that ‖ξ‖∞ 6 n, we have

| f̃ (ξ, 2n + 1)− f̂ (ξ)| 6
8C
√

d
rεn

. (10)

It remains to bound | f̂B(ξ)− f̂ (ξ)| and | f̃B(ξ, 2n + 1)− f̃ (ξ, 2n + 1)|. Let
S = {x ∈ [0, 1)d : 1 − ε < g(x) < 1} be the subset of [0, 1)d on which f and
fB disagree. Notice that the closure of S is B \ (εc+ (1− ε)B) = c+ (B − c) \
(1− ε)(B − c) (see Figure 1), so we have

λd(S) = λ(B \ (1− ε)B) = (1− (1− ε)d)λd(B) 6 dε,

where, in the final inequality, we used the assumption B ⊆ [0, 1)d , which implies
λd(B) 6 1. (Recall that we use λd for the Lebesgue measure in Rd .) We can now
bound the first of our error terms using Hölder’s inequality: for any ξ ∈ Zd
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Figure 1: The set S on which f and fB disagree.

| f̂B(ξ)− f̂ (ξ)| =
∣∣∣∣∫
[0,1)d

( fB(x)− f (x))e−2π i〈ξ,x〉 dx
∣∣∣∣

=

∣∣∣∣∫
S
( fB(x)− f (x))e−2π i〈ξ,x〉 dx

∣∣∣∣ 6 λd(S) 6 dε. (11)

A similar calculation for the discrete Fourier coefficients gives us

| f̃B(ξ, 2n + 1)− f̃ (ξ, 2n + 1)| =
1

(2n + 1)d
∑

q∈Qn

( fB − f (x))e−2π i〈ξ,q〉

=
1

(2n + 1)d
∑

q∈Qn∩S

( fB − f (x))e−2π i〈ξ,q〉

6
|S ∩ Qn|

(2n + 1)d

for any ξ ∈ Zd . By a standard volume argument,

|S ∩ Qn| 6
λd(S + (1/2n)Dd)

λd((1/2n)Dd)
= (2n)d

λd(S + (1/2n)Dd)

λd(Dd)
.

Because (1/2n)Dd
⊆ (1/2rn)(B − c), we have S + (1/2n)Dd

⊆ c +
(1+ 1/2rn)(B − c) \ (1− ε − 1/2rn)(B − c), and, therefore,

λd

(
S +

1
2n

Dd
)
6

((
1+

1
2rn

)d

−

(
1− ε −

1
2rn

)d)
λd(B) 6 εd +

3d
2rn

,

where the final inequality holds for n > d/2r . Putting the estimates together, we
have

| f̃B(ξ, 2n + 1)− f̃ (ξ, 2n + 1)| 6 Cdε +
Cd

rn
, (12)

for a constant Cd depending on d and all large enough n.
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Combining (10), (11), and (12), for all large enough n and any ξ ∈ Zd such
that ‖ξ‖∞ 6 n we get

| f̃B(ξ, 2n + 1)− f̂B(ξ, 2n + 1)| 6
8C
√

d
rεn

+ (Cd + d)ε +
Cd

rn
.

By setting ε = n−1/2, we get that the right-hand side is in Od,B(n−1/2), as
required. �

Inspecting the proof of Lemma 15, we see that the only dependence on B is
via the radius r of the Euclidean ball contained in B: all other constants depend
on the dimension only. By John’s theorem, we can apply an affine transformation
to B so that it is contained in [0, 1)d , and in fact in a Euclidean ball of unit radius,
and contains a ball of radius 1/d . However, the estimates we use below on the
Fourier coefficients of fB do depend on B, so we do not pursue this idea further.

We require a technical definition.

Definition 2. We will say that a polytope B in Rd is generic if there exists a
sequence of faces F1 ⊆ F3 ⊆ · · · ⊆ Fd−1 of B such that F j is a face of dimension
j , for every j 6 d − 2 the face F j is not parallel to any other face of F j+1, and
the facet Fd−1 is not parallel to any other facet of B.

It is easy to see that B is generic for example if the facets of B have normal
vectors u1, . . . , uk that are in general position, in the sense that for every J ⊆ [k]
of size at most d the set of vectors {u j : j ∈ J } spans a subspace of dimension
|J |. However, the condition of being generic appears to be much weaker. We use
the following estimate on the Fourier coefficients of such a polytope.

THEOREM 16 [10]. Let B be a generic polytope in Rd for d > 2. There exists
a constant cd,B , possibly depending on d and B, such that for any ρ > 1∫

Sd−1
| f̂B(ρξ)| dσd−1(ξ) >

cd,B logd−1(ρ)

ρd ,

where Sd−1 is the unit Euclidean sphere in Rd and σd−1 is the uniform
probability measure on Sd−1.

In [10] Theorem 16 is stated for a simplex, and after the proof the authors
remark that the same proof extends to any polytope which has one face not
parallel to any other face. However, in their proof, they induct on lower and lower
dimensional faces, and this condition needs to hold for any face they induct on.
Our definition of generic appears to be the minimal condition under which their
proof goes through. The authors of [10] note that some genericity-like condition
is necessary since Theorem 16 does not hold for all values of ρ when B is a cube.
Nevertheless, it is likely that a variant of the theorem in which we average over
values of ρ in a big enough interval could hold for arbitrary polytopes, and may
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yield a lower bound with a constant that only depends on d and not on B. We
leave this extension for future work.

Theorem 16, Lemma 15, and an averaging argument yield the following
estimate on discrete Fourier coefficients, which is the final step towards our lower
bound.

LEMMA 17. Let B ⊆ c + Dd be a generic convex polytope with non-empty
interior, where Dd is the Euclidean unit ball in Rd centered at the origin and c
is the centroid of [0, 1)d . There exists an orthogonal transformation u such that
Bu := c + u(B − c) satisfies∑

ξ∈Zd :‖ξ‖∞6n

| f̃Bu (ξ, 2n + 1)| = �d,B(logd(n)).

Proof. Recall that we use O(d) to denote the group of orthogonal
transformations on Rd , and θd to denote the Haar probability measure on this
group. We also use σd−1 for the uniform probability measure on the sphere.

For any ξ ∈ Zd
\ {0} we have∫

O(d)
| f̂Bu (ξ)| dθ(u) =

∫
O(d)

∣∣∣∣∫
c+u(B−c)

e−2π i〈ξ,x〉 dx
∣∣∣∣ dθ(u)

=

∫
O(d)

∣∣∣∣∫
u(B)

e−2π i〈ξ,x〉 dx
∣∣∣∣ dθ(u)

=

∫
O(d)

∣∣∣∣∫
B

e−2π i〈ξ,u∗(x)〉 dx
∣∣∣∣ dθ(u)

=

∫
O(d)

∣∣∣∣∫
B

e−2π i〈u(ξ),x〉 dx
∣∣∣∣ dθ(u)

=

∫
Sd−1

∣∣∣∣∫
B

e−2π i〈‖ξ‖2ζ,x〉 dx
∣∣∣∣ dσd−1(ζ )

>
c logd−1(‖ξ‖2)

‖ξ‖d2
.

Above, in the penultimate line we used the fact that for any measurable set Y ⊆
Sd−1, and any y ∈ Sd−1, σd−1(Y ) = θd({u ∈ O(d) : u(y) ∈ Y }). The final
inequality is implied by Theorem 16 for an appropriate constant c depending on
d and B. Therefore,∫

O(d)

( ∑
ξ∈Zd :0<‖ξ‖2= j

| f̂Bu (ξ)|

)
dθd(u) > cm j

logd−1( j)
jd/2 ,

where m j = {ξ ∈ Zd
: ‖ξ‖22 = j}. By Lemma 15, for all sufficiently large

n and for all j such that j 6 (c1n)1/d for a sufficiently small constant c1, we
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have f̃Bu (ξ, 2n + 1) > f̂Bu (ξ) − c/2 jd/2 for any ξ ∈ Nd
0 for which ‖ξ‖22 = j .

Therefore,

∫
O(d)

( ∑
ξ∈Zd :0<‖ξ‖226(c1n)1/d

| f̃Bu (ξ, 2n + 1)|
)

dθd(u) > c
b(c1n)1/dc∑

j=1

m j
logd−1( j)

2 jd/2 .

There must then exist a choice of u ∈ O(d) such that

∑
ξ∈Nd

0 :‖ξ‖
2
26(c1n)1/d

| f̃Bu (ξ, 2n + 1)| > c
b(c1n)1/dc∑

j=1

m j
logd−1( j)

2 jd/2 . (13)

Let us fix such a u for the rest of the proof. We proceed to estimate the right-hand
side of (13). Define ` = b(c1n)1/dc to be the upper bound of the summation, and
let k = b

√
`c. Let m6 j = m1 + · · · + m j . Using summation by parts, we have

∑̀
j=1

m j
logd−1( j)

jd/2 > logd−1(k)
∑̀
j=k

m j

jd/2

= logd−1(k)
m6`
`d/2

+ logd−1(k)
`−1∑
j=k

m6 j

(
1

jd/2 −
1

( j + 1)d/2

)
.

By standard estimates (e.g. Minkowski’s first theorem), there exists a constant c2
depending on the dimension d such that m6 j > c2 jd/2. By convexity, 1/jd/2

−

1/( j + 1)d/2 > (d/2)/( j + 1)(d+2)/2. Plugging these inequalities into the bound
above, we get that

∑̀
j=1

m j
logd−1( j)

jd/2 > c2 logd−1(k)
∑̀
j=k

jd/2

( j + 1)(d+2)/2 = �d(logd n).

Together with (13), this completes the proof of the lemma. �

Proof of Theorem 3. By scaling we can assume that B ⊆ c + Dd , where
Dd is the Euclidean unit ball in Rd centered at the origin and c is the centroid
of [0, 1)d . Let u be the orthogonal transformation given by Lemma 17, and let
M := M(Bu, 2n+1). It is easy to verify that M is diagonalized by the collection
of orthogonal eigenvectors {(e2π i〈ξ,x〉)x∈Qd

2n+1
: ξ ∈ Zd , ‖ξ‖∞ 6 n}, and the

eigenvalue associated with the eigenvector (e2π i〈ξ,x〉)x∈Qd
2n+1

is (2n + 1)d f̃Bu (ξ,

2n + 1). Since M is a normal matrix, i.e. MᵀM = M Mᵀ, or, equivalently, since
it is diagonalized by a system of orthogonal eigenvectors, its singular values
are equal to the absolute values of its eigenvalues. Using Lemma 17 we have
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the estimate

γ2(M) >
1

(2n + 1)d
‖M‖tr

=

∑
ξ∈Zd :‖ξ‖∞6n

| f̃Bu (ξ, 2n + 1)| = �d,B(logd(n)). (14)

Let A be the incidence matrix of TBu (−Q2n+1). Notice that every row of M can
be represented as the disjoint sum of at most 2d rows of A. Therefore, we can
write M = A1 + · · · + Ak , where k 6 2d , and each row of each matrix A j is
also a row of A. Since duplication and rearrangement of rows preserve γ2, and
dropping rows does not increase it, by the triangle inequality for γ2 we have

γ2(M) 6
k∑

j=1

γ2(A j ) 6 2dγ2(A) = 2dγ2(TBu (−Q2n+1)).

Define the pointset P = {u∗(x−c)+c : x ∈ −Q2n+1}, and notice that TB(P) =
TBu (−Q2n+1), so, using the inequality above and (14), we have

γ2(TB(P)) = �d,B(logd n). (15)

Equations (2) and (15) imply

disc(nd ,TB) > herdiscTB(P) = �d,B(logd−1 n).

Therefore, disc(n,TB) = �d,B(logd−1 n), as was to be proved. �

Equation (15) implies the lower bound on
√

tu tq in Theorem 5. The lower
bound on error in Theorem 6 follows from equation (15) and Theorem 8.
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