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Abstract. Let R be a real closed field and ¥~ a variety of real dimension
k' which is the zero set of a polynomial Qe R[X,, ..., X,] of degree at most
d. Given a family of s polynomials #={P,, ..., P,} cR[X1,...,Xx] where
each polynomial in 2 has degree at most d, we prove that the number of cells
defined by 2 over ¥ is (§)(O(d))*. Note that the combinatorial part of the
bound depends on the dimension of the variety rather than on the dimension
of the ambient space.

§1. Introduction.

§1.1. Notation. A sign condition for a set of s polynomials #=
{P),..., P} is a vector ce{—1,0, +1}" and the sign condition ¢ is called
strict if oe{—1, +1}*. We call the sign condition o non-empty over a variety
¥ with respect to £ if there is a point xe¥” which realizes the sign condition,
ie., (sign (Pi(x)),...,sign (P(x)))=o0.

The set, 5= {x|x€?", (sign (Pi(x)), ..., sign (Py(x)))=0c} is the reali-
zation space of o over ¥ with respect to 2 and its non-empty semi-algebraically
connected components are the cells of the sign condition o for 2 over ¥". The
number of these cells is denoted by |65 4| and thus

A2, ¥v)= Y losyl
Oy # D
is the number of cells defined by £ over ¥
We write f(d, k, k', s) for the maximum of C(£,¥") over all varieties,
¥ < R* of dimension k', defined by polynomial equations of degree at most d
and over all 2 consisting of s polynomials in k variables, each of degree at
most d.

Remark 1. It is no restriction to consider only varieties defined by a single
polynomial. If the variety is the zero set of a finite family of polynomial 2 we
can just as well consider the zero set of the single polynomial Q=qu P 7.

§1.2. Background. Previous work considered only the case k=k'. In par-
ticular, the problem of determining the complexity of an arrangement of s
hyperplanes in R¥, which is the same as determining (1, &, X, s), is well known
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to be O((x)) (see [8] for example). This bound has played an important role
in discrete and computational geometry for many years.

For f(d, k, k, s), the best bound had been (sd)°®, which was based on a
result of Heintz [10]. Since the set of cells of sd hyperplanes is the same as the
set of cells of s polynomials, each the product of 4 of the given linear poly-
nomials, a lower bound of Q((%)) follows. This lower bound was recently
shown to be an upper bound as well [14].

For the case (1, k, k', 5), the variety is a k’-flat and we can linearly eliminate
k—k' wvariables. This reduces the problem to that of bounding
S(LKE K, 5)=0(()).

Our result is

THEOREM 1. f(d, k, k', 5) = ({)(O(d))~.

The main contribution of this paper is that the bound (i) on the combi-
natorial part of f(d, k, k', 5) depends only on k' and not at all on k. We have
seen that this bound is sharp for the case d=1. The bound of (O(d))* on the
algebraic part of f(d, k, k', s) is also sharp in the case X' =0 and matches the
known upper bounds for arbitrary &’ that follow from the well known results
of Milnor-Oleinik-Petrovsky-Thom [11, 12, 13, 16].

The ideas that make possible the separation of this bound into a combi-
natorial part and an algebraic part have also played a key role in recent
improvements for related algorithmic problems [1, 2, 3, 5, 6, 7].

Our bound has proved useful in a recent result in geometric transversal
theory [9]. There, the relevant variety ¥ is the Grassmannian Gy, of k sub-
spaces of R

§1.3. Outline of the argument. In our argument, we perturb the polyno-
mials using various infinitesimals. We then use basic properties of the field of
Puiseux series in these infinitesimals. We write R{¢) for the real closed field
of Puiseux series in & with coefficients in R [4]. This field is uniquely orderable
in the following way: the sign of an element in this field agrees with the sign
of the coefficient of its lowest degree term in ¢. This order makes & positive
and smaller than any positive element of R. We also iterate this notation in
the usual way so that R{g,, €)= R{¢&, Y{&) and, thus, 1 >¢&, > ¢, ie, & is
smaller than any positive element of R and &, is positive and smaller than any
positive element in R{g;>. The valuation ring, ¥, consists of those Puiseux
series that are bounded over R i.e., the Puiseux series with no negative powers
of €. The map eval, : ¥— R maps an element of V to its constant term.

If R’ is a real closed field extending R, and S is a semi-algebraic set defined
over R, then we denote by Sz the solution set in R* of the same polynomial
equalities and inequalities that define S. Both S and Sk, the extension of S to
R, have the same number of semi-algebraically connected components [4].

Throughout the paper, a cell of a semi-algebraic S set will be a non-empty
semi-algebraic connected component of S (see [4]).

The idea of the proof of our theorem is to first observe (in Proposition 1)
that the extension of every cell of a sign condition for & over ¥ to R{¢&)
contains a cell of an algebraic set defined by a set of equalities chosen from
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the extended family of polynomials #'=\Upep {P— €, P, P+ €}. Thus, the cells
defined by 2 on ¥~ are all accounted for by counting the number of cells in
each algebraic set determined by @ and some subset of #’. Recall that, by the
Milnor-Oleinik-Petrovsky-Thom bounds [11, 12, 13, 16], any of these algeb-
raic sets has at most O(d)* cells. We make the observation that if the family
&' is in general position with respect to ¥, i.e., no more than k' polynomials
of &' have a common zero on ¥, then the number of cells defined by £ on
¥ is at most (¥)O0(d)* and our claimed bound would follow.

With this in mind, we perturb the set of polynomials & with infinitesimals
1/Q»6,>»>...»6,»8 to obtain the family of polynomials £*=
Ui <ics {Pi— 8, Pi+6;, P;— 88;, P;+ 86,} and show, in Corollary 1 that 2* is
in general position with respect to ¥~ so that we obtain the claimed bound for
the family #*. We then show (Proposition 4) that the extension of every cell
defined by 2 over ¥ to R(d; ... §,) contains the image under the evals; map
of a cell of this perturbed family. Since we also know (Proposition 3) that the
eval map takes bounded semi-algebraically connected sets to semi-algebraically
connected sets, it follows that the number of cells of this perturbed family #*
bounds the number of cells of the original family 2.

We wish to acknowledge many useful conversations with Michel Coste. The
first named author thanks the US NSF for a grant; the second thanks the US
NSF and NSA for grants; and the third thanks the European Esprit programme
for a grant.

§2. Propositions and proofs.

ProprosITION 1. Let C be a cell of a semi-algebraic set of the form P,=
..=P=0, P1.1>0,...,P;>0, then we can find an algebraic set V in R(s)
deﬁned by equations P1 =P=P,—¢e=...=P,,— =0, such that a cell of

V, say C', is contained in CR<E>.

Proof. If Cis closed, it is a cell of the algebraic set defined by P,=
P,=0. If not, consider T, the set of all semi-algebraic paths y in R going from
some point x(¥) in Cto a y(y) in C\C such that y\{y(¥)} is entirely contained
in C. For each yeTl, there is an i>/ such that P; vanishes at y(y). Then on
¥ r¢ey there is a point z(y, €) and an i>/ such that P;— ¢ vanishes at z(y, &)
and that on the portion of the path between x and z(y, €) no such P;— ¢ with
i>1Ivanishes. Let I, = {i{|i>1I, P;(z(y, €)) — £=0}. Now choose a path yeI so
that the set I, = {i\, . . . , i } is maximal under set inclusion and let ¥ be defined
by Pi=.. .=P1=P,']—E=. . -=Pi,,,_8=0-

It is clear that at z(y, ¢), defined above, we have P, >0, ..., P,>0 and
P;— >0 for every j¢ I, which is >/. Let C’ be the cell of ¥ containing z(y, &).
We shall prove that no polynomial P;., ..., P, vanishes on this cell, and thus
that C’ is contained in Cg;. Suppose not, then some new P; (i>1, i¢l,)
vanishes on C’, say at y.. We can suppose without loss of generality that the
coordinates of y, are algebraic over R[g]. Take a semi-algebraic path y. defined
over R[¢] connecting z(y, €) to y, with y.,= . Denote by z(y., &) the first
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point of y, with Py=...=P;=P;,—¢=...=P, —e=P;— e¢=0 for some new
jnotin I,.

For ¢ in R small enough, the set ¥, (obtained by replacing ¢ by ¢ in 7.)
defines a semi-algebraic path from z(y, t) to z(y., t) contained in C. Replacing
€ by t in the Puiseux series which give the coordinates of z(y,., &) defines a
path ¥’ containing z(y., €) from z(y,, t) to y=eval (z(y., €)) (which is a point
of C\C). Let us consider the new path y* consisting of the beginning of y
(up to the point z, for which P, =. .., P, =t), followed by ¥, and then followed
by y'. Now the first point in y* such that there exists a new j with P,—£=0
is z(y., €) and thus y*eI with I,« strictly larger than 7,. This is impossible
by the maximality of I,.

'Remark 2. Somewhat more is true. It is easy to see that eval, (C")# .
That is to say that C' contains points bounded over R. In consequence, if we
know that £ is in general position with respect to ¥~ we need only consider
the zero sets of at most k' polynomials chosen from #'. If more than k'
polynomials in 2’ had a common zero bounded over R, then its eval would be
a point on ¥ satisfying more than k&’ polynomials in 2 which is impossible.
This does not mean that if £ is in general position with respect to ¥~ then &'
is in general position with respect to ¥, It only means that these additional
zeros are not bounded over R.

ProposITION 2. Given a family {Pi,...,P;} of polynomials in
R[X:,...,X:] and a variety ¥~ of real dimension k', let R' be a real closed
field containing R, and let 6,, ..., 0;, be elements of R' that are algebraically
independent over R. Then the perturbedfamily #* =\, <;<; {P;— 8.}, isingeneral
position with respect to the variety V.

Proof. The result follows from the following simple observations.

If ¥" has real dimension £’ then ¥ is the union of a finite number of semi-
algebraically connected semi-algebraic sets of real dimension less than or
equal to k' whose Zariski closures are irreducible [4].

If Cis a semi-algebraically connected semi-algebraic set whose Zariski clos-
ure is irreducible then any polynomial is either constant on C or its zero
set meets C in a semi-algebraic set of real dimension less than the dimension
of C. This is immediate from the definition of irreducibility.

As a consequence, we see that the zero set of any of the perturbed polynomials
meets the variety ¥ in a variety of lower real dimension. The proposition is
proved by repeating this argument at most k' times.

CorOLLARY 1. Given a family {Py,...,P}, of polynomials in
R[X,,...,X.] and a variety ¥ of real dimension k', let R’ be a real closed field
containing R, and let 8, 8., . .., 8,, be elements of R’ algebraically independent
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over R. Then the perturbed family

‘@*= U {P,-—(s,-,P,-+5,-,P,-—55,-,P,-+55,-}U{ Z X,'Z—Qz}

Igigs I1gigk

is in general position with respect to the variety ¥&.

PROPOSITION 3. If S' < R{&)¥ is a semi-algebraic set defined over R[] and
S=eval, (5'), then S is a semi-algebraic set. Moreover, if S' is bounded over R
and is semi-algebraically connected then S is semi-algebraically connected.

Proof. Suppose that §'< (R{¢))* is described by a quantifier-free formula
®(e)(Xy,...,X,). Introduce a new variable X;+, and denote by
O(Xy,..., Xk, Xk+1) the result of substituting X;.;, for & in
®(e)(Xy,...,X;). Embed R* in R**' by sending (X),...,X:) to
Xy,...,X%,0). Thus, S is a subset of Z(Xi+1). We prove that S=
T Z(Xy+1) where

T={(x1,..., X, Xi+1)ERFTND((x1, . . .y Xky Xe+1) and x4, >0}

and T is the closure of T in the euclidean topology.

If xeS there is a ze S’ such that eval, (z)=x. Let B.(r) denote the open
ball of radius r centred at x. Since (z, €) belongs to the extension of B.(r)n T
to R{¢) it follows that B.(r) N T is non-empty, and hence that xeT.

Conversely, let x be in TAnZ(Xi+1). The semi-algebraic curve selection
lemma [4] asserts the existence of a semi-algebraic function f from [0, 1] to T
with f(0)=x and f((0, 1])< 7. This semi-algebraic function defines a point
z=f(&) whose coordinates lie in R{e) and belongs to §' and moreover
eval, (z2)=x.

If §’ is bounded by M in R and semi-algebraically connected then there
exists a positive ¢ in R such that T n (By(M) X [0, ¢]) is semi-algebraically con-
nected. It follows easily that §= T Z(X;+,) is semi-algebraically connected.

ProPosITION 4.  Let C be a non-empty cell in ¥ =Z(Q), of the semi-algeb-
raic set defined by Py=...=P;=0, P;.,>0,..., P;>0, and let C' be the exten-
sion of C to R{(6;,...,0sy. Then C' contains some evals (C"), where C" is a
cell of the semi-algebraic set defined by the sign conditions

Q=0, _561<P1<551,...,"66[<P1<66[,
(*) P>6141,...,P>0,,
X2+.. . XE<],

over R{1/Q, 6,,..., 085, 6).

Proof. 1If xeC, then x satisfies (). Let C” be the cell of the semi-algebraic
set in (R(1/Q, 8,,..., 8, 6>)" defined by these equalities and inequalities,
which contains x.
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It is clear that evals (C") is contained in the semi-algebraic set defined by
the sign condition Q@=P,=...=P,=0, P >0,...,P,>0, in
(R{8,,...,8,)) and that it also contains xeC’. Since, by Proposition 3,
evals (C”) is also semi-algebraically connected the statement of the lemma
follows.

§2.1. Proof of the theorem. The family of polynomials,

?*= U {P,'—&i,Pi'}’(si,P[_651,Pi+66i}u{ Z X,'z—Qz}

1gigs 1igk

is in general position with respect to ¥~ by Corollary 1. Hence, by Proposition
1, the extension of every cell of a strict sign condition for 2* over ¥ to
R{é,,...,8;, 8, &) contains a cell of an algebraic variety defined by {Q} LU 2#*
where 2* is a subset of Upcp+ {P—¢, P, P+ £}. Asnoted in Remark 2, we can
assume that the cardinality of £* is at most k. There are
Yicicr ()=(%) of these varieties and each has at most O(d)* cells by the
well-known bounds of Milnor-Oleinik-Petrovsky-Thom [11, 12, 13, 16].
Hence the number of cells of strict sign conditions for 2* over ¥ is ({)0(d)".
Finally, by Proposition 4, the extension of each cell of a sign condition for #
over ¥ to R{8,, ..., 8y contains the evals of one of these (3)O(d)* cells of
strict sign conditions for 2* over ¥". Since these are semi-algebraically con-
nected by Proposition 3 it follows that there are no more than (;)O(d)* cells
defined by £ over 7.
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