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Abstract
An important goal for humanoid robots is to achieve fast, flexible and stable walking. In previous research, the
structure and walking algorithms evolved separately, resulting in a slow evolution speed and lack of an initial design
basis. This paper proposes comprehensively considering body morphology and walking patterns, exploring the
relationship between them and their influence on the motion ability. The method parameterizes the body morphology
and walking patterns. Then a response surface model is established to describe the complex relationship between
these parameters and finally obtain the optimized parameters, which provides a reference for the structural design
and gait generation.

1. Introduction
A humanoid robot is a type of robot with bipedal walking as its main feature and a similar appearance
to human beings. Humanoid robots have received considerable attention due to their many advantages,
such as rough terrain adaptability and climbing capability. One of the challenges with humanoid robots
is achieving rapid, flexible and stable bipedal walking. This problem has been studied and explored for
decades, and several walking gait generation methods have been proposed, tested and implemented, such
as the traditional zero moment point (ZMP) and multi-rigid-body approach [1], the simplified 3D linear
inverted pendulum model (3DLIPM) approach [2], the central pattern generator approach [3] and the
passive walking approach with under-actuated joints [4].

Open-loop gait planning and online feedback control are both developed for better walking stability
and flexibility. These methods provide a rich range of selections when a new robot is to be designed
[5], and some of the prototypes have achieved amazing walking ability. Humanoid robots are gradually
entering our daily lives and receiving more chances for field applications. Examples include the NAO
humanoid robot [6] from Aldebaran Robotics for education and training, Honda ASIMO [7] from Honda
Automobile for research and service and Atlas [8] from Boston Dynamics for potential military usage.

Engineers always attempt to design humanoid robots that have similar appearances to humans; there-
fore, the morphology parameters, such as leg length, arm length and pelvis width, are designed to have
the same ratios to body height as in humans. Although a humanoid robot is supposed to appear similar
to humans, the biological relative limb sizes are probably not suitable for a mechanical robot. This is
mainly due to the great distinction of the driving system for these two types of bipedal walking objects.
The motors, harmonic drivers or hydraulic systems and the metallic materials used to build a robot body
are quite distinct from the muscles, organs and skeletons in humans. There are already some research
results and conclusions on this topic. For example, the experiments in ref. [9] indicate that a robot is able
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to imitate human motion only if its driving system is also compliant as a biological joint driver. More
human-like compliant mechanisms are needed to mimic the highly efficient walking of humans [10].
The existing mechanical structure design methods of humanoid robot generally consider the stability,
workspace and mechatronics, such as refs. [11], [12], [13]. These studies first put forward the design
concept through analysis and then verify the effect through experiments, which is a forward direction
research pattern. Although each design can improve some aspects of the robot’s ability, it is not an
optimal design. So further optimization of body configuration of a bipedal robot remains a question for
robot designers.

From our perspective, humanoid robots can be treated as artificial organisms. Their body structure
must comply with their walking style to adapt to their designated circumstances. The body configuration
and gait parameters of a robot are carefully selected and optimized to maximize their motion efficiency
or velocity. However, proposing such an optimized method is a challenge because the dynamics of a
bipedal walking robot are too complex to analyse because dozens of joints and limbs are involved. The
relationships among concerned factors, such as body structure, walking pattern and designated tasks,
are non-linear, strongly coupled and hidden.

One possible approach to solve the coordinated machinery-motion optimization problem is to imitate
the evolution process as in the biology field. This framework avoids the difficulty stated above, namely
the necessity of performing a sophisticated dynamics analysis and solving the multi-variable, strongly
correlated and complex optimization problem. The evolution of humanoid robot designs has several
advantages for several reasons. The first is that the mechanical structure is variable. Simply modifying the
limb size in CAD software and machining body parts is able to obtain the next generation. Second, rather
than physically building the robot body, computer simulations are currently able to precisely provide
living environments and precise state extraction, and the performance of such simulations is especially
valid for multi-rigid-body systems. The evolution in a pure computing environment greatly decreases
the cost of evolution in terms of both funding and time. Previous works with computer simulations
attempt to improve the walking ability of robots, and some also use the evolution method or learning
method to obtain a better motion ability [14]. However, the collaborative evolution of body structure
and motion is able to generate both of them in a single procedure and obtain much more compliance.
Finally, the natural evolution can be greatly accelerated via other computing algorithms, and a large
number of invalid trials can be avoided. Surrogate-model-based global optimization, for example, can
greatly decrease the number of experiments compared with the genetic and evolutionary algorithms
(EAs) corresponding to the natural evolution process. The coordinated optimization of body structure
and walking motion style can be solved conclusively in this manner.

In light of the above considerations, we propose a computer-simulation-based collaborative evolu-
tion of body configuration and gait generation strategy for the specified environment. The remainder of
this paper is organized as follows. Section 2 provides state-of-the-art technologies related to global opti-
mization and evolution. Before outlining the whole framework of the strategy in Section 3. In Section 4,
a robot design problem is presented as an example, and Section 5 presents the coevolution experiments,
as well as provides and analyses the design result. The conclusions are presented in Section 6.

2. State of the art
In most cases, the humanoid robot design and walking pattern generation are investigated separately.
Some researchers stated that walking simulations were performed at the beginning of robot structure
design. For example, Xia [15] analysed the effects of the distance between the two hips and the height
of the centroid on walking stability, and they attempted to optimize the leg morphology based on the
simulation result. However, to the current knowledge of the authors, there are only a few coordinated
morphology-locomotion optimization trials on humanoids.

The first such result can be found in Endo [16], where an EA is used to coevolve limb length and a
neural-network-based controller for walking to avoid trial-and-error in mechanical design and motion
generation. A robot that is capable of walking for the longest distance is finally found, and the result is
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used for designing the real bipedal walking robot OpenPINO. The robot with the best energy efficiency
is also coevolved by EA/GA [17]. These two pioneering studies brought the concept into being; however,
the relationships among morphology, locomotion and the working environment have not been clearly
investigated for living systems. The method appears to be limited to the particular robot and the neural
networks and oscillators, and the GA/EA adopted is a computationally intensive method for optimizing
such problems.

Eaton [18] also uses a GA to generate the walking motion of bipeds. This research also varies
some of the joints of the leg, and environmental factors are also considered to compare the different
walking styles. Jouandeau [19] only optimized the separation between the two hips based on walking
performance.

The research on passive walking [20] is most likely to be a type of coordinated implementation of
mechanical structure and motion generation. The mechanical structure is well optimized to realize a
walking style with minimal power input. However, the thought behind the passive walking style appears
to be a better motion generation primarily by optimizing the mechanical structure. Here, the active
motion generator is less focused or has few chances to impact the walking quality. Therefore, the scheme
of passive walking cannot be classified as a coordinated evolution of mechanical structure and motion
generation.

Ref. [21] provides a review of evolutionary robotics. The core is to develop various robot systems
and control policies by GA. EA/GA is used to develop both the control system and body configuration in
close interaction with the environment without human intervention. Behaviours for obstacle avoidance
in complex circumstances, bipedal walking by neural networks, the coevolution of robot bodies and
brains and vision and navigation are all developed in the framework of EAs.

Within all these studies, GA/EA plays a vital role. It generates the new candidate points in a stochastic
manner, and it makes the optimization more likely to be similar to the evolution of biological species
[16]. There are also several other stochastic-based approaches, such as particle swarm, pattern search
and simulated annealing. All these approaches share several common features, as follows. Every execu-
tion of the optimization may follow a different path, and many parallel function evaluations are needed
in every step towards convergence. Points previously evaluated do not participate in the later candidate
generation. Because dynamics simulation for multiple objects with a relatively large amount of experi-
ments can be computationally expensive, those evolutions would generate a large number of individuals
for simulations to obtain a better machinery-motion couple.

In addition to these stochastic methods, there are also some global optimization methods that can
reach the same goal. For example, design and analysis of computer experiments (DACE), established by
Sacks [22, 23], is widely used as the standard approach for deterministic black-box optimization prob-
lems. It belongs to a special type of method called a response-surface-based approach. Rather than the
stochastic-based genetic and EAs, the response-surface-based approach does not perform optimization
directly on the objective model. It first builds a surrogate model, which is actually the interpolation of
existing experimental points. The interpolated model is actually an available derivative approximation
of the target function, and the optimized point can be obtained using classical non-linear optimiza-
tion methods. The surrogate model approach is preferable because of its far fewer demands in terms of
experimental evaluation. A stochastic process model called the Kriging model is used to approximate the
behaviour of the objective function with high non-linearity. Another kind of global optimization meth-
ods are walking pattern generation using reinforcement learning. Ref. [24] used reinforcement learning
to find the proper initial position and velocity and the final position and velocity. The stable biped walk-
ing pattern is verified through a simulation. Silva [25], [26] used reinforcement learning to improve
the walking stability of humanoid robot on sloped terrain and optimize the parameter values for the
gait pattern generation with temporal generalization. The methods based on reinforcement learning can
optimize the gait parameters and are possible to identify the relationship between the parameters, which
have great development potentials. However, the learning time is still very long at current stage.

There are also a few applications of finding the bipedal walking parameter for some of the approaches.
Hemker [27] uses the Kriging model, a widely used surrogate model, to enhance the bipedal walking
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Figure 1. The mapping relationship of body morphology and walking pattern to the designated tasks
(living environment).

speed through sequential experiments on a physical robot. Our previous work seeks to improve the
omnidirectional walking performance of this type of walking [28].

In general, there is still no research that puts the mechanical structure and walking motion of
humanoid robots into a surrogate model for collaborative optimization. The goal of this paper is to
explore the relationship between structure and walking motion and to provide a systematic design
guidance for humanoid robots.

3. Framework of humanoid robot evolution
In Fig. 1, body morphology, motion pattern and the designated tasks and constraints are the three decisive
elements for designing a customized humanoid robot. The origin of this mapping relationship is detailed
in the Appendix. However, their relationships are complex and hidden. It is extremely difficult to obtain
mathematical expressions. Therefore, an evolutionary process that occurs in the biology and ecological
worlds is adopted.

In the evolution and natural selection processes, the tasks under certain circumstances and constraints
serve as the driving force. To create such evolving environments, standard experiments are designed to
represent the designated job and existing constraints. An evaluation method is also proposed to score
every experiment. In addition to those external factors as the given conditions, many other internal
factors, such as the walking control scheme and the optional joint driver for the robot, are also involved.
These factors are also considered surroundings because of the limitations of available technologies. For
example, a small-sized toy-like humanoid robot tends to adopt an open-loop walking scheme to avoid
expensive sensor feedback, and the available joint servo motors are also limited to several known types.
This walking scheme is vulnerable to uneven terrain and therefore exerts constraints on walking stability.
The available driving motors have limits on their output torque, power and speed. These characteristics
are also constraints and are treated as its surroundings and environments.

Body structure is the second key factor for coordinated morphology-locomotion optimization. Many
parameters can distinguish one robot from another. Simply, a tiny modification of the bearing for limb
joints can be treated as a variation in body structure. However, the concept of body structure here only
indicates the morphology configuration rather than the structural details. It mainly includes limb length
and the relative ratios of them, such as the ratio of the thigh and shank, the length of legs to its body
and the relative pelvis width. The evolution ultimately creates a humanoid robot with the optimal size
for these limbs.

The last included factor is the bipedal locomotion and walking pattern. Currently, there are many
choices for a biped robot to walk. Some of them are even human-like: inverted pendulum mechanisms
and stiff walking are used to achieve energy efficiency. Others are based on the 3DLIPM model [2], and
the walking pattern is similar to the chimpanzee’s bending knee, bending hip (BKBH) walking style.
The theory behind each walking style is different.
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Figure 2. Framework of the black-box optimization for morphology-locomotion coevolution.

The parameters of walking styles are indispensable for a successful implementation, which is strongly
related to the specific walking pattern. Consequently, the parameters selected for evolution also greatly
vary. The evolution in this paper primarily focuses on the adjustment of parameters for a pre-defined
walking scheme, such as the time duration of a single step and the ratio of the single leg support time. The
walking scheme must be described by the same series of parameters among the experiments. In contrast,
walking patterns with completely different basic concepts are unable to be compared and selected.

The process for finding the best configuration for locomotion and morphology is essentially the solu-
tion of a global optimization problem based on a type of mapping from the robot body configuration
and walking pattern parameters to the walking experiments that cover the primary designated tasks. The
problem is normally expressed in (1).

f : {Pm, Po} → e , (1)

where Pm is the set of machinery parameters, Po is the set of motion parameters and e is the evaluation
after the survival test. The constraints are expressed implicitly in the experiments as stable walking
without falling over or self-collision.

There is no derivative information in the target function. GA/EA and surrogate-model-based
approaches are candidates for this type of problem. However, the surrogate model approach or more
precisely the DACE method is preferable because of its far fewer demands in terms of experimental
evaluation. These experiments and evaluations are also assumed to be performed by computer simula-
tions to obtain definitive results with the same parameters. Refer to Section 2 for more information and
comparisons of the GA/EA and surrogate-based methods. DACE runs iteratively as illustrated in Fig. 2.

The process consists of two main steps: the experimental step and the parameter-finding step. In
the first step, a series of experiments are performed for survival tests, through which an evaluation
value is generated. One or a number of species with different parameters is suggested by means of a
certain heuristics function based on this value together with the last trials. Then, new simulations or
experiments are performed using the new candidate constants. The entire process proceeds recursively
or concurrently for the ultimate determination of the optimal values.

4. An Example of morphology-locomotion coevolution
The previous sections develop a framework and the necessary components for the morphology-
locomotion coevolution, while this part presents an example to demonstrate how to obtain a customized
design of a humanoid robot with fast and stable walking.

Suppose that a humanoid robot is supposed to be capable of walking rapidly for a race or for football
games, such as Robocup or FIRA scenarios. The walking scheme is the model predictive control (MPC)
of 3DLIPM [2]. It is chosen because the method has been developed for decades, and it is probably the
only applicable, robust omnidirectional walking scheme. Other walking methods, such as the passive
walking pattern, have not adopted because of simultaneous limitations on walking forward, sideways and
turn. The 3DLIPM walking is also the chimpanzee’s BHBK style, which is much more stable due to its
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less peak reaction forces. This will bring less vibration, although less energy efficiency is considered.
This is not the decisive consideration for a racing robot.

The given conditions are listed for later design.

• The robot height is supposed to be in a specified range, say (Hl, Hu);
• The robot joint actuator is already defined, with a known weight, size, maximum speed and power

capacity;
• According to the selected driver system, the onboard computing and control platform is already

chosen, for example, the servo motor driver, the onboard battery and embedded computers.
• The upper body of a robot is then well designed. Its upper body is already designed with those

control and driving systems encapsulated within its trunk. Consequently, its weight, centre of
gravity and inertial matrix of the upper body are already well defined.

In the above list, the first line is to bound the body height of a robot, which is the key parameter for
the upcoming robot. The height of the robot not only defines its application purpose but also decides the
potential joint actuators and the volume of each body part. The joint actuators for a robot with heights
lower than 60 cm will be greatly different than those with body heights larger than 170 cm.

Second, the joint actuators supply driving forces for walking locomotion. The joint actuation system,
such as servo motors or hydraulic driving systems, is the key factor for building a physical robot. The
second assumption is due to the special requirements of the torque/mass ratio for the current bipedal
walking technologies. The optional actuators are strictly limited and are presumed to be already definite.

The trunk contains the servo drivers, controllers and onboard computers, as well as the power source
and batteries. Sensors such as inertial measurement unit are also mounted within the trunk. The trunk
can be well designed before determining the leg morphology. The arm extension can also affect walking
ability; however, in this specific problem, we ignore its effect but focus on the vital role of legs. The limb
length of arms can be added to form another new design problem, and it makes no essential difference
for this sample design problem.

The listed items provide the internal condition discussed in Section 3 and avoid designing from
scratch. Note that the problem is only a simplified one to illustrate the application of the coevolution
framework. The method can be used in a much wider range in addition to this small-scale problem, but
correspondingly at the cost of introducing more parameters and computing power.

As in the proposed sample design problem, three key components are indispensable for formalizing an
evolution problem: the mechanical structure parameterization, the walking generation parameterization
and the evaluation method in experiments. Therefore, these three factors are discussed. The surrogate-
model-based optimization, which acts as the special evolution process, is also briefly presented.

4.1. Body morphology parameterization
Several variable morphology parameters are depicted in Fig. 3:

• Leg length L: how long will the robot legs be design constrained by the body height within
(Hl, Hu)?

• Leg ratio r: what will be the ratio of length between the upper and lower leg?
• Pelvis width p: what is the offset between the two legs?

For the first one in the design task list, the robot tends to be less stable when walking when the robot
height reaches Hu, but it can walk with longer strides with longer legs. Although the same walking speed
can be reached by changing the step frequency, other elements, such as the limit for power and torque
exertion and rolling speed of the joints, may substantially vary from these leg length-step frequency
companions. There appears to be a balance point for the design task.
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Figure 3. Morphology parameters for the legs of a racing humanoid robot.

The ratio of thigh and shank length varies to some extent in human beings from 0.8 to 1.0, and these
morphology variants affect the motion ability in human beings. The condition is similar for pelvis width
p. If the pelvis width p is too large, then the step frequency must be lowered for a longer time duration
for ZMP swapping between the feet. On the other hand, the robot tends to walk with a less stable margin
for a lower pelvis width p.

Note that there are also some other parameters that affect body morphology, such as the height of
the ankle, indicated as the dotted line in Fig. 3. They are ignored in this sample problem to have a
limited set of involved parameters for morphology-locomotion coevolution, but they may be added to
the coordinated optimization for other applications.

4.2. Walking style parameterization
For the demonstration example in this paper, the 3DLIPM and multi-rigid-body-based MPC approach
are adopted. Refer to ref. [2] for a complete description of the gait generation method. The whole joint
trajectories (or specifically the leg joints) can be generated given a series of landing footsteps, while a
series of hyperparameters are seldom mentioned:

• Step frequency f : It alternatively can be defined as the time duration of a single step. It clearly
influences the walking speed of a robot. A higher step frequency may introduce an unstable
factor for stride variation according to our previous research, but it is preferable to accelerate the
walking speed with the same strides.

• Rate of single support time tr, which is the relative ratio of single and double support time and
must be carefully selected for walking acceleration and stabilization.

• Initial standing height h: the initial standing posture characterized by its bending knee before any
walking. A greater bending angle enables the robot to walk with larger strides; however, they are
not all applicable due to constraints from joint driving systems, such as power, torque and speed.
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Figure 4. Standard experiments as the evaluation method for morphology-locomotion optimization.

• Height of swinging foot s: the height of the swinging foot is related to the dynamics balance. A
proper value is needed for the current robot leg configuration and other walking parameters.

If these overlooked but decisive hyperparameters are not properly defined, the generated motion may
greatly exceed the power limit for the joint driver. Unstable walking may also occur, especially for a high
step frequency and speed [28].

4.3. Experimental and scoring method for walking evaluation
The experiences of human beings have already told us that the environment and living pressure drive
evolution, and the standard experiments for scoring different parameter trials must contain complete
elements for the robot’s survival test. For a football player, the best experiment is in field play of the game,
or at least some typical motion for playing football. However, in this sample problem, it is simplified as
the ability to walk fast and stably.

A standard experiment is designed for this customized walking robot. The gradual accelerating walk
procedure is designed to obtain the experimental scores, as in Fig. 4. For each experiment, the velocity-
time curve is the same. Before ta, the robot is supposed to accelerate uniformly to maximum velocity,
and then keep uniform motion. The experimental score is defined as the maximum time the robot can
achieve under stable walking. On the basis of constant frequency, the robot can increase the moving
speed by increasing the stride. The experiment serves as fair evaluation for different step frequencies
and strides. A series of factors are considered in this standard experiment.

Because bipedal walking is a type of discrete motion, it is first simulated as a continuously running
vehicle and moving with a constant acceleration. The acceleration process is discretized as independent
steps by calculating the translational distance during the time extension of one step. The time duration
of one step can be obtained by the step frequency f discussed in Section 4.2. This method makes the
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Algorithm 1 Iterative DACE optimization for morphology-locomotion coevolution
1: Create N initial points x(i) using Latin hypercube sampling
2: Evaluate τ (x(i)) through walking experiments, i = 1, 2 . . . N
3: while iteration not terminated do
4: Build Kriging model using the set of points x(i), i = 1, 2 . . . N;
5: Search for the maximum x̂� of the EI function proposed by Jones et al. [23];
6: Evaluate τ (x̂�) through walking experiments;
7: Add x̂� to the point set;
8: N = N + 1;
9: Search for the minimum x̂�� of �(x) and output as the current result;
10: end while

comparison possible between the higher step frequency with small strides and lower step frequency with
large strides.

Second, such acceleration is thresholded by the largest stride that the robot can reach, which is limited
not only by the walking stability but also by the valid inverse kinematics solution of the leg.

Third, the key to obtain the maximum time under stable walking is to judge the last stable walk-
ing step. However, at times, it is difficult to distinguish between the stable steps and unstable steps. A
robot is starting to fall over in step n, for example, with unexpected collision with the ground, but it
can still continue walking for several steps until step n + 4 before observable body inclination. One
solution is to adopt contact forces of the feet to indicate these unstable risks and to predict falling
over before observable inclination. Another is the direct observation of geometric status, whereas some
delay exists for the latter method compared with the first one. A combination of these two methods is
applied to obtain the maximum walking speed. The direct observation of physical inclination of the robot
body indicates falling over. The maximum walking step is traced back to the point of contacting force
abnormality.

4.4. Evolution of the robot via surrogate-model-based optimization
A surrogate-model-based approach for optimization is used to build a model that describes the behaviour
of the related parameters to avoid the mathematical derivation of these complex functions. Many of these
relationships are implicit and hidden or even interdisciplinary. The surrogate-model-based approach can
be generalized after the parameterization of related factors to the problem. For example, in ref. [27], a
set of walking pattern parameters is selected without a detailed dynamics analysis to optimize for a rapid
walking capability, and in ref. [28], many simplified model parameters are selected to obtain the best
omnidirectional reactive walking. The details of the algorithm and its derivation are not discussed here;
refer to refs. [23], [29] for a complete description. The algorithm for morphology-locomotion evolution
is presented in List 1.

In Algorithm 1, x is the parameter set (L, p, r, f , tr, h, s)T by accumulating the body structure part in
Section 4.1 and locomotion part in Section 4.2. Line 1 presents an original experimental design in which
the Latin hypercube approach [30] is adopted for space filling. An initial Kriging model is created for
the first time and is iteratively optimized in Line 4. The fundamental function of the Kriging model is
as in Eq. (2).

τ (x) = f (x)Tβ + z(x) , (2)

where f (x) is the selected base function, which can be set to constant 1; z(x) is a variable correspond-
ing to a stochastic process, which follows a normal distribution with a mean of 0 and variance σ ; and
stochastic variables z(x) in different positions x share the same distribution. The covariance and the
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correlationship between any two points x(i) and x(j) are denoted in Eq. (3).

cov
[
z
(
x(i)
)

, z
(
x(j)
)]= σ 2R

(
θ , p, x(i), x(j)

)
ri

(
x(j)
)= corr

[
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(
x(i)
)

, z
(
x(j)
)]= R

(
θ , p, x(i), x(j)

)
, (3)

where R(θ , p, x1, x2) are the correlation type and are defined as Eq. (4).

R(θ , p, x(1), x(2)) = exp

(
−

k∑
h=1

θh

∣∣x(1)
h − x(2)

h

∣∣ph

)
(4)

where θh denotes the correlation strength of each xh component and ph indicates the smoothness of
the correlation function. Equations (2), (3) and (4) present the well-known Kriging model. This model
describes the behaviour of the function mainly by the second term: the stochastic variable z(x).

The parameters of the Kriging model
{
β, σ 2, θ , p

}
are found by maximum likelihood estimation

with a group of τ ∼ x evaluation tests. Prediction of function and the mean square error (MSE) of the
estimation on any new point x∗ is written as:

τ̂ (x∗) = β̂ + rTR−1(y − 1 · β̂) .

s2(x∗) = σ 2

[
1 − rTR−1r +

(
1 − 1TR−1r

)2

1TR−11

]
,

(5)

where β̂ is the coefficient of the estimated base constants, R is the correlation function matrix of tested
points with ri

(
x(j)
)

in Eq. (3) as the ith row and jth column element and τ is the resulting vector of
experimented points. r is the correlation function vector of x∗ and the tested points, where the element
i of r is ri(x∗) = corr

(
x∗, x(i)

)
.

To balance global exploration and local exploitation, the expected improvement (EI) criterion is
introduced in Line 5 in List 1 as follows:

E (I (x)) = (
fmin − τ̂

)
�

(
fmin − τ̂

s

)
+ sφ

(
fmin − τ̂

s

)
(6)

where φ(x) and �(x) are the probability density function and the probability distribution function of the
Gaussian distribution, respectively. s is the MSE of the estimation in Eq. (5). The optimum of Eq. (6) is
a new morphology-locomotion parameter couple for the survival test in Line 6. Line 9 presents the best
result up to now, and after the designated number of iterations is performed, the final body structure and
the corresponding motion parameters are obtained simultaneously as x̂�� and output as the current result.

5. Experiment and discussion
An experimental platform is built as illustrated in Fig. 5 to justify the strategy to design a customized
humanoid robot. All packages and simulation experiments were performed on a workstation with an
Intel Xeon E5-2630 CPU clocked at 2.4 GHz and 16.0 GB memory with Ubuntu 12.04.

The framework is built based on several open source platforms, including R for statistics, OpenHRP
for dynamics simulation and Openrobots for motion generation. Two R packages, DiceKriging
and DiceOptim [29], are adopted for Kriging modelling and efficient global optimization (EGO).
DiceKriging performs estimation, simulation, prediction and validation of a Kriging model based on a
series of experimental points, while DiceOptim performs sequential Kriging-based optimization based
on EI criteria as in List 1. Every experiment corresponds to a walking simulation with a robot prototype
and motion couple. Each point ever evaluated is obtained by the simulation process and recorded for
later analysis along the optimization history. Latin hypercube initialization of the Kriging model is also
realized in the R packages.

OpenHRP is used as the dynamics simulator and acts as the evolutionary experimental environment.
It calculates the dynamics during the accelerated walking experiment, and it exports the external acting
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Figure 5. Framework for experiment with open source platforms.

Figure 6. Sample robot in OpenHRP default installation used in morphology-locomotion evolution.

forces and posture of the robot. The sample robot available for the default installation of OpenHRP is
used for the prototype (as in Fig. 6). Several modifications were made for this robot.

First, restrictions of power output on each joint are implemented besides the original Proportional
Derivative (PD) controller used on the joint actuators because the unlimited power output on the sample
robot is irrational on a physical robot. The restriction function is in Eq. (7).

T ≤ min (Pmax/ω, α · imax) (7)

where T is the torque to be exerted on the joint, Pmax is the maximum power of the actuator, ω is
the current turning speed and α · imax denotes the maximum torque by current limitation in the motor
actuator.
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Figure 7. Snapshots of a dynamic simulation experiment.

We also added a passive joint to each foot of the robot to extract the reaction force and momentum
from the ground. This passive joint performs equivalently to a 6-D force sensing system on a physical
robot. In this way, a state extractor post-processes the raw data provided by the virtual sensors and
outputs meaningful results, such as force and posture. These results are evaluated to determine whether
the walking motion is stable based on a previous falling-over determinator, and they are converted to
the scores described in Section 4.3.

Key parameters of mechanical structure, such as the lengths of the upper leg and the lower leg,
are changed by modifying the VRML file for the designated robot model. However, the mass and the
distribution of the limb do not vary with its geometric size for simplifying the execution. Because the
mass does not vary considerably when the length is different, the variation plays a much smaller role in
gait planning when it is integrated into the whole body mass.

The motion planner is realized based on an open source library based on OpenRobots [31]. It is
able to calculate the body joint trajectories based on 3DLIPM. The new robot dynamics parameters are
extracted with the same VRML file for OpenHRP simulation, and this guarantees the correspondence
of motion generation and dynamics simulation. Additionally, the time cost for a single step and the ratio
between the single support time and double support time of the flying foot height extreme are fed into the
motion planner as the hyperparameters. The generated sequence of footsteps via Fig. 4 for the specific
experiment is submitted to the joint trajectory generator to obtain the COM trajectory via 3DLIPM-
based preview control. The joint trajectories of all joints, after inverse kinematics, are generated offline
and are followed by those actuators of the robot. A complete dynamic simulation experiment is shown
in Fig. 7 through snapshots.

The variables of body configuration and walking pattern together with their limits are then as listed
in Table I.

5.1. Results and discussion
For the experiment, 70 initial points, that is, 10 times the vector dimension in Table I, are generated via
the Latin hypercube method. These 70 initial points build up the first surrogate model. The leave-one-out
experiments are depicted in Fig. 8.
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Table I. Body morphology-locomotion parameters involved in the coordinated evolution to build a
humanoid robot.

Parameter name/unit Nominal Lower bound Upper bound
Length of each leg/m 0.7285 0.5285 0.9285
Rate of upper leg length 0.485 0.285 0.685
Width of hip/m 0.18 0.14 0.22
Step height/m 0.07 0.03 0.11
Time duration of steps/s 0.7 0.175 1.225
Rate of double support time duration/s 0.125 0.0 0.25
Rate of waist height for BHBK style 0.755 0.605 0.905

Figure 8. Leave-one-out cross-validation for the previous Kriging metamodel.
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Figure 9. Optimization process of 70 Latin hypercube experiments and 300 EGO experiments.

The sequential optimization process displaying the results of the initial 70 experiments and the sub-
sequent 300 iterative EGO experiments is shown in Fig. 9. The lowest evaluation value appears after
the 22nd experiment. This indicates that the convergence is realized much faster than expected. The
optimized configuration with the lowest evaluation value is listed in Table II for comparison.
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Table II. The optimized body morphology-locomotion parameters
with the lowest evaluation value.

Parameter name/unit Parameter value
Length of each leg/m 0.7194
Rate of upper leg length 0.568
Width of hip/m 0.14
Step height/m 0.09
Time duration of steps/s 1.0
Rate of double support time duration/s 0.059
Rate of waist height for BHBK style 0.774

Figure 10. The robot with the optimized leg configuration.

The leg configuration in the first line, which is the optimized point that we obtained, indicated that
the better choice of the leg design is not the equivalent lengths of the upper and lower legs. The upper leg
is found to be 20% longer than the lower leg, and this leg configuration is drawn in Fig. 10. This result
surprisingly corresponds to human beings, whose lower leg length is only 80% of that of the upper leg.
We think it might be a coincidence, and this may be caused by the evaluation criteria we designed. If
we change the optimization objective, the point with the lowest evaluation value may change. And this
paper only provides one evaluation criterion described in Section 4.3. Users can redesign the evaluation
criteria according to their own needs. A simple explanation is discovered for this configuration. Note
that the walking style that we chose is based on 3DLIPM, which is characterized by its knee bending
every moment during walking. The leg can never extend straight during this type of walking. The initial
bending angle of the knee, which is also called the waist height for BHBK style before walking in Table
I, defines the maximum step length, as illustrated in Fig. 11.

The rationality of this configuration may be explained from another aspect. The force analysis of the
robot leg is shown in Fig. 12. In the state on the left, the torque of the knee joint (M1) is larger, while
the torque of the ankle joint (M2) is smaller. In the state on the middle, the ankle torque (M2) is large,
while the knee torque (M1) is almost zero. To decrease the torque requirement for stable walking, the

https://doi.org/10.1017/S0263574722000030 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722000030


Robotica 3027

Figure 11. Waist height for BHBK style.

Figure 12. A simple force analysis of the robot leg.

acting force line of the weight of the upper body together with the upper leg is supposed to be as close as
possible to the ankle and knee joints. But the distance between these two joints can never be eliminated
only if the robot is standing upright. However, this will conflict with the bending knee assumption. In
the state on the right, in static balance, M1 ≈ G · a and M2 ≈ G · b. Therefore, a shorter lower leg can
reduce the torques of the knee and ankle joints.

With these considerations, when the lower leg is shortened, both the bending angle of the knees and
the balance of the ankle joint and knee joint are achieved. However, the length of the lower leg cannot
be reduced too much or the limbs tend to collide with ground and cause the robot to fall over.

The above explanation is only a heuristic proposition because the walking procedure itself is complex.
It is impossible to predict that a short lower leg is preferred only for static analysis. However, the robot
body successfully evolved to fit a better mobility through the approach of coordinated optimization of
mechanical structure and motion generation.

Although some extent of evolution of the robot is achieved, the process runs only to a quite limited
extent. The different leg ratio of the robot from human beings is mostly due to the special walking
style. It is severely constrained by the 3DLIPM walking style, while human beings hardly walk in this
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way, and therefore, their legs are not necessarily of different lengths (the same length is better suited
for the walking style of human beings). However, note that evolution or optimization is oriented to the
toy problem as an example. More complex problems can be presented and solved in the framework of
Kriging surrogate-model-based evolution. However, it may correspondingly introduce more concerned
parameters.

Another factor worth noting is that DACE and EGO iterative optimization are performed for the
computer simulations until now. Standard DACE assumes that the experiment is deterministic, which
means that the same parameter will output the same experimental result, and that is the reason why
the method can only be utilized in computer simulations rather than on a real robot, and this fact will
undoubtedly introduce a gap between the simulation result and real robot execution. The method is used
primarily in the design period, and such optimization on simulations may vary from a physical robot.
This is because of the lack of determinacy in a real robot experiment and the fact that the performance
of such a robot tends to be volatile even given the same model constants. This problem can be explained
in two aspects: First, there are already several solutions available for noisy systems of this type, and
these methods will be tested in future research. Second, a special variable leg configuration can be
implemented on a physical robot to enable online optimization of mechanical structure and walking style.
During the evolution process, the experimental condition is carefully controlled to obtain a relatively
stable outcome for the same point.

6. Conclusion and future work
In this paper, by exploring the evolution history of the Homo genus and comparing it with other pri-
mates, a combined evolution or optimization of body configuration and walking pattern to meet their
living environment for a customized humanoid robot is presented. A basic framework for mapping body
configuration and walking patterns to the evaluation of standard experiments is proposed. The evolution
of a robot is not performed by a genetic algorithm but is rather realized with a surrogate-model-based
EGO approach. Recursively running efficient global optimization based on the Kriging model provides
a better way to solve the evolution problem with lower evaluation times and budgets.

A design example is provided to specify three mechanical parameters and four walking parameters.
A criterion is established to score the maximum walking speed. EGO via dynamics simulation finally
produces a prototype with a different upper leg lengths and lower leg lengths. The outcome is supposed
to be rational with the static force analysis. Therefore, the coordinated optimization of machinery-motion
parameters is proven to be able to design a customized fast and stable walking humanoid robot, rather
than copy the body limb size of living human beings.

One ongoing study on this topic includes much more complex evolution of the robot with efficient
walking ability. The involvement of more parameters in Kriging-model-based EGO is also worth devel-
oping to solve the humanoid robot evolution. As stated before, direct physical robot evolution rather than
computer simulations is also worth exploring.
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Appendix
A. Biological cues for getting essential factors for humanoid robot coevolution
Selective principles of the fittest are the driving force that makes species evolve from their original
forms to the modern ones. Creatures that have body structures, habits and characteristics that are unsuit-
able for the emerging new environment become extinct, while those adapted to the environment survive
and inherit. During this process, they also become professional runners, predators or flyers. Engineers
and scientists in the field of bionics struggle to explore and imitate these evolutionary results, but they
omit the long history for which they came into being. This section attempts to build a deep understand-
ing of the key factors of evolution, which is always overlooked in the previous studies mentioned in
Section 2. Human beings are chiefly analysed as the example, and they are also the prototypes
for humanoid robots. These realities will help to create an artificial evolution environment later for
humanoid robots.

The evidence mainly comes from palaeoanthropology, which is the science that attempts to recon-
struct the evolutionary history of the Homo genus. Figure A.1 depicts the entire history of human
evolution from anthropoids.

To start, there is already sufficient evidence from uncovered fossils that humans evolved from arboreal
ancestors. This means that our ancestors spent most of their time in tree canopies. Modern chimpanzees
are believed to persist in the living habit of these ancestors [32]. Therefore, it is possible to learn the
living conditions of these ancestors by observing contemporary chimpanzees. (Chimpanzees have also
been proven to maintain the closest relationship to living human beings.)

If placed in terrestrial situations, arboreal species adopt quadrupedal motion most of the time, but
they are also capable of walking bipedally for a short period of time, which is a quite different gait
manner from that of humans. Their bipedal walking is known as a type of compliant walking compared
to the stiff walking pattern: the step frequency is much higher, and more bending joint angles on the
knee and hip are observed, namely the BKBH style. Chimpanzees learn this type of walking style to
avoid breaking the thin branches on which they are always walking because less ground reaction force
vibration is created. Chimpanzees’ body morphology is correspondingly quite different from that of
modern human beings. They have relatively short legs and long arms (compared with their body height)
to adapt to the arboreal environment. Their terrestrial walking ability is inefficient, and they cannot
navigate long distances because of their crouched posture and shorter hinder limbs. The condition is
similar for gorillas and other types of monkeys.

The archaic hominins, especially Australopithecus afarensis, are believed to be the earliest hominins.
The uncovered fossil of Lucy suggests that there are evident differences among chimpanzees, Au. afaren-
sis and modern humans. They had more ape-like features, such as curved fingers and toes suitable for
their arboreal life, but relatively short upper limbs, long lower limbs and a narrower pelvis than chim-
panzees [33]. Australopithecus afarensis are believed to be adept bipedal walkers compared to their
ancestors, although it is not possible to determine the walking manner that they adopted. This evolu-
tion is concluded to be the fact that living resources, especially forests, became more widely dispersed,
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Figure A.1. Evolution history of the Homo genus, from arboreal to terrestrial habitat.

Figure A.2. Chimpanzees and the BHBK bipedal walking style.

and these Au. afarensis have to travel for longer distances for food, rather than be trapped in the local
canopies. The body morphology of Au. afarensis became preferable because they can walk more effi-
ciently than their ancestors, but they can still walk for only short distances and had significantly shorter
daily foraging ranges than their descendants [34]. They began to run if they navigated a similar range as
modern human beings and therefore expended more energy than modern human beings.

Modern human beings evolved to adapt to more dispersed living resources and terrestrial daily life.
Their legs are much longer than those of their ancestors, and they adopt stiff walking patterns because
energy-efficient walking patterns are preferable for longer daily foraging ranges, making the compliant
less ground reaction force walking styles unnecessary for a terrestrial life.

Some other interesting experiments performed on these primates also deserve our attention: Hirasaki
[35] and Nakatsukasa [36] show that macaque monkeys, which are phylogenetically distant from humans
and chiefly adopt the chimpanzee-like BKBH walking style, can be trained to walk bipedally using
inverted pendulum mechanics. This experiment indicates that even the first bipeds, which might not yet
have been morphologically adapted to bipedal walking, were able to continue to walk similar to living
human beings. Other experiments have also been performed on normal humans [33]. When normal
people are asked to walk with minimal oscillations of their centre of mass, they adopt deeply flexed lower
limb postures (i.e., BHBK pattern) like those of most chimpanzees. Human beings produce similar force
patterns of single-peaked curves, whose peak is closer to body weight. This walking pattern enhances
stability and smoothness.
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Figure A.3. Human-like bipedal walking experiments taken on Japanese macaques [35].

These two interesting experiments are worth noting because they prove that the BHBK and stiff
walking styles are both able to be taken by human beings and other primates. However, other side effects
must not be overlooked. The macaque monkeys in Hirasaki’s experiments can only walk 2–3 km per day,
compared to the 30 km daily ranges for normal living humans. Chimpanzees are probably able to walk
with a human stiff walking style after dedicated training, but they can hardly reach the speed to convert
to running [34] and therefore approach the walking efficiency of human beings. On the other hand,
human beings are no longer suitable for arboreal life because their long lower limbs are not suitable for
stable walking on thin branches. Primates, including ancient members of the Homo genus, chimpanzees,
monkeys and living human beings, are quite different in body morphology but are able to adopt other
types of walking patterns through dedicated learning and endless trials. However, the final effects of
these walking patterns, including stability, flexibility, energy efficiency and navigation ranges, are deeply
affected by their body structures. Their living habitat and environment determine the best association of
motion style and body morphology. Therefore, evolution occurs when the environment is continuously
changing. The primates’ walking style and body structure gradually evolve recursively under selective
pressure for better adaption to their habitat. The style of bipedal walking practised by primates may have
differed in some aspects, but all are optimized for their particular ecological niche [34].

With deep insights into the evolution history and various experiments on human beings and other
primates, the different applications and working environments of humanoid robots are always overlooked
when they are designed. These diverse applications may define the best body morphology and walking
style pair. For example, robots for military use are always different from those for home service. The
former requires a fast walking ability, whereas stabilization, reliability and accidental harm to guests are
the chief considerations for the latter case. An entertainment- and education-oriented humanoid robot
tends not to equip complex, expensive sensors for feedback control, and the body configuration must
adapt to their open-loop walking scheme to the greatest extent possible. The robot body configuration
and gait parameters are carefully selected and optimized to face their internal constraints and designated
circumstances. Therefore, a specialized humanoid morphology together with its walking style builds up
a humanoid robot, which is better for applications than a general versatile robot.

In summary, three essential factors are involved in designing a specialized humanoid robot: body
morphology, walking pattern and designated tasks and internal constraints. Their relationship is depicted
in Fig. 1, within which variable parameters in body morphology and walking pattern map to designated
tasks.

Cite this article: J. Zhang, X. Shi, C. Fu, L. Liu and K. Chen (2022). “Design of a customized humanoid robot with coevolution
of body morphology and its locomotion”, Robotica 40, 3013–3032. https://doi.org/10.1017/S0263574722000030
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