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Abstract

In this article, we present a conjectural formula describing the cokernel of the Albanese
map of zero-cycles of smooth projective varieties X over p-adic fields in terms of
the Néron–Severi group and provide a proof under additional assumptions on an
integral model of X. The proof depends on a non-degeneracy result of Brauer–Manin
pairing due to Saito–Sato and on Gabber–de Jong’s comparison result of cohomological
and Azumaya–Brauer groups. We will also mention the local–global problem for the
Albanese cokernel; the abelian group on the ‘local side’ turns out to be a finite group.

1. Introduction

Let K be a p-adic field with residue field k and X be a smooth projective variety over K. In this
paper, the term ‘variety’ always means a geometrically irreducible scheme over a field.

When X is a curve, Lichtenbaum [Lic69] defined and studied the pairing

Pic(X)× Br(X)→ Q/Z, (L)

which he showed to be non-degenerate, where Br(X) denotes the étale cohomology group
H2

ét(X,Gm). Further, with the aid of Tate duality for abelian varieties over p-adic fields, he
proved that the cokernel of the map

Pic0(X)→ JX(K)

is canonically Pontryagin dual to the cokernel of the degree map Pic(X)GK → Z. Here JX denotes
the Jacobian variety of X and X is the base change to an algebraic closure K of K. Also, GK
denotes the absolute Galois group of K.

In this paper we present an attempt to generalize Lichtenbaum’s result to higher
dimensional X. Namely, we study the cokernel of the Albanese map

albX : CH0(X)0
→ AlbX(K),

where CH0(X)0 denotes the degree-0 part of the Chow group CH0(X).
It is easy to see that this cokernel is torsion and is a birational invariant (i.e. birational

morphisms induce isomorphisms) of smooth proper varieties over any field. Over p-adic fields,
it is finite by the argument of Saito and Sujatha [SS95]. Except for these basic facts, little is
known.
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Our main result is the following.

Theorem 1.1 (see Theorem 3.1 and Remark 3.3). Let X be a smooth projective variety over a
p-adic field K and suppose that X admits a smooth projective model X over the integer ring
OK whose Picard scheme PicX/OK over Spec(OK) (which exists in this case) is smooth.

Then the cokernel of the map

albX : CH0(X)0
→ AlbX(K)

is canonically Pontryagin dual to the cokernel of

Pic(X)GK → NS(X)GK .

Moreover, the last cokernel is a subquotient of the p-primary torsion subgroup of NS(X)GK .

Here NS denotes the Néron–Severi group: for any variety Y over a field, NS(Y ) is defined to
be the quotient Pic(Y )/Pic0(Y ). The smoothness condition on the Picard scheme is satisfied if
H2(X,OX) and H2(Z,OZ) vanish (here we set Z := X ⊗OK k).

In the proof of the theorem, we interpret the pairing (L) as the Brauer–Manin pairing
introduced in [Man70]:

CH0(X)× Br(X)→ Br(K). (BM)

This pairing has been used to study zero-cycles on varieties, especially over p-adic fields and
number fields. By non-degeneracy results on the Brauer–Manin pairing due to Saito and Sato,
together with the Tate pairing, we reduce our problem to an injectivity problem concerning
Brauer groups. We solve it using arguments of Artin and an existence theorem of Azumaya
algebras due to Gabber and de Jong.

There is another surjectivity result, proved separately.

Theorem 1.2 (see Theorem 4.1). Let X be a smooth projective variety over K with good
reduction. Suppose that the ramification index of K over Qp is < p − 1. Then the Albanese
map for X

albX : CH0(X)0
→ AlbX(K)

is surjective.

The proof of this theorem is based on knowledge about the behavior of Néron models of
abelian varieties under reduction.

Note that given a smooth projective variety X over a number field K (here ‘projective’ can
be replaced by ‘proper’; § 2), we can use Theorem 1.2 to show that the map

CH0(XKv)
0
→ AlbX(Kv)

is surjective for almost all places v of K. Here Kv denotes the completion of K at v. So, we are
tempted to consider the map between finite groups

AlbX(K)/albXCH0(X)0
→

∏
v: all places

AlbX(Kv)/albXKvCH0(XKv)
0.

When X is a curve, its injectivity follows from the Hasse principle for the Brauer group. An
interesting question is whether or not it is injective in the higher-dimensional case as well.

Another generalization of Lichtenbaum’s duality concerning the Picard variety and the Picard
group, which is dual to our point of view, was considered comprehensively by van Hamel [vHa04].
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2. Preliminaries

2.1 Albanese cokernel: definition and basic properties
We include the definition of the Albanese map for completeness.

Let Y be a smooth proper variety over a field F . Then there exist an abelian variety AlbY over
F and a morphism φ : Y ×F Y → AlbY which satisfy the following property: φ|∆Y

is the constant
map to zero, where ∆Y ⊂ Y × Y is the diagonal subscheme; given a morphism ψ : Y × Y → A
into an abelian variety A which is the constant map to zero on the diagonal, there is a unique
homomorphism of abelian varieties f : AlbY → A with ψ = f ◦ φ [Lan59, pp. 45–46].

In this case, Y being proper, the Albanese variety AlbY of Y is also characterized by the
following property (cf. [Gab01, Lemma 2.3]): every time we choose an extension field L of F and
an L-valued point x0 of Y , (AlbY )L co-represents the functor

{Abelian varieties over L} → {Sets}
A 7→ Hom∗((YL, x0), (A, 0)),

where Hom∗ denotes the set of base-point-preserving morphisms of L-schemes. In particular,
there is a universal morphism φx0 : YL→ (AlbY )L sending x0 to 0.

By Galois descent, there are a torsor Alb1
Y /F under AlbY and a morphism φ′ : Y → Alb1

Y

which has a universal property: given a morphism ψ′ : Y → A′ into a torsor A′ under an
abelian variety A, there are a unique homomorphism f : AlbY → A and a unique morphism
f ′ : Alb1

Y → A′ which are compatible.
The torsor Alb1

Y is determined by an element [Alb1
Y ] ∈ H1

ét(F,AlbY ). By the canonical
isomorphism H1

ét(F,AlbY ) ∼= Ext1
(Sch/F )ét

(Z,AlbY ), it corresponds to an extension of group
schemes over F :

0→ AlbY → AY
deg−−→ Z→ 0, (1)

where AY is described explicitly as follows. Denote by AlbiY the ith power of the torsor Alb1
Y ,

which corresponds to i · [Alb1
Y ] ∈ H1

ét(F,AlbY ). Set AY :=
∐
i∈Z AlbiY . The morphisms AlbiY ×F

AlbjY → (AlbiY ×F AlbjY )/AlbY = Albi+jY and Alb−iY
∼= (AlbiY )−1 make AY into a group scheme.

Define a map AlbY → AY as the canonical open and closed immersion to the 0th component,
and AY → Z to be the constant map to i on AlbiY . Being a group scheme with a quasi-projective
neutral component, AY has a transfer structure (see [SS03, proof of Lemma 3.2] and [BK10,
Lemma 1.3.2]) with respect to which (1) is an exact sequence of étale sheaves with transfers.

We define the map albY : CH0(Y )0
→ AlbY (F ). First we define a map albY : Z0(Y ) →

AY (F ). This map is determined by determining the image of each [x], x ∈ Y(0). Let F (x) be the
residue field of x. There is a canonical element x ∈ Y (F (x)). Let albY ([x]) be the image of x by

Y (F (x))
φ′−→ Alb1

Y (F (x)) ⊂ AY (F (x))
transfer−−−−→ AY (F ).

By the fact that maps in (1) are compatible with transfer structures, the following diagram
commutes:

Z0(Y )
deg //

albY
��

Z

AY (F )
deg // Z

Therefore, a map

albY : Z0(Y )0
→ AlbY (F )

between degree-0 parts is induced. It is known that it factors through CH0(Y )0.
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Definition 2.1. The cokernel of the map

albY : CH0(Y )0
→ AlbY (F )

is called the Albanese cokernel of Y .

The following properties are easy to verify.

Proposition 2.2. The Albanese cokernel of proper smooth varieties satisfies the following.

(i) It is trivial if F is an algebraically closed field or if F is a finite field and Y is projective.

(ii) It is trivial if Y is an abelian variety.

(iii) Albanese cokernels form a covariant functor from the category of smooth proper varieties
to the category of abelian groups.

(iv) Albanese cokernels are contravariant with respect to base changes SpecF ′→ SpecF (F ′ is
a field) and covariant if F ′/F is finite. Consequently, they are torsion.

(v) The Albanese cokernel is finite if F is R, a p-adic field or a finitely generated field over a
prime field.

Proof. The assertion (i) in the case F is a finite field follows from Kato–Saito’s class field theory
[KS83, Proposition 9(1)], where they further describe the kernel of the Albanese map. The
assertion (v) in the case F is a finitely generated field follows from the Mordell–Weil theorem
together with the fact that it is torsion. The case F is a p-adic field follows from arguments
in [SS95, p. 409]. The case F = R follows from knowledge of the structure of commutative Lie
groups. 2

Proposition 2.3 (Rigidity). Let K be a Henselian non-archimedean R-valued valuation field of
characteristic 0 and K̂ be its completion. Let X be a smooth proper variety. Then the map

AlbX(K)

albX(CH0(X)0)
→

AlbX(K̂)

albXK̂ (CH0(XK̂))0

is an isomorphism.

Proof. We define a homotopy invariant presheaf with transfers F on Sm/K (the category of
separated smooth schemes of finite type) by

Y 7→ AlbX(Y )/Imh0(X/K)(Y )0,

where h0(X/K) denotes the functor

Sm/K → (Abelian groups)

Y 7→ Cok(Ztr(X)(Y × A1)
d−→ Ztr(X)(Y ))

(d is the difference of the evaluation maps at 0 and 1 ∈ A1) and

h0(X/K)(Y )0 := ker(h0(X/K)(Y )
deg−−→ Zπ0(Y ))

(see [SS03] for the morphism h0(X/K)0
→ AlbX).

Since F takes torsion values on the spectra of fields, its Zariski sheafification is a torsion
abelian presheaf with transfers which is homotopy invariant [Voe00, Corollary 4.19 and
Proposition 4.26]. Now the assertion follows by applying the rigidity theorem with respect to the
extension K ⊂ K̂ [RØ06, Theorem 1] to the sheaf FZar. 2
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Proposition 2.4 (Birational invariance). Let Y ′ → Y be a birational morphism of smooth
proper varieties over F . Then it induces an isomorphism on their Albanese cokernels.

Proof. We know that the Albanese variety is a birational invariant and the map CH0(Y ′)0
→

CH0(Y )0 is surjective. Therefore, the induced map on the Albanese cokernel is a bijection. 2

Proposition 2.5 (Hypersurface sections). Let K be a Henselian discrete valuation field of
characteristic 0 with finite residue field. Let X ⊂ Pn be a smooth projective variety over K
of dimension > 3. Then there is a smooth hypersurface section H of X for which the map

AlbH(K)

albHCH0(H)0
→

AlbX(K)

albXCH0(X)0

is an isomorphism.

Proof. First suppose that K = K̂ is a p-adic field. Then albXCH0(X)0 ⊂ AlbX(K̂) contains
an open subgroup U of AlbX(K̂) isomorphic to a direct sum of finitely many copies of OK̂
(cf. [Mat55, Theorem 7] and [SS95, p. 409]). Therefore, albXCH0(X)0 is topologically generated
by finitely many zero-cycles a1, . . . , an. We choose finitely many closed points x1, . . . , xm ∈ X
such that a1, . . . , an have supports on {x1, . . . , xm} and choose a smooth hypersurface section H
passing through these points (possible by [AK79, Theorem (7)]). As dim(X) > 3, AlbH → AlbX
is an isomorphism:

CH0(H)0 //

��

AlbH(K̂)

∼=
��

CH0(X)0 // AlbX(K̂)

Since albHCH0(H)0 ⊂ AlbX(K̂) is an open subgroup of albXCH0(X)0 containing a1, . . . , an, it
coincides with albXCH0(X)0.

Next, we consider the general case. Let K̂ be the completion of K. Over K̂, we have proved
the existence of a hypersurface section H with the desired property. By Proposition 2.3, it suffices
to show that such an H can be taken over K. For that it is sufficient to find zero-cycles a1, . . . , an
as above which are defined over K. So, we are going to modify the cycles ai obtained above to find
zero-cycles a′i of degree 0 defined over K such that the elements albX(a′i) ∈ AlbX(K) ⊂ AlbX(K̂)
generate the subgroup albXK̂ (CH0(XX̂)0) topologically.

Observe that if we change each of the elements alb(ai) ∈ AlbX(K̂) by an element of pU (here
U is the open subgroup of albXK̂ (CH0(XK̂)0) ⊂ AlbX(K̂) mentioned earlier in this proof), the

property that they are a set of topological generators of alb(CH0(XK̂)0) does not change.
Now, for the time being, consider an arbitrary zero-cycle

a =
∑
α

[xα]−
∑
β

[xβ]

on X (or on XK̂) of degree 0. They define a point

x(a) = ((xα)α, (xβ)β) ∈
∏
α

X(K(xα))×
∏
β

X(K(xβ)).

We have the Albanese map∏
αX(K(xα))×∏β X(K(xβ)) −→ ∏

α Alb1
X(K(xα))×∏β Alb1

X(K(xβ)),

−−−−−−−−−−−−−−−−−→∑
α(transfer)−

∑
β(transfer)

AlbX(K)
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where the addition and subtraction take place in AX(K), and the map goes into the neutral
component AlbX because of the degree-0 assumption. This map sends x(a) to albX(a). The map
is continuous for the valuation topology on both sides because the transfer map is based on
scheme morphisms [SS03, Lemma 3.2].

Getting back to our situation, let us write

ai =
∑
α∈Ai

[xα]−
∑
β∈Bi

[xβ].

Then x(ai) is a point in
∏
α∈Ai X(K̂(xα))×∏β∈Bi X(K̂(xβ)). The observation made above and

the continuity imply that we may replace each of our ai (a zero-cycle on XK̂) by a zero-cycle
represented by a point sufficiently close to x(ai).

Since the extension K̂(xα)/K̂ is separable, the integral closure Kα of K in K̂(xα) is dense
in K̂(xα), so that we have (Kα)̂ = K̂(xα) (and similarly for β). Then, by an approximation
theorem [BLR10, § 3.6, Corollary 10], the subset

X(Kα) ⊂ X(K̂(xα))

is dense (and similarly for β). So, we can take a point in
∏
α∈Ai X(Kα)×∏β∈Bi X(Kβ) sufficiently

close to x(ai), and we let a′i be the zero-cycle on X represented by the point. Then the elements

albX(a′i) ∈ AlbX(K̂)

generate the subgroup albXK̂ (CH0(XK̂)0) topologically. This completes the proof. 2

2.2 Automorphisms and Brauer groups
2.2.1. Suppose that f : Y → X is a Galois covering of schemes. We have the Hochschild–

Serre spectral sequence

Ei,j2 = H i(Gal(Y/X), Hj
ét(Y,Gm))⇒ H i+j

ét (X,Gm),

from which we get a homomorphism (where we write Br(Y/X) := ker(Br(X)→ Br(Y )))

E2
1 = Br(Y/X)→ E1,1

2 = H1(Gal(Y/X),Pic(Y )).

We will denote it by φY/X .

2.2.2. We recall that an Azumaya algebra on a scheme Y is by definition a sheaf A of
OY -algebras (not necessarily commutative) which is a locally free OY -module of finite rank and
such that the canonical morphism

A⊗OY Aop
→ EndOY -mod.(A)

is an isomorphism. Two Azumaya algebras A and A′ are said to be equivalent if there are vector
bundles V and V ′ on Y and an isomorphism of algebras A⊗OY End(V) ∼= A′ ⊗OY End(V ′). The
set of equivalence classes of Azumaya algebras forms a torsion abelian group by tensor products.
Let us denote this group by BrAz(Y ). There is a canonical injection BrAz(Y ) ↪→ Br(Y )tors, where
(−)tors indicates the torsion subgroup. This is not surjective in general. Nevertheless, we have
the following result.

Theorem 2.6 (de Jong [dJo, Theorem 1.1]). Let X be a quasi-compact separated scheme which
admits an ample line bundle. Then the map BrAz(X)→ Br(X)tors is bijective.

Note that if moreover X is regular and noetherian, we have BrAz(X) = Br(X) since the
Brauer group is known to be torsion for regular noetherian schemes.
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2.2.3. Suppose that f : Y → X is a morphism of schemes and an abstract group G acts on

Y (on the right) over X. For σ ∈ G, denote by [σ] : Y → Y the corresponding action; we have

[σ][τ ] = [τσ]. Then G acts on Pic(Y ) on the left by L 7→ [σ]∗L for σ ∈ G.
In this case we have a homomorphism

φG,Y/X : BrAz(Y/X)→ H1(G,Pic(Y ))

(where BrAz(Y/X) := ker(BrAz(X)→ BrAz(Y ))) described as follows.

Let ω ∈ BrAz(Y/X). Take an Azumaya algebra A on X which represents ω. There are a

vector bundle E on Y and an isomorphism f∗A ∼= EndOY (E); pulling it back by [σ] for σ ∈ G,

we get isomorphisms

EndOY ([σ]∗E) ∼= [σ]∗f∗A = f∗A ∼= EndOY (E). (2)

By Morita theory [KO74, IV, Proposition 1.3], there are a line bundle Lσ on Y and an

isomorphism [σ]∗E ∼= E ⊗ Lσ which induces the isomorphism EndOY ([σ]∗E) ∼= EndOY (E);

moreover, the choices of Lσ and the isomorphism [σ]∗E ∼= E ⊗ Lσ are unique up to a unique

isomorphism. The mapping (G 3 σ 7→ Lσ ∈ Pic(Y )) is, therefore, a 1-cocycle of the G-module

Pic(Y ). We define φG,Y/X(ω) to be the element it represents in H1(G,Pic(Y )). It can be checked

that this element does not depend on the choices of A and E .

When we have a diagram of compatible actions

G′
ρ //

�

G

�

Y ′
r′ //

��

Y

��
X ′

r // X

(3)

(i.e. the group G′ acts on Y ′ over X ′, the group G acts on Y over X and the maps r, r′ and ρ

are compatible in the obvious sense), we have a commutative diagram of groups

BrAz(Y
′/X ′)

φG′,Y ′/X′

��

BrAz(Y/X)oo

φG,Y/X
��

H1(G′,Pic(Y ′)) H1(G,Pic(Y ))oo

(4)

where the horizontal maps are the natural functorial ones.

2.2.4. Suppose that f : Y → X is a Galois covering and an abstract group G acts on Y

through a group homomorphism G→ Gal(Y/X). Then we have a commutative diagram

BrAz(Y/X) ⊂
φG,Y/X

��

Br(Y/X)

φY/X
��

H1(G,Pic(Y )) H1(Gal(Y/X),Pic(Y ))oo

(5)
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3. Main theorem

Theorem 3.1. Let K be a Henselian discrete valuation field of characteristic 0 with finite residue
field k and X be a smooth projective variety over K. Suppose that X admits a smooth projective
model X over the integer ring OK whose Picard scheme PicX/OK over Spec(OK) is smooth.

Then the cokernel of the map

albX : CH0(X)0
→ AlbX(K)

is canonically isomorphic to the Pontryagin dual of

coker(Pic(X)GK → NS(X)GK ).

Remark 3.2. (1) The Picard scheme exists in this situation (see, for example, [Kle05,
Theorem 4.8]).

(2) By the Chebotarev density theorem, the special fiber of X has a degree-1 zero-cycle. By
the smoothness of X and the fact that K is Henselian, it lifts to a degree-1 zero-cycle on X.
From this, we find that the restriction map Br(K)→ Br(X) is injective and that its image and
the image of the injection Br(X ) ↪→ Br(X) have a trivial intersection.

The proof of Theorem 3.1 occupies the rest of § 3, throughout which we keep the notation in
the theorem.

In addition, we use the following notation:

Z = X ×OK k;

X (respectively Z) = the base change to an algebraic closure of the base field;

X = X ⊗OK OK .

Remark 3.3. Under the hypothesis of Theorem 3.1, the group

coker(Pic(X)GK → NS(X)GK )

is a subquotient of NS(X)GK{p}, the p-primary torsion subgroup of NS(X)GK . Indeed, by a
Kummer sequence, for each n prime to p we have a commutative diagram

NS(X)/n �
� //

sp

��

H2
ét(X,Z/n(1))

NS(Z)/n �
� // H2

ét(Z,Z/n(1))

∼= cosp

OO

where the map cosp is an isomorphism by the proper smooth base change theorem for étale
cohomology. From this, we see that the vertical map sp is injective; it follows that the kernel P
of the specialization map NS(X)→ NS(Z) is a p-primary torsion abelian group. On the other
hand, we have a commutative diagram

PGK_�

��
Pic(X) // //

(∗)
����

NS(X) �
� // NS(X)GK

��
Pic(Z) // // NS(Z)

∼=
(∗∗)

// NS(Z)Gk
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The specialization map (∗) is surjective because the Picard scheme is assumed to be smooth and

by Hensel’s lemma. The map (∗∗) is surjective because of H1(k,Pic0(Z)) = 0 (Lang’s theorem).

From this diagram, we see that NS(X) + PGK = NS(X)GK . Therefore, NS(X)GK/NS(X) is a

quotient of PGK .

3.1 Commutative diagrams
We begin the proof of Theorem 3.1. By the fact that H3(K,Gm) = 0, the homomorphism φX/X
in § 2.2.1 induces an isomorphism

φX/X : Br(X/X)/Br(K)
∼=−→ H1(K,Pic(X)).

Denote by φ the following composite map:

H1(K,Pic0(X)) // H1(K,Pic(X))

∼= φ−1

X/X
��

Br(X/X)/Br(K) // Br(X)/[Br(K) + Br(X )].

Proposition 3.4 (proved in § 3.3). The Brauer–Manin pairing and the Tate pairing are

compatible via the Albanese map and the homomorphism φ:

CH0(X)0

albX

��

× Br(X)
Br(K)+Br(X )

// Q/Z (BM)

AlbX(K) × H1(K,Pic0(X))

φ

OO

// Q/Z (T)

Here the Tate pairing (T) is known to be a perfect pairing of a compact group and a torsion

group [Tat57]. On the other hand, Saito and Sato have recently proved the following result.

Theorem 3.5 ([SS14, Theorem 1.1.3], applicable by [SS14, Remark 2.1.2]). The pairing (BM)

is non-degenerate on the right.

Therefore, we conclude the following result.

Corollary 3.6. The group coker(albX) is the Pontryagin dual of ker(φ).

By the construction of φ, we have an exact sequence

0 → ker(H1(K,Pic0(X))→ H1(K,Pic(X)))

→ kerφ −→
θ

ker

(
Br(X/X)/Br(K)→

Br(X)

Br(K) + Br(X )

)
.

(6)

We have ker(H1(K,Pic0(X)) → H1(K,Pic(X))) = coker(Pic(X)GK → NS(X)GK ) by the
short exact sequence

0→ Pic0(X)→ Pic(X)→ NS(X)→ 0.
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On the other hand, we have (recall X := X ⊗OK OK)

ker

(
Br(X/X)

Br(K)
→

Br(X)

Br(K) + Br(X )

)
= Br(X/X) ∩ Br(X ) (by Remark 3.2(2))

= Br(X/X ),

where the last equality holds because if an element of Br(X ) is annihilated in Br(XK′) for some
finite extension field K ′ of K, it is annihilated in Br(XOK′ ) too because the map Br(XOK′ )→
Br(XK′) is injective as XOK′ is regular by the smoothness assumption on X .

Therefore, the sequence (6) takes the form

0→
NS(X)GK

Im Pic(X)GK
→ kerφ

θ−→ Br(X/X )

and hence we are reduced to showing that θ = 0.
Denote by sp the specialization maps Pic(X) → Pic(Z), NS(X) → NS(Z) and the maps

induced on their cohomology groups.

Proposition 3.7. The following diagram commutes.

H1(K,Pic0(X)) // H1(K,Pic(X)) // H1(K,NS(X))

sp

��
kerφ

∪

θ // Br(X/X ) ⊂

��

Br(X/X)/K

φX/X ∼=

OO

H1(K,NS(Z))

Br(Z/Z)
φZ/Z

∼=
// H1(k,Pic(Z)) // H1(k,NS(Z))

inf

OO (7)

Proof. The left-hand square commutes by the definition of θ. For the right, we use the map
φGK ,X/X : Br(X/X ) → H1(K,Pic(X )). It was defined in § 2.2 on the subgroup BrAz(X/X ) ⊂
Br(X/X ) and, by Theorem 2.6, this subgroup is in fact equal to the entire group.

The commutativity of the following diagram is obvious in the right-hand half. In the left-hand
half, it follows from § 2.2:

Br(X/X)
φX/X // H1(K,Pic(X))

sp

��

// H1(K,NS(X))

sp

��
Br(X/X )

∪
φGK,X/X //

��

H1(K,Pic(X )) //

66

H1(K,Pic(Z)) // H1(K,NS(Z))

Br(Z/Z)
φZ/Z // H1(k,Pic(Z))

inf

OO

// H1(k,NS(Z))

inf

OO

This shows the commutativity of the right-hand half of the diagram (7). 2

3.2 Injectivity
In the diagram (7), the upper path from kerφ to H1(K,NS(Z)) is zero. Therefore, in order to
prove that θ = 0, it suffices to prove that the composite map from Br(X/X ) to H1(K,NS(Z))
along the lower path is injective.
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Proposition 3.8. Each of the maps

H1(k,Pic(Z))→ H1(k,NS(Z))
inf−→ H1(K,NS(Z))

is injective.

Proof. The first one is injective because of Lang’s theorem: H1(k,Pic0(Z)) = 0. The fact that the
second one is injective follows from the general fact that the inflation map of group cohomology
is always injective on H1. 2

For a finite extension K ′/K, we denote the residue field of K ′ by k′ and set X ′ = X ⊗OK OK′
and Z ′ = Z ⊗k k′.

Since we have
Br(X/X ) =

⋃
K′

Br(X ′/X ),

where K ′ runs through all the finite subextensions of K/K, for proving the injectivity of
Br(X/X ) → Br(Z/Z) it suffices to prove the injectivity of Br(X ′/X ) → Br(Z ′/Z) for each
K ′/K.

Proposition 3.9. Let K ′ be a finite extension of K. For each integer i > 1, set Zi = X ⊗OK
OK/mi

K and Z ′i = Zi ⊗OK OK′ . Then the following hold.

(i) The map Br(X )→ lim
←−i Br(Zi) induced by the restriction maps is injective.

(ii) The map induced by the projection to the first component

ker

(
lim
←−
i

Br(Zi)→ lim
←−
i

Br(Z ′i)

)
→ ker(Br(Z)→ Br(Z ′1)) ⊂ Br(Z ′/Z)

is injective.

(iii) Br(X ′/X )→ Br(Z ′/Z) is injective.

Proof. (iii) follows from (i), (ii) and the next diagram.

Br(X ) //

��

lim
←−
i

Br(Zi) //

��

Br(Z)

��
Br(X ′) // lim

←−
i

Br(Z ′i)
// Br(Z ′)

To prove (i), we use the following result.

Lemma 3.10 [Gro68, III, Lemme (3.3)]. Let f : X → Y be a proper flat morphism, with Y the
spectrum of an excellent Henselian discrete valuation ring. Let Y = Spec(A), m be the maximal
ideal of A, Zi := Z ⊗A A/mi. Suppose further that the projective system (Pic(Zi))i satisfies the
Mittag-Leffler condition. Then the canonical morphism

BrAz(X )→ lim
←−
i

BrAz(Zi)

is injective.
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We can apply this lemma to our situation X → Spec(OK); the Mittag-Leffler condition is
fulfilled by the smoothness assumption on the Picard scheme.

Therefore, in the diagram

BrAz(X )
(∗) //

⋂
(∗∗)

lim
←−
i

BrAz(Zi)

⋂
Br(X )

(∗∗∗) // lim
←−
i

Br(Zi)

the map (∗) is injective and the inclusion (∗∗) is in fact an equality by Theorem 2.6. It follows
that the map (∗∗∗) is also injective. This proves Proposition 3.9(i).

We show (ii). From the exact sequence of sheaves on the topological space Z:

0 // miOZi+1

∼ =

1+ // O∗Zi+1
// O∗Zi // 1

OZ
where the isomorphism is specified if we choose a generator of m. There is a similar one on Z ′:

0 // miOZ′i+1

∼ =

1+ // O∗Z′i+1

// O∗Z′i
// 1

OZ′1
From these, one obtains a commutative diagram

Pic(Zi+1)
ψ1 //

��

Pic(Zi)
ψ2 //

��

H2(Z,OZ) //

v

��

Br(Zi+1) //

��

Br(Zi)

��
Pic(Z ′i+1)

ψ′1 // Pic(Z ′i)
ψ′2 // H2(Z ′1,OZ′1) // Br(Z ′i+1) // Br(Z ′i)

The maps ψ1 and ψ′1 are surjective by the assumption that the Picard scheme is smooth.
Therefore, ψ2 and ψ′2 are zero maps. The vertical map v is injective by flat base change theorem
for coherent cohomology. So, the group Br(Z ′i+1/Zi+1) injects into Br(Z ′i/Zi) and hence into
Br(Z ′1/Z).

This completes the proof. 2

In order to prove Theorem 3.1, it remains to show Proposition 3.4. This is done in § 3.3.

Remark 3.11. Proposition 3.9(iii) implies the relation Br(X ′/X ) ⊂ Br(X ′ur/X ), where X ′ur

denotes the base change of X to the maximal unramified subextension of OK′/OK . In view
of [SS14, Theorem 1.1.3 and Remark 2.1.2] again, this means that any element of Br(X) which
vanishes at every closed point and in Br(X) is trivialized by an unramified extension of K. It
would be interesting to ask if this holds without the hypotheses in Theorem 3.1.

3.3 Proof of Proposition 3.4
For schemes Y , we use the big étale site (Sch/Y )ét, whose underlying category is the category of
all schemes locally of finite type over Y and the coverings are étale surjective morphisms. Denote
by D((Sch/Y )ét) the derived category of complexes of abelian étale sheaves.

For K-schemes ϕ : Y → SpecK, we will consider the groups HomD((Sch/K)ét)(Rϕ∗Gm,Gm).
They form a covariant functor in K-schemes Y .
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Proposition 3.12. For any finite field extension ϕK′ : SpecK ′ → SpecK, there is a canonical
isomorphism

HomD((Sch/K)ét)(RϕK′∗Gm,Gm) = Z.

Proof. Since ϕK′ is finite, we have RϕK′∗Gm = ϕK′∗Gm = RK′/KGm (the Weil restriction).
Therefore, the group HomD((Sch/K)ét)(RϕK′∗Gm,Gm) equals the group of homomorphisms

RK′/KGm→ Gm

of group schemes over K. Giving such a morphism is equivalent to giving a morphism over K∏
HomK(K′,K)

Gm→ Gm,

which is invariant under the action of GK , which acts on
∏

Gm by permutation of components

and trivially on the right-hand side. Since the set of homomorphisms from the K-group scheme

Gm to itself is canonically isomorphic to Z, the assertion follows. Explicitly, 1 ∈ Z corresponds

to the norm map RK′/KGm,K′ → Gm,K . 2

Let ϕ : X → SpecK as in Theorem 3.1 and ix : x → X be a closed point. Write ϕx =
ϕ ◦ ix : x → SpecK. From the map Gm → ix∗Gm, we get a map (the first equality is due to
Proposition 3.12)

Z = HomD((Sch/K)ét)(Rϕx∗Gm,Gm)→ HomD((Sch/K)ét)(Rϕ∗Gm,Gm).

Thus, we get a map

cl : Z0(X)→ HomD((Sch/K)ét)(Rϕ∗Gm,Gm),

which is known to factor through CH0(X) [vHa04, Proposition 3.2].

By functoriality, we have a commutative diagram

Z0(X)
deg //

cl
��

Z = Z0(SpecK)

‖cl
��

HomD((Sch/K)ét)(Rϕ∗Gm,Gm)
deg // Z = HomD((Sch/K)ét)(Gm,Gm)

So, we get an induced map between kernels

cl : Z0(X)0
→ HomD((Sch/K)ét)(τ>1Rϕ∗Gm,Gm),

where we put Z0(X)0 = ker(Z0(X)
deg−−→ Z).

1927

https://doi.org/10.1112/S0010437X16007600 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16007600


W. Kai

There is a commutative diagram of Yoneda pairings obtained from maps

Pic0
X/K

// PicX/K // τ>1Rϕ∗Gm Rϕ∗Gm :oo

H2
ét(K,Gm)

��
(BM)′ HomD((Sch/K)ét)(Rϕ∗Gm,Gm) × H2

ét(K,Rϕ∗Gm) //

η

��

H2
ét(K,Gm)

HomD((Sch/K)ét)(τ>1Rϕ∗Gm,Gm)

OO

��

× H2
ét(K, τ>1Rϕ∗Gm) // H2

ét(K,Gm)

HomD((Sch/K)ét)(PicX/K [−1],Gm)

��

× H2
ét(K,PicX/K [−1])

φ′

OO

// H2
ét(K,Gm)

(T)′ HomD((Sch/K)ét)(Pic0
X/K [−1],Gm) × H2

ét(K,Pic0
X/K)[−1])

OO

// H2
ét(K,Gm)

By

H2
ét(K,Gm) = Br(K) = Q/Z,

H2
ét(K,Rϕ∗Gm) = H2

ét(X,Gm) = Br(X) and

HomD((Sch/K)ét)(Pic0
X/K [−1],Gm) = AlbX(K),

this is rewritten as

Br(K)

��
(BM)′ HomD((Sch/K)ét)(Rϕ∗Gm,Gm) × Br(X) //

η

��

Q/Z

(BM)′′ HomD((Sch/K)ét)(τ>1Rϕ∗Gm,Gm)

OO

��

× H2
ét(K, τ>1Rϕ∗Gm) // Q/Z

HomD((Sch/K)ét)(Pic(X)[−1],Gm)

��

× H1
Gal(K,Pic(X))

φ′

OO

// Q/Z

(T)′ AlbX(K) × H1
Gal(K,Pic0(X))

OO

// Q/Z

The pairing (BM)′ can be seen to give the Brauer–Manin pairing when composed with
the map CH0(X) → HomD((Sch/K)ét)(Rϕ∗Gm,Gm). The map η is surjective because H3

Gal(K,
Gm) = 0, so η induces an isomorphism

H2
ét(K, τ>1Rϕ∗Gm) = Br(X)/Br(K). (8)

Hence, the pairing (BM)′′, when composed with the map

Z0(X)0
→ HomD((Sch/K)ét)(τ>1Rϕ∗Gm,Gm),
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gives the Brauer–Manin pairing

Z0(X)0 × Br(X)/Br(K)→ Q/Z.

The pairing (T)′ is the same as the Tate pairing as explained in [Mil06, Remark 3.5 in ch. I].
Thus, we get the commutative diagram

(BM) Z0(X)0 × Br(X)/Br(K) // Q/Z

a ↓ H1
Gal(K,Pic(X))

φ′

OO

// Q/Z

(T) AlbX(K) × H1
Gal(K,Pic0(X))

OO

// Q/Z

(9)

We have to show that the map a is equal to the Albanese map and the map φ′ is the inverse
of φX/X . The latter can be checked if one notices that the Hochschild–Serre spectral sequence is
realized as the one associated with the tower

RΓ(X,Gm)→ τ>1RΓ(X,Gm)→ τ>2RΓ(X,Gm)→ · · ·

in the derived category of GK-modules, together with triangles

RnΓ(X,Gm)[−n]→ τ>nRΓ(X,Gm)→ τ>n+1RΓ(X,Gm)
+1−→ .

3.3.1. We will check that the map

a : Z0(X)0
→ HomD((Sch/K)ét)(Pic0

X [−1],Gm) = AlbX(K)

in (9) is equal to the Albanese map albX .
Note that for any field extension K ′/K the map AlbX(K) → AlbX(K ′) is injective, and

hence it suffices to show the equality after an arbitrary field extension. In particular, we can
assume that X is given a base point x0 ∈ X(K).

There is a sheafified version of the map a. Suppose that we are given two morphisms f1, f2

from a K-scheme Y to X. Since the composite Y
Γfi−−→ Y ×X π:=pr1−−−−→ Y (i = 1, 2) is the identity

morphism, the composite Gm,Y
π#

−−→ Rπ∗Gm,Y×X
Γ#
i−−→ Gm,Y is the identity morphism. Note that

π# induces an isomorphism Gm,Y
∼= π∗Gm,Y×X . Therefore, the map Γ#

f1
− Γ#

f2
: Rπ∗Gm,Y×X →

Gm,Y induces a map Γ#
f1
− Γ#

f2
: τ>1Rπ∗Gm,Y×X → Gm,Y . Composed with (Pic0

X)Y [−1] ↪→

R1π∗Gm,Y×X [−1]→ τ>1Rπ∗Gm,Y×X , it gives

(Pic0
X)Y [−1]→ Gm,Y ,

i.e. an element of Ext1
(Sch/Y )ét

((Pic0
X)Y ,Gm,Y ). Thus, we have defined a map of sets

(X ×K X)(Y )→ Ext1
(Sch/Y )ét

((Pic0
X)Y ,Gm,Y ).

(Here Ext1
(Sch/Y )ét

(−,−) denotes the Ext1 computed in the category of abelian sheaves on
(Sch/Y )ét. The same applies below.) These are organized to define a map of sheaves

b : X ×K X → Ext1(Sch/K)ét
(Pic0

X ,Gm)(= AlbX)
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(respectively b∗ : X → AlbX if X is pointed, putting f2 = the constant map to x0).
To prove the claimed equality of maps, it suffices to show that the map b : X ×K X → AlbX

just defined is the Albanese map. By the universality of AlbX , it suffices to show that the map
b∗ for (X,x0) = (AlbX , 0) is the identity map of AlbX .

Thus, the next general proposition is enough for us to conclude the proof.

Proposition 3.13. Let A be an abelian variety over a field F and P its dual abelian variety.
Then the map

b∗ : A→ Ext1(Sch/K)ét
(P,Gm)

(here A is pointed by 0) is the same map as the one induced by the Poincaré sheaf P on A×P .

Here the Poincaré sheaf P is a biextension of A× P by Gm, a Gm-torsor on A× P which is
given a structure of an extension of the A-group PA = A× P by Gm,A

0→ Gm,A→ P → PA→ 0 (10)

and a structure of an extension of the P -group AP = A× P by Gm,P

0→ Gm,P → P → AP → 0, (11)

which is characterized by the property that for each F -scheme Y the map

P (Y ) → Pic0
A(Y ) = {L ∈ Pic(A× Y, 0× Y ) | ∀y ∈ Y Ly is

algebraically equivalent to 0}
(f : Y → P ) 7→ pull-back of the Gm-torsor P on A× P by the map

id× f : A× Y → A× P
(12)

is bijective, where for a scheme V and a closed subscheme Z of V , Pic(V,Z) denotes the group
of isomorphism classes of pairs (L,ϕ), L being a line bundle over V and ϕ being an isomorphism

ϕ : L|Z
∼=−→ OZ .

In the statement of Proposition 3.13, ‘the map induced by the Poincaré sheaf’ refers to the
map which associates to a morphism f : Y → A the pull-back of (10) by it. Let us denote the
map by bP .

The proof of Proposition 3.13 will be completed in § 3.3.3.

3.3.2. Here we recall a basic compatibility. For any scheme Y , there are canonical
isomorphisms

H i
ét(Y,Gm) ∼= Exti(Sch/Y )ét

(ZY ,Gm,Y )

and the one for i = 1 is described as follows: given an extension

0→ Gm,Y → E → ZY → 0,

the corresponding Gm-torsor is given by the pull-back of E to Y × {1} ⊂ Y × Z. Conversely,
given a Gm-torsor E′ on Y , the corresponding extension is given by

∐
i∈ZE

′i, E′i being the ith
power of E′ as a Gm-torsor.

Now let Y be an arbitrary F -scheme and f : Y → A an F -morphism. By pull-back, we have
a Gm-torsor P ×A Y on Y × P and an extension of Y -groups

0→ Gm,Y → P ×A Y → PY → 0; (13)
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equivalently, a morphism in D((Sch/Y )ét)

PY → Gm,Y [1]. (14)

Suppose that we are given an F -morphism g : Y → P . One checks that the following elements
(i)–(iv) of H1(Y,Gm) = Ext1(ZY ,Gm,Y ) are the same.

(i) The image of g by the connecting homomorphism

PY (Y )→ H1(Y,Gm)

arising from (13). Which is the same as the image of g by the map

H0(Y, PY )→ H0(Y,Gm,Y ) = H1(Y,Gm,Y )

arising from (14).

(ii) The image of (PY , g) by the Yoneda pairing

Ext1(PY ,Gm,Y )×H0(Y, PY )→ H1(Y,Gm).

Which is the same as the image of (PY , g) by the Yoneda pairing

Ext1(PY ,Gm,Y )×Hom(Sch/Y )ét
(ZY , PY )→ Ext1(ZY ,Gm).

(iii) The pull-back of the Gm-torsor P ×A Y on Y × P by Γg : Y → Y × P . Which is the same
as the pull-back of the extension (13) by the map g : ZY → PY .

(iv) The pull-back of the Gm-torsor P on A× P by the map f × g : Y → A× P .

3.3.3 Proof of Proposition 3.13. Suppose that we are given an F -scheme Y and a morphism

f : Y → A. Factor f as Y
Γf−→ A × Y pr1−−→ A and write π = pr2 : A × Y → Y . Over A, there

is the Poincaré sheaf P, which is an extension of PA by Gm,A. We see it as an element of
HomD((Sch/A)ét)(PA,Gm,A[1]):

P
...

Y
π:=pr2

�
Γf

A× Y pr1−−→ A

We have a commutative diagram in D((Sch/Y )ét)

PY
f∗P // Gm,Y [1]

Rπ∗PA×Y

Γ#
f

OO

Rπ∗(P×FY ) // Rπ∗Gm,A×Y [1]

Γ#
f

OO

PY

π#

OO
(15)

and, if we put f = the constant map to 0, it looks like

PY
0 // Gm,Y [1]

Rπ∗PA×Y

Γ#
0

OO

Rπ∗(P×FY ) // Rπ∗Gm,A×Y [1]

Γ#
0

OO

PY

π#

OO
(16)
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Note that we have Γ#
f ◦ π# = Γ#

0 ◦ π# = id : PY → PY . Therefore, by (15), we have that

bP(f) := f∗P ∈ Ext1
(Sch/Y )ét

(PY ,Gm,Y ) is equal to Γ#
f ◦ P ×F Y ◦ π#. From (16), we see that

Γ#
0 ◦ (P ×F Y ) ◦ π# = 0 : PY → Gm,Y [1].

Claim 3.14. The following diagram commutes, where the unnamed maps are the canonical ones:

Rπ∗Gm,A×Y [1] // τ>1Rπ∗Gm,A×Y [1]

(
Γ#
f −Γ#

0// Gm,Y [1]

)

PY

(P×FY )◦π#

OO

(12) // R1π∗Gm,A×Y

OO

If we prove Claim 3.14, the upper path from PY to Gm,Y [1] is equal to bP(f) and the lower
path is equal to b∗(f), so Proposition 3.13 follows.

Claim 3.14 follows if the map

PY (Y )→ H0(Y,Rπ∗Gm,A×Y [1]) = (R1π∗Gm,A×Y )(Y ) = Pic(A× Y, 0× Y )

obtained by applying H0(Y,−) to (P ×F Y ) ◦ π# is the same as (12) for any F -scheme Y .
For this, it suffices to show that the map obtained by applying H0(Y,−) to Rπ∗(P ×F Y )

in (15)
(π∗PA×Y )(Y )→ R1π∗Gm,A×Y (Y ) = Pic(A× Y, 0× Y )

is equal to the canonical inclusion (12)

(π∗PA×Y )(Y ) ⊂ Pic(A× (A× Y ), 0× (A× Y ))

followed by pull-back by (diagA)× idY : A× Y → A×A× Y .
Replacing A× Y by an arbitrary F -scheme Y , we are reduced to the following result.

Lemma 3.15. For any A-scheme f : Y → A, the following diagram commutes:

PY (Y )

⋂(12)

P×AY // H1(Y,Gm)

Pic(A× Y, 0× Y )

Γ∗f

66

But this is clear because by § 3.3.2 and (12) both maps send g : Y → P to the pull-back of
the Gm-torsor P on A× P to Y by the morphism (f, g) : Y → A× P . This completes the proof
of Proposition 3.13.

Remark 3.16. Proposition 3.13 answers the question raised by van Hamel in [vHa04, Remark 3.4].

4. Another surjectivity result

Theorem 4.1. Let K be a Henselian discrete valuation field of characteristic (0, p) (p positive)
with residue field k over which any principal homogeneous space under any abelian variety is
trivial (e.g. a finite field or a separably closed field). Assume that vK(p) < p− 1, where vK is the
normalized additive valuation of K.

Let X be a smooth projective variety over K with good reduction. Assume that X has a
degree-1 zero-cycle (always true if k is finite or separably closed).
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Then the Albanese map
CH0(X)0

→ AlbX(K)

is surjective.

Proof. Since X has a degree-1 zero-cycle, we may assume that X has a rational point by a trace
argument.

By a Bertini theorem over discrete valuation rings due to Jannsen and Saito [SS10,
Theorem 4.2], there is a smooth curve C ⊂ X which is obtained by repeated hypersurface
sections and contains a rational point and has good reduction.

As is explained in [Gab01, Proposition 2.4], such a hypersurface section has the property
that the homomorphism

AlbC → AlbX

is smooth and has a connected kernel N .
Now AlbC(= JC) has good reduction because C has good reduction. We have now an exact

sequence of abelian varieties
0→ N → JC → AlbX → 0.

By [BLR10, Theorem 4, p. 187], which is applicable by the assumption vK(p) < p−1, the induced
sequence of Néron models

0→ N → JC → AlbX → 0

is exact and N and AlbX also have good reduction. Therefore, it induces an exact sequence of
abelian varieties over k

0→ N → JC → AlbX → 0.

(Here overline means reduction, not the algebraic closure.)
Now we are going to establish the surjectivity of JC(K) → AlbX(K); if it is proved our

assertion follows from the known fact that CH0(C)0
→ JC(K) is an isomorphism as C has a

rational point. Pick any a ∈ AlbX(K). We show that Na = JC ×AlbX a has a rational point. The
section a naturally extends to a section a′ ∈ AlbX(Ok) and induces a section a ∈ AlbX(k). We
consider the scheme Na′ = JC×AlbX a

′. Its special fiber Na = JC×AlbX
a is a torsor over the field

k under the abelian variety N . By the assumption on the residue field, it has a rational point.
By Hensel’s lemma, the rational point lifts to a section of Na′ , giving a rational point on Na. 2
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