ON THE NUMBER OF CELLS DEFINED BY A FAMILY OF POLYNOMIALS ON A VARIETY

SAUGATA BASU, RICHARD POLLACK AND MARIE-FRANÇOISE ROY

Abstract. Let R be a real closed field and \mathscr{V} a variety of real dimension k' which is the zero set of a polynomial $Q \in R[X_1, \ldots, X_k]$ of degree at most d. Given a family of s polynomials $\mathscr{P} = \{P_1, \ldots, P_s\} \subset R[X_1, \ldots, X_k]$ where each polynomial in \mathscr{P} has degree at most d, we prove that the number of cells defined by \mathscr{P} over \mathscr{V} is $\binom{s}{k}(O(d))^k$. Note that the combinatorial part of the bound depends on the dimension of the variety rather than on the dimension of the ambient space.

§1. Introduction.

§1.1. Notation. A sign condition for a set of s polynomials $\mathscr{P} = \{P_1, \ldots, P_s\}$ is a vector $\sigma \in \{-1, 0, +1\}^s$ and the sign condition σ is called strict if $\sigma \in \{-1, +1\}^s$. We call the sign condition σ non-empty over a variety $\mathscr V$ with respect to $\mathscr P$ if there is a point $x \in \mathscr V$ which realizes the sign condition, i.e., $(\text{sign } (P_1(x)), \ldots, \text{sign } (P_s(x))) = \sigma$.

The set, $\sigma_{\mathscr{P},\mathscr{V}} = \{x | x \in \mathscr{V}, (\text{sign } (P_1(x)), \dots, \text{sign } (P_s(x))) = \sigma\}$ is the *realization* space of σ over \mathscr{V} with respect to \mathscr{P} and its non-empty semi-algebraically connected components are the *cells* of the sign condition σ for \mathscr{P} over \mathscr{V} . The number of these cells is denoted by $|\sigma_{\mathscr{P},\mathscr{V}}|$ and thus

$$C(\mathcal{P}, \mathcal{V}) = \sum_{\sigma_{\mathcal{P}, \mathcal{V}} \neq \emptyset} |\sigma_{\mathcal{P}, \mathcal{V}}|$$

is the number of cells defined by \mathcal{P} over \mathcal{V} .

We write f(d, k, k', s) for the maximum of $C(\mathcal{P}, \mathcal{V})$ over all varieties, $\mathcal{V} \subset R^k$ of dimension k', defined by polynomial equations of degree at most d and over all \mathcal{P} consisting of s polynomials in k variables, each of degree at most d.

- Remark 1. It is no restriction to consider only varieties defined by a single polynomial. If the variety is the zero set of a finite family of polynomial \mathcal{Q} we can just as well consider the zero set of the single polynomial $Q = \sum_{\alpha \in \mathcal{Q}} q^2$.
- §1.2. Background. Previous work considered only the case k = k'. In particular, the problem of determining the complexity of an arrangement of s hyperplanes in \mathbb{R}^k , which is the same as determining f(1, k, k, s), is well known

to be $\Theta(\binom{s}{k})$ (see [8] for example). This bound has played an important role in discrete and computational geometry for many years.

For f(d, k, k, s), the best bound had been $(sd)^{O(k)}$, which was based on a result of Heintz [10]. Since the set of cells of sd hyperplanes is the same as the set of cells of sd polynomials, each the product of d of the given linear polynomials, a lower bound of $\Omega(\binom{sd}{s})$ follows. This lower bound was recently shown to be an upper bound as well [14].

For the case f(1, k, k', s), the variety is a k'-flat and we can linearly eliminate k-k' variables. This reduces the problem to that of bounding $f(1, k', k', s) = \Theta(\binom{s}{k})$.

Our result is

THEOREM 1. $f(d, k, k', s) = \binom{s}{k'} (O(d))^k$.

The main contribution of this paper is that the bound $\binom{s}{k}$ on the combinatorial part of f(d, k, k', s) depends only on k' and not at all on k. We have seen that this bound is sharp for the case d=1. The bound of $(O(d))^k$ on the algebraic part of f(d, k, k', s) is also sharp in the case k'=0 and matches the known upper bounds for arbitrary k' that follow from the well known results of Milnor-Oleinik-Petrovsky-Thom [11, 12, 13, 16].

The ideas that make possible the separation of this bound into a combinatorial part and an algebraic part have also played a key role in recent improvements for related algorithmic problems [1, 2, 3, 5, 6, 7].

Our bound has proved useful in a recent result in geometric transversal theory [9]. There, the relevant variety \mathscr{V} is the Grassmannian $G_{k,d}$ of k subspaces of R^d .

§1.3. Outline of the argument. In our argument, we perturb the polynomials using various infinitesimals. We then use basic properties of the field of Puiseux series in these infinitesimals. We write $R\langle \varepsilon \rangle$ for the real closed field of Puiseux series in ε with coefficients in R [4]. This field is uniquely orderable in the following way: the sign of an element in this field agrees with the sign of the coefficient of its lowest degree term in ε . This order makes ε positive and smaller than any positive element of R. We also iterate this notation in the usual way so that $R\langle \varepsilon_1, \varepsilon_2 \rangle = R\langle \varepsilon_1 \rangle \langle \varepsilon_2 \rangle$ and, thus, $1 \gg \varepsilon_1 \gg \varepsilon_2$ i.e., ε_1 is smaller than any positive element of R and ε_2 is positive and smaller than any positive element in $R\langle \varepsilon_1 \rangle$. The valuation ring, V, consists of those Puiseux series that are bounded over R i.e., the Puiseux series with no negative powers of ε . The map eval ε : $V \rightarrow R$ maps an element of V to its constant term.

If R' is a real closed field extending R, and S is a semi-algebraic set defined over R, then we denote by S_R the solution set in R'^k of the same polynomial equalities and inequalities that define S. Both S and $S_{R'}$, the extension of S to R', have the same number of semi-algebraically connected components [4].

Throughout the paper, a *cell* of a semi-algebraic S set will be a non-empty semi-algebraic connected component of S (see [4]).

The idea of the proof of our theorem is to first observe (in Proposition 1) that the extension of every cell of a sign condition for \mathscr{P} over \mathscr{V} to $R\langle \varepsilon \rangle$ contains a cell of an algebraic set defined by a set of equalities chosen from

the extended family of polynomials $\mathscr{P}' = \bigcup_{P \in \mathscr{P}} \{P - \varepsilon, P, P + \varepsilon\}$. Thus, the cells defined by \mathscr{P} on \mathscr{V} are all accounted for by counting the number of cells in each algebraic set determined by Q and some subset of \mathscr{P}' . Recall that, by the Milnor-Oleinik-Petrovsky-Thom bounds [11, 12, 13, 16], any of these algebraic sets has at most $O(d)^k$ cells. We make the observation that if the family \mathscr{P}' is in general position with respect to \mathscr{V} , i.e., no more than k' polynomials of \mathscr{P}' have a common zero on \mathscr{V} , then the number of cells defined by \mathscr{P} on \mathscr{V} is at most $\binom{3k}{k'}O(d)^k$ and our claimed bound would follow.

With this in mind, we perturb the set of polynomials $\mathscr P$ with infinitesimals $1/\Omega \gg \delta_1 \gg \ldots \gg \delta_s \gg \delta$ to obtain the family of polynomials $\mathscr P^* = \bigcup_{1 \leqslant i \leqslant s} \left\{ P_i - \delta_i, \, P_i + \delta_i, \, P_i - \delta \delta_i, \, P_i + \delta \delta_i \right\}$ and show, in Corollary 1 that $\mathscr P^*$ is in general position with respect to $\mathscr V$ so that we obtain the claimed bound for the family $\mathscr P^*$. We then show (Proposition 4) that the extension of every cell defined by $\mathscr P$ over $\mathscr V$ to $R \langle \delta_1 \ldots \delta_s \rangle$ contains the image under the eval δ_s map of a cell of this perturbed family. Since we also know (Proposition 3) that the eval map takes bounded semi-algebraically connected sets to semi-algebraically connected sets, it follows that the number of cells of this perturbed family $\mathscr P^*$ bounds the number of cells of the original family $\mathscr P$.

We wish to acknowledge many useful conversations with Michel Coste. The first named author thanks the US NSF for a grant; the second thanks the US NSF and NSA for grants; and the third thanks the European Esprit programme for a grant.

§2. Propositions and proofs.

PROPOSITION 1. Let C be a cell of a semi-algebraic set of the form $P_1 = \ldots = P_l = 0, P_{l+1} > 0, \ldots, P_s > 0$, then we can find an algebraic set V in $R \langle \varepsilon \rangle^k$ defined by equations $P_1 = \ldots = P_l = P_{i_1} - \varepsilon = \ldots = P_{i_m} - \varepsilon = 0$, such that a cell of V, say C', is contained in $C_{R \langle \varepsilon \rangle}$.

Proof. If C is closed, it is a cell of the algebraic set defined by $P_1 = \ldots = P_i = 0$. If not, consider Γ , the set of all semi-algebraic paths γ in R^k going from some point $x(\gamma)$ in C to a $y(\gamma)$ in $\overline{C} \setminus C$ such that $\gamma \setminus \{y(\gamma)\}$ is entirely contained in C. For each $\gamma \in \Gamma$, there is an i > l such that P_i vanishes at $y(\gamma)$. Then on $\gamma_{R(\varepsilon)}$ there is a point $z(\gamma, \varepsilon)$ and an i > l such that $P_i - \varepsilon$ vanishes at $z(\gamma, \varepsilon)$ and that on the portion of the path between x and $z(\gamma, \varepsilon)$ no such $P_i - \varepsilon$ with i > l vanishes. Let $I_{\gamma} = \{i \mid i > l, P_i(z(\gamma, \varepsilon)) - \varepsilon = 0\}$. Now choose a path $\gamma \in \Gamma$ so that the set $I_{\gamma} = \{i_1, \ldots, i_m\}$ is maximal under set inclusion and let V be defined by $P_1 = \ldots = P_l = P_{i_1} - \varepsilon = \ldots = P_{i_m} - \varepsilon = 0$.

It is clear that at $z(\gamma, \varepsilon)$, defined above, we have $P_{l+1} > 0, \ldots, P_s > 0$ and $P_j - \varepsilon > 0$ for every $j \notin I_\gamma$ which is > l. Let C' be the cell of V containing $z(\gamma, \varepsilon)$. We shall prove that no polynomial P_{l+1}, \ldots, P_s vanishes on this cell, and thus that C' is contained in $C_{R(\varepsilon)}$. Suppose not, then some new P_i $(i > l, i \notin I_\gamma)$ vanishes on C', say at y_ε . We can suppose without loss of generality that the coordinates of y_ε are algebraic over $R[\varepsilon]$. Take a semi-algebraic path γ_ε defined over $R[\varepsilon]$ connecting $z(\gamma, \varepsilon)$ to y_ε with $\gamma_\varepsilon \subset C'$. Denote by $z(\gamma_\varepsilon, \varepsilon)$ the first

point of γ_{ε} with $P_1 = \ldots = P_l = P_{i_1} - \varepsilon = \ldots = P_{i_m} - \varepsilon = P_j - \varepsilon = 0$ for some new j not in I_{γ} .

For t in R small enough, the set γ_t (obtained by replacing ε by t in γ_{ε}) defines a semi-algebraic path from $z(\gamma, t)$ to $z(\gamma_{\varepsilon}, t)$ contained in C. Replacing ε by t in the Puiseux series which give the coordinates of $z(\gamma_{\varepsilon}, \varepsilon)$ defines a path γ' containing $z(\gamma_{\varepsilon}, \varepsilon)$ from $z(\gamma_{\varepsilon}, t)$ to $y = \text{eval}(z(\gamma_{\varepsilon}, \varepsilon))$ (which is a point of $\overline{C} \setminus C$). Let us consider the new path γ^* consisting of the beginning of γ (up to the point z_t for which $P_{i_1} = \ldots, P_{i_m} = t$), followed by γ_t and then followed by γ' . Now the first point in γ^* such that there exists a new j with $P_j - \varepsilon = 0$ is $z(\gamma_{\varepsilon}, \varepsilon)$ and thus $\gamma^* \in \Gamma$ with I_{γ^*} strictly larger than I_{γ} . This is impossible by the maximality of I_{γ} .

Remark 2. Somewhat more is true. It is easy to see that $\operatorname{eval}_{\varepsilon}(C') \neq \emptyset$. That is to say that C' contains points bounded over R. In consequence, if we know that \mathscr{P} is in general position with respect to \mathscr{V} we need only consider the zero sets of at most k' polynomials chosen from \mathscr{P}' . If more than k' polynomials in \mathscr{P} had a common zero bounded over R, then its eval would be a point on \mathscr{V} satisfying more than k' polynomials in \mathscr{P} which is impossible. This does not mean that if \mathscr{P} is in general position with respect to \mathscr{V} then \mathscr{P}' is in general position with respect to \mathscr{V} . It only means that these additional zeros are not bounded over R.

PROPOSITION 2. Given a family $\{P_1, \ldots, P_s\}$ of polynomials in $R[X_1, \ldots, X_k]$ and a variety $\mathscr V$ of real dimension k', let R' be a real closed field containing R, and let $\delta_1, \ldots, \delta_s$, be elements of R' that are algebraically independent over R. Then the perturbed family $\mathscr P^* = \bigcup_{1 \le i \le s} \{P_i - \delta_i\}$, is in general position with respect to the variety $\mathscr V_{R'}$.

Proof. The result follows from the following simple observations.

If \mathscr{V} has real dimension k' then \mathscr{V} is the union of a finite number of semi-algebraically connected semi-algebraic sets of real dimension less than or equal to k' whose Zariski closures are irreducible [4].

If C is a semi-algebraically connected semi-algebraic set whose Zariski closure is irreducible then any polynomial is either constant on C or its zero set meets C in a semi-algebraic set of real dimension less than the dimension of C. This is immediate from the definition of irreducibility.

As a consequence, we see that the zero set of any of the perturbed polynomials meets the variety $\mathscr V$ in a variety of lower real dimension. The proposition is proved by repeating this argument at most k' times.

COROLLARY 1. Given a family $\{P_1, \ldots, P_s\}$, of polynomials in $R[X_1, \ldots, X_k]$ and a variety $\mathscr V$ of real dimension k', let R' be a real closed field containing R, and let $\delta, \delta_1, \ldots, \delta_s$, be elements of R' algebraically independent

over R. Then the perturbed family

$$\mathscr{P}^* = \bigcup_{1 \leq i \leq s} \left\{ P_i - \delta_i, P_i + \delta_i, P_i - \delta \delta_i, P_i + \delta \delta_i \right\} \cup \left\{ \sum_{1 \leq i \leq k} X_i^2 - \Omega^2 \right\}$$

is in general position with respect to the variety $\mathscr{V}_{R'}$.

PROPOSITION 3. If $S' \subset R \langle \varepsilon \rangle^k$ is a semi-algebraic set defined over $R[\varepsilon]$ and $S = \operatorname{eval}_{\varepsilon}(S')$, then S is a semi-algebraic set. Moreover, if S' is bounded over R and is semi-algebraically connected then S is semi-algebraically connected.

Proof. Suppose that $S' \subset (R\langle \varepsilon \rangle)^k$ is described by a quantifier-free formula $\Phi(\varepsilon)(X_1,\ldots,X_k)$. Introduce a new variable X_{k+1} and denote by $\Phi(X_1,\ldots,X_k,X_{k+1})$ the result of substituting X_{k+1} for ε in $\Phi(\varepsilon)(X_1,\ldots,X_k)$. Embed R^k in R^{k+1} by sending (X_1,\ldots,X_k) to $(X_1,\ldots,X_k,0)$. Thus, S is a subset of $Z(X_{k+1})$. We prove that $S=\overline{T}\cap Z(X_{k+1})$ where

$$T = \{(x_1, \ldots, x_k, x_{k+1}) \in \mathbb{R}^{k+1} | \Phi((x_1, \ldots, x_k, x_{k+1}) \text{ and } x_{k+1} > 0 \}$$

and \bar{T} is the closure of T in the euclidean topology.

If $x \in S$ there is a $z \in S'$ such that $\operatorname{eval}_{\varepsilon}(z) = x$. Let $B_x(r)$ denote the open ball of radius r centred at x. Since (z, ε) belongs to the extension of $B_x(r) \cap T$ to $R(\varepsilon)$ it follows that $B_x(r) \cap T$ is non-empty, and hence that $x \in \overline{T}$.

Conversely, let x be in $\overline{T} \cap Z(X_{k+1})$. The semi-algebraic curve selection lemma [4] asserts the existence of a semi-algebraic function f from [0, 1] to \overline{T} with f(0) = x and $f((0, 1]) \subset T$. This semi-algebraic function defines a point $z = f(\varepsilon)$ whose coordinates lie in $R \langle \varepsilon \rangle$ and belongs to S' and moreover $\operatorname{eval}_{\varepsilon}(z) = x$.

If S' is bounded by M in R and semi-algebraically connected then there exists a positive t in R such that $T \cap (B_0(M) \times [0, t])$ is semi-algebraically connected. It follows easily that $S = \overline{T} \cap Z(X_{k+1})$ is semi-algebraically connected.

PROPOSITION 4. Let C be a non-empty cell in $\mathscr{V} = Z(Q)$, of the semi-algebraic set defined by $P_1 = \ldots = P_l = 0, P_{l+1} > 0, \ldots, P_s > 0$, and let C' be the extension of C to $R\langle \delta_1, \ldots, \delta_s \rangle$. Then C' contains some $\operatorname{eval}_{\delta}(C'')$, where C'' is a cell of the semi-algebraic set defined by the sign conditions

$$(*) \begin{cases} Q = 0, & -\delta \delta_{1} < P_{1} < \delta \delta_{1}, \dots, -\delta \delta_{l} < P_{l} < \delta \delta_{l}, \\ & P_{l+1} > \delta_{l+1}, \dots, P_{s} > \delta_{s}, \\ & X_{1}^{2} + \dots X_{k}^{2} < 1, \end{cases}$$

over $R\langle 1/\Omega, \delta_1, \ldots, \delta_s, \delta \rangle$.

Proof. If $x \in C$, then x satisfies (*). Let C'' be the cell of the semi-algebraic set in $(R\langle 1/\Omega, \delta_1, \ldots, \delta_s, \delta \rangle)^k$ defined by these equalities and inequalities, which contains x.

It is clear that $\operatorname{eval}_{\delta}(C'')$ is contained in the semi-algebraic set defined by the sign condition $Q = P_1 = \ldots = P_l = 0$, $P_{l+1} > 0, \ldots, P_s > 0$, in $(R < \delta_1, \ldots, \delta_s >)^k$ and that it also contains $x \in C'$. Since, by Proposition 3, $\operatorname{eval}_{\delta}(C'')$ is also semi-algebraically connected the statement of the lemma follows.

§2.1. Proof of the theorem. The family of polynomials,

$$\mathscr{P}^* = \bigcup_{1 \leq i \leq s} \left\{ P_i - \delta_i, P_i + \delta_i, P_i - \delta \delta_i, P_i + \delta \delta_i \right\} \cup \left\{ \sum_{1 \leq i \leq k} X_i^2 - \Omega^2 \right\}$$

is in general position with respect to $\mathscr V$ by Corollary 1. Hence, by Proposition 1, the extension of every cell of a strict sign condition for $\mathscr P^*$ over $\mathscr V$ to $R\langle \delta_1,\ldots,\delta_s,\delta,\varepsilon\rangle$ contains a cell of an algebraic variety defined by $\{Q\}\cup\bar{\mathscr P}^*$ where $\bar{\mathscr P}^*$ is a subset of $\bigcup_{P\in\mathscr P^*}\{P-\varepsilon,P,P+\varepsilon\}$. As noted in Remark 2, we can assume that the cardinality of $\bar{\mathscr P}^*$ is at most k'. There are $\sum_{1\leqslant i\leqslant k'}\binom{12s}{i}=\binom{O(s)}{k'}$ of these varieties and each has at most $O(d)^k$ cells by the well-known bounds of Milnor-Oleinik-Petrovsky-Thom [11, 12, 13, 16]. Hence the number of cells of strict sign conditions for $\mathscr P^*$ over $\mathscr V$ is $\binom{s}{k}O(d)^k$. Finally, by Proposition 4, the extension of each cell of a sign condition for $\mathscr P$ over $\mathscr V$ to $R\langle \delta_1,\ldots,\delta_s\rangle$ contains the eval δ of one of these $\binom{s}{k}O(d)^k$ cells of strict sign conditions for $\mathscr P^*$ over $\mathscr V$. Since these are semi-algebraically connected by Proposition 3 it follows that there are no more than $\binom{s}{k}O(d)^k$ cells defined by $\mathscr P$ over $\mathscr V$.

References

- 1. S. Basu, R. Pollack and M.-F. Roy. A new algorithm to find a point in every cell defined by a family of polynomials. In *Quantifier Elimination and Cylindrical Algebraic Decomposition*, edited by B. Caviness and J. Johnson (Springer-Verlag) to appear.
- S. Basu, R. Pollack and M.-F. Roy. Computing points meeting every cell on a variety. In The Algorithmic Foundations of Robotics, edited by K. Goldberg, D. Halperin, J. C. Latombe and R. Wilson (A. K. Peters, Boston, MA, 1955), 537-555.
- 3. S. Basu, R. Pollack and M.-F. Roy. On the combinatorial and algebraic complexity of Quantifier Elimination. In *Proc. 35th Annual IEEE Sympos. on the Foundations of Computer Science*, 632-641 (1994).
- 4. J. Bochnak, M. Coste and M.-F. Roy. Géométrie algébrique réelle (Springer-Verlag, 1987).
- 5. J. Canny. Some Practical Tools for Algebraic Geometry. In Technical report in Spring school on robot motion planning (PROMOTION ESPRIT, 1993).
- J. Canny. Computing road maps in general semi-algebraic sets. The Computer Journal, 36 (1993), 504-514.
- 7. J. Canny. Improved algorithms for sign determination and existential quantifier elimination. *The Computer Journal*, 36 (1993), 409-418.
- 8. H. Edelsbrunner. Algorithms in Combinatorial Geometry (Springer-Verlag, Berlin, 1987).
- J. E. Goodman, R. Pollack and R. Wenger. Bounding the number of geometric permutations induced by k-transversals. In Proc. 10th Ann. ACM Sympos. Comput. Geom. (1994), 192– 197.
- J. Heintz, M.-F. Roy and P. Solernó. On the complexity of semi-algebraic sets. In Proc. IFIP San Francisco (North-Holland, 1989), 293-298.
- 11. J. Milnor. On the Betti numbers of real varieties. Proc. Amer. Math. Soc., 15 (1964), 275-280.
- 12. O. A. Oleinik. Estimates of the Betti numbers of real algebraic hypersurfaces (Russian). *Mat. Sb.* (N.S.), 28 (70) (1951), 635-640.

- I. G. Petrovsky and O. A. Olevnik. On the topology of real algebraic surfaces. Izvestiaya Akademii Nauk SSSR. Serija Matematičeskaya, 13 (1949), 389-402.
- 14. R. Pollack and M.-F. Roy. On the number of cells defined by a set of polynomials. C. R. Acad. Sci. Paris, 316 (1993), 573-577.
- 15. J. Renegar. On the computational complexity and geometry of the first order theory of the reals. J. of Symbolic Comput., 13 (1992), 255-352.
- R. Thom. Sur l'homologie des variétés algébriques réelles. In Differential and Combinatorial Topology (Princeton University Press, Princeton, 1965), 255-265.

Dr. S. Basu, Courant Institute of Mathematical Science, New York University, New York, NY 10012, U.S.A. 14P10: ALGEBRAIC GEOMETRY; Real algebraic and real analytic geometry; Semialgebraic sets and related spaces.

Professor R. Pollack, Courant Institute of Mathematical Science, New York University, New York, NY 10012, U.S.A.

Professor M.-F. Roy, IRMAR (URA CNRS 305), Université de Rennes, Campus de Beaulieu, 35042 Rennes cedex, France.

Received on the 3rd of January, 1995.