Journal of Functional Programming 2 (1): 73-79, January 1992 73

Tail recursion without space leaks

RICHARD JONES
Computing Laboratory, University of Kent at Canterbury, Canterbury, Kent CT2 7NF, UK
(rej@ukc.ac.uk)

Abstract

The G-machine (Johnsson, 1987; Peyton Jones, 1987) is a compiled graph reduction machine
for lazy functional languages. The G-machine compiler contains many optimizations to
improve performance. One set of such optimizations is designed to improve the performance
of tail recursive functions. Unfortunately, the abstract machine is subject to a space leak—
objects are unnecessarily preserved by the garbage collector. This paper analyses why a
particular form of space leak occurs in the G-machine, and presents some ideas for fixing this
problem. This phenomena in other abstract machines is also examined briefly.

Capsule review

One of the disadvantages of functional programming is that small changes to a program can
make rather large changes to its space behaviour. One form of this is called a space leak, where
a large data structure is retained for a long time, even though it is eventually going to be
discarded. This worsens performance by triggering garbage collection more often than would
otherwise be required.

This paper describes a simple technique whereby a particular kind of space leak can be
avoided, namely those rooted at graph nodes which are due to be updated. The idea is
implemented in some functional-language compilers, but has not appeared in the open
literature so far.

The problem is identified, the solution in the context of the G-machine is described, and the
effectiveness of the proposed modification is measured.

1 Compilers for conventional imperative languages

How might a simple Pascal procedure, like the one shown below, be implemented ?

procedure f;

begin...g; end;

Typically, the procedure which called f would set up a new stack frame for it,
including such information as return addresses and any arguments passed to f. In
turn, a naive implementation of f might set up a further stack frame for g. This is

https://doi.org/10.1017/50956796800000277 Published online by Cambridge University Press


https://doi.org/10.1017/S0956796800000277

74 Richard Jones

called a tail call. However, it is clearly unnecessary to retain f’s stack frame since its
information (apart from the return address) will never be used again.

The implementation can be improved by jumping to g rather than calling it. In
doing so, the same stack frame, including f’s return address, can be used for g as was
used for f. If the tail is recursive, the situation is called tail recursion, and the effect
of jumping rather than calling is to turn recursion into iteration which can be
performed in constant space (Steele and Sussman, 1977; Bauer and Wéssner, 1982).

2. Simple graph reducers get this optimization for free

Graph reduction (Wadsworth, 1971) is one method of implementing lazy functional
languages. The essential idea behind it is as follows: to reduce an expression

(1) Construct the graph of the expression;

(2) Unwind the spine of this graph (leaving pointers to vertebrae—application
nodes—on the stack) until the object in the function position (the leftmost,
outermost term) is discovered;

(3) If this object is indeed a function, and all its arguments are present, apply the
function to its arguments;

(4) Overwrite the redex node with the (root of the) result—it may in turn be a
graph;

(5) Go to (2).

Turner (1979) observed that one property of graph reduction was to perform tail
recursion in constant stack space without any explicit tail-call optimization being
used. Nevertheless, the Construct—Unwind-Overwrite cycle wastes both time and
heap space. For example, regardiess of whether or not it is known at compile-time just
what will be found in the leftmost, outermost position, the graph of an expression is
still constructed, and its spine unwound. Such problems are addressed by compiled
versions of graph reduction, which are discussed next.

3. The G-machine shortcircuits this mechanism

The G-machine is a very fast implementation of graph reduction based on compiling
supercombinators (Hughes, 1984; Johnsson, 1987), that includes a large number of
compile-time optimizations to improve performance. For tail calls in particular,
rather than constructing the graph of functions applied to arguments, calling
functions rearrange the Stack, replacing their own arguments with the arguments of
the called function. The machine then jumps to the code of the called function. This
is known as DISPATCHing.! Both calling and calted function now share the same
redex cell in the heap. If insufficient arguments are available, the graph of the
application may have to be constructed and the redex overwritten in the same way as

in the naive reduction scheme.?
! The notation and method of Peyton Jones (1987) are used here.
2 Actually, it is possible to do better than this. This scheme permits many other compile-time and run-

time optimizations when the arity of the called function and the number of ribs currently on the Stack
are known. Details are given in Peyton Jones (1987, Chapter 21).

https://doi.org/10.1017/50956796800000277 Published online by Cambridge University Press


https://doi.org/10.1017/S0956796800000277

Tail recursion without space leaks 75

Available for recycling
by the garbage collector

Stack Stack

() ‘ —l—>»@
last [1..10000] last :

1 2 ‘iHIHln|

Fig. 1. After UPDATE at the end of each call to last in the naive graph reducer.

4 A problem with tail recursion in the standard G-machine

Unfortunately, this scheme introduced a space leak (Wadler, 1987) not present in the
naive scheme, even though it uses less heap space. A space leak causes memory space
to leak away invisibly; it occurs when a program retains a connection to an
unnecessarily large graph, rather than releasing it for recycling by the garbage
collector. For this reason, this phenomenon is also often known as dragging. Space
leaks are a common problem in lazy functional languages (Hughes, 1984; Stoye,
1985; Peyton Jones, 1987, Chapter 23).

As a simple example, consider the function last which returns the last item of a
(finite) hist. It is assumed that the redex does contain the application, last [1 .. 1000].
This cell is the source of the space leak

let
last::[*]—=*
last | = if (¢ = nil)
then (head )
else Jast ¢
where ¢ = tail |
in last [1 .. 1000)

Figure 1 shows the state of the naive graph reducer after each call of last. At each
step, the redex is overwritten with the application of last to the rest of the list. The
front of the list is thus available for recycling by the garbage collector.

Notice that under lazy evaluation the list [/.. 10000] might only be produced as
last consumes it—the list need not exist at the beginning of the application last
[1..10000]. Thus space complexity can become constant rather than linear.

The G-machine, on the other hand, avoids overwriting the redex at each stage.
Rather, the stack is rearranged to point at the tail of the list, and last is DISPATCHed
(Fig. 2) again. No overwrite occurs until the end of the final tail call. Consequently, the
redex still holds pointers to the original argument, [/ .. 1000], no part of which can be
reclaimed by the garbage collector.

https://doi.org/10.1017/50956796800000277 Published online by Cambridge University Press


https://doi.org/10.1017/S0956796800000277

76 Richard Jones

Stack Stack

—,— @ _>@\.

— ~]
[1..10000] ——

last last [2..10000]

i
Fig. 2. Before DISPATCH at the end of each call to last in the standard G-machine.

5 Stop the garbage collector scavenging the redex

The solution is to prevent the garbage collector from reaching the arguments of the
function via the redex node, and hence, marking them as wanted. Although the redex
cell itself must be preserved by the garbage collector—it will be needed for
overwriting by the eventual update (assuming termination)}—the contents of this cell
need not be preserved. The simplest way of doing this is to ‘blackhole’ the redex by
overwriting (the tag of) the redex cell with a HOLE (Fig. 3).

Stack

Sl

ast

[2..10000

Fig. 3. ‘Blackholing’ the redex.

This is sufficient to remove the space leak as only the new argument(s) plus a single
cell are preserved by the garbage collector. Most importantly, blackholing is safe. The
redex is still the same cell in the heap, so sharing is preserved. The only way in which
this scheme might break down is if the contents of the redex (rather than its address)
were required before its reduction to WHNF were complete. In a sequential
evaluator, this would mean that the value of the result of the reduction depended on
itself! In this case, the program would fail to terminate in any case. A second
advantage of blackholing is revealed: instead of falling into it, a black hole has been
actively discovered.®

In a parallel evaluator, a second task might attempt to examine this HOLE cell
before the first task updates it. One solution is to require the task which blackholes
the redex to ‘sign’ it. If a task discovers one of its own blackholes then it should
report non-termination. Any task discovering a blackhole which it does not ‘own’
should suspend itself until the owner of the blackhole overwrites this redex with a

result. Tasks waiting on the blackhole should then be awakened. However, this
scheme does not guarantee to detect self-dependence—for example, two mutually

3 Similar cycles are also discovered by implementations that use pointer reversal rather than stacks to
unwind the graph (Stoye er al., 1984).

https://doi.org/10.1017/50956796800000277 Published online by Cambridge University Press


https://doi.org/10.1017/S0956796800000277

Tail recursion without space leaks 77

dependent tasks, started simultaneously, would block on each other rather than
reporting a black hole.

6 A modification to the standard abstract machine

There is no point in blackholing a redex that has already been blackholed. Ideally a
cell should be blackholed just once, before the first function call that has this cell
as its redex. Such new redexes can only be formed by unwinding the spine of an
expression and discovering a function cell and sufficient arguments available.
Assuming that the root node, the result of the program, is either a HOLE (or a special
function, program, of artity 0, with no arguments to drag), this is the only case in
which the redex should be blackholed on entry o the function.*

It is not necessary for all functions to blackhole a new redex in order 1o avoid space
leaks. Any function that is guaranteed not to cause a heap space to be consumed,
either directly or indirectly, cannot cause the garbage collector to be invoked, and
therefore cannot cause a space leak. Examples might include functions returning a
constant, projection functions, head, etc., depending on implementation. Further-
more, there is no point in blackholing the redex if the result of a function is certain
to be a graph that contains references to all the arguments of the function. However,
omitting black holes will mean that non-termination due to self-dependence may fail to
be detected.

7 Other abstrct machines

The Spineless G-machine (Burn e al., 1988) goes to some length to avoid creating
spines. Without a spine, space leaks of the form considered here are not possible. The
Spineless G-machine uses two different sorts of application node: the SAP for those
applications which are both shared and reducible, and the AP for all other
applications.

If the redex is an AP, unwinding will not cause a space leak as the pointer to the
application node is removed from the stack. This node can now be recycled by the
garbage collector (Fig. 4).

Stack Stack
=N Sy
~—_ \
nl n2 ——

nl n2

Fig. 4. Unwinding an unshared application cell.

On the other hand, if the redex is shared (a SAP cell), such a space leak is once
again possible as the redex is still scavenged by the garbage collector. Blackholing
plugs this lead in the Spineless G-machine (Fig. 5).

4 Note that this ‘new’ redex might have been identified as a redex, and therefore blackholed earlier.

However, this cannot in general be determined at compile-time, and it would be unnecessarily expensive
to test for it at run-time.

https://doi.org/10.1017/50956796800000277 Published online by Cambridge University Press


https://doi.org/10.1017/S0956796800000277

78 Richard Jones

~ < -
Stack _ Stack e
F— SAP —f4———»SAP

nl n2

Fig. 5. Unwinding a shared application cell.

The TIM (Fairbairn and Wray, 1987) and the Spineless Tagless G-machine (Peyton
Jones and Salkild, 1989) are compiled closure reducers rather than graph reducers.
Nevertheless, the presence of TIM’s ‘markers’ on the stack (‘update frames’ in the
Spineless Tagless G-machine) to support laziness leads to the same problem—closures
in the heap, that will not be used again until they are overwritten with a result, are
still scavenged by the garbage collector. The solution is to overwrite the code pointer
of every shared closure, on entry, with pointer for the ‘blackhole’ code. This prevents
the garbage collector discovering other pointers in the closure, and again allows
detection of certain forms of non-termination.

8 Results

Some results are presented in Table 1. In each case, the heap size of the machine was
tuned to find the smallest possible heap in which the program could still run. Further
tests reveal that with blackholing /ast now has constant residency rather than O(n);

Table 1

Minimum heap space requirement (words)

Program Without blackholing ~ With blackholing
last 1000 5211 223
reverse 2000 28252 22245
tree_sort 200 6481 4475
insert_sort 200 6063 4457
nth_prime 100 3689 2903
queens 8 996 837
digits of e 100 8555 7689

reverse (accumulating parameter version) has reduced its asymptotic residency by
21%, tree_sort by 32%, and insert_sort by 28 %.

9 Conclusion

Space leaks are a major unresolved problem of lazy functional programming. It seems
clear that there is no single overall solution to this problem, although a number of
partial solutions have been proposed, e.g. (Wadler, 1987; Peyton Jones, 1987). In

https://doi.org/10.1017/50956796800000277 Published online by Cambridge University Press


https://doi.org/10.1017/S0956796800000277

Tail recursion without space leaks 79

general, there are a number of distinct causes of space leaks, each requiring a different
solution. The whole area requires careful attention in a functional language
implementation.

In this article, attention has been drawn to a source of space leaks associated with
tail call optimization, and it has been shown how this source can be removed.
Moreover, a source of non-termination can now be actively discovered. The method
is cheap to implement, safe, and plugs all space leaks of this form. Furthermore, it is
minimal in the sense that it avoids performing multiple blackholing operations on
known redexes, although it is possible that a redex might be blackholed more than
once in the unwinding process. By statically analysing the code, further improvements

can be made which specialize the actions of functions so that only those functions

which could cause a space leak need to take action to avoid the leak. Finally, the

application of this idea to other abstract machines has been sketched.

Acknowledgements

I am most grateful to David Turner, and to the anonymous referees for their useful
comments on an earlier draft of this article, in particular for the mechanism used by
the Spineless Tagless G-machine.

References

Bauer, F. L. and Wossner, H. 1982. Algorithmic Language and Program Development.
Springer-Verlag, Berlin.

Burn, G. L., Peyton Jones, S. L. and Robson, J. D. 1988. The Spineless G-machine. In ACM
Conference on Lisp and Functional Programming, pp. 244-258, Snowbird (July), USA.

Fairbairn, J. and Wray, S.C. 1987. Tim—a simple lazy abstract machine to execute
supercombinators. In IFIP Conference on Functional Programming and Computer Archi-
tecture, pp. 34-45, Portland, USA (September).

Hughes, R. J. M. 1984. The design and implementation of programming languages, PhD thesis,
PRG-40, University of Oxford, UK.

Johnsson, T. 1987. Compiling Lazy Functional Languages, PhD thesis, Chalmers University of
Technology, Sweden.

Peyton Jones, S. L. 1987. The Implementation of Functional Programming Languages. Prentice-
Hall, New York.

Peyton Jones, S. L. and Salkild, J. 1989. The Spineless Tagless G-machine. In IFIP Conference
on Functional Programming and Computer Architecture, pp. 184-201, London, UK (August).

Steele, G. L. and Sussman, G.J. 1977. Lambda—the ultimate goto. Tech. Report 443, Al
Memo, MIT AI Laboratory.

Stoye, W. R., Clarke, T.J. W. and Norman, A. C. 1984. Some practical methods for rapid
combinator reduction. In ACM Conference on Lisp and Functional Programming, Austin,
USA.

Stoye, W. R. 1985. The implementation of functional languages using custom hardware. PhD
Thesis, Computing Laboratory, University of Cambridge, Tech. Report 81 (December).
Turner, D. A. 1979. A new implementation technique for applicative languages. Software—

Practice and Experience, 9: 31-49.

Wadler, P. 1987. Plumbers and dustmen: Fixing a space leak with a garbage collector.
Software—Practice and Experience, 17: 595-608.

Wadsworth, C. P. 1971. The Semantics and Pragmatics of the Lambda Calculus. PhD thesis,
University of Oxford, UK.

https://doi.org/10.1017/50956796800000277 Published online by Cambridge University Press


https://doi.org/10.1017/S0956796800000277

