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A study of the propagation of a mode-2 internal solitary wave over a slope-shelf
topography is presented. The methodology is based on a variable-coefficient Korteweg—
de Vries (vKdV) equation, using both analysis and numerical simulations, and
simulations using the MIT general circulation model (MITgcm). Two configurations
are considered. One is a mode-2 internal solitary wave propagating up the slope,
from one three-layer system to another three-layer system. Depending on the height
of the shelf, which determines the variation of the nonlinear coefficient of the vKdV
equation, this can be classified into two cases. First, the case of a polarity change, in
which the coefficient of the quadratic nonlinear term changes sign at a certain critical
point on the slope, and second, the case with no such polarity change. In both these
cases there is a small transfer of energy from the mode-2 wave to mode-1 waves.
The other configuration is when the lower layer in the three-layer system goes to
zero at a transition point on the slope, and beyond that point, there is a two-layer
fluid system. A mode-2 internal solitary wave propagating up the slope cannot exist
past this transition point. Instead it is extinguished and replaced by a mode-1 bore
and trailing wave packet which moves onto the shelf.

Key words: internal waves, solitary waves, topographic effects

1. Introduction

Internal solitary waves are ubiquitous features in the coastal ocean, often having
large amplitudes and strong currents. One of the strongest internal solitary waves
on record has an amplitude of 240 m, and a peak current velocity of 2.55 m s7!,
captured at a mooring site deployed in the northern South China Sea at the bottom
depth of 3847 m, see Huang e al. (2016). These waves are important as their energy
and mass transport can produce a substantial impact on coastal marine engineering,
marine biology and geology. Although mode-1 waves are those most commonly found
in the ocean, there have been several recent observations and numerical simulations
suggesting that mode-2 waves can also be present in some circumstances, see Farmer
& Smith (1980), Konyaev, Sabinin & Serebryany (1995), Stastna & Peltier (2005),
Moum, Nash & Klymak (2008), Yang et al. (2009), Shroyer, Moum & Nash (2010),
Yang et al. (2010), Liu et al. (2013). Mode-2 internal waves are usually not as
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energetic as mode-1 waves, but they can be significant for mixing shelf waters,
especially as their location is usually in the middle of the pycnocline, and hence
they can be effective in eroding the barrier between the upper mixed layer and
the deep water below. Mode-2 internal solitary waves first came to notice in the
laboratory experiments of Davis & Acrivos (1967) who examined the propagation of
internal solitary waves in thin pycnocline embedded between two deep fluid layers.
Like their mode-1 counterparts, mode-2 waves can be classified as elevation or
depression, related theoretically to whether the nonlinear coefficient in the underlying
Korteweg-de Vries equation is positive or negative. For mode-2 waves, an elevation
wave is often called a ‘convex wave’ as the upper (lower) pycnocline interface is
displaced upwards (downwards). In contrast a mode-2 depression wave is a ‘concave’
wave, with an hourglass-shaped structure, as the upper (lower) pycnocline interface
is displaced downwards (upwards).

The deformation and possible disintegration of an oceanic internal solitary wave
as it propagates over topography, typically from deep to shallow water, has been
heavily studied and is now well understood, see the reviews by Grimshaw (2006),
Grimshaw, Pelinovsky & Talipova (2007), Grimshaw et al. (2010). However, nearly
all previous work has been for mode-1 internal solitary waves, and there is an
insufficient understanding of the shoaling process of the mode-2 waves, although
we note the recent numerical studies by Guo & Chen (2012) of a mode-2 internal
solitary wave shoaling on a slope in a model configuration close to the situation
in the South China Sea, and by Terletska et al. (2016) of the impact of a mode-2
internal solitary wave onto a vertical step in a three-layer fluid configuration. We
also note the numerical simulations of Stastna & Peltier (2005) who showed that
mode-2 waves could be generated in some circumstances by trans-critical flow over
topography. Hence in this paper we examine the analogous problem for a mode-2
internal solitary wave propagating from deep to shallow water up the continental
slope, where the water depth & is slowly varying, in contrast to the abrupt step
considered in Terletska et al. (2016).

We use two complementary methodologies, both with a two-dimensional three-layer
fluid model, which can support mode-2 waves. Initially a variable-coefficient
Korteweg-de Vries (vKdV) equation is implemented to simulate the propagation
of a mode-2 internal solitary wave from a flat deep ocean onto a slope, leading
to a flat shallow ocean. Such vKdV equations have been commonly used to model
mode-1 waves, and the structure of the equation is of course the same for mode-2
waves. Crucially the coefficients in the mode-2 case depend in a quite different way
on the fluid depth than in the mode-1 case. Nevertheless, in the vKdV context the
behaviour of an internal solitary wave in this mode-2 case can be inferred from the
known results from the analogous mode-1 case, see Grimshaw (2006), Grimshaw
et al. (2007, 2010). Suppose that, as the waves propagate from deep to shallow
water up the continental slope, there is no polarity change, that is the nonlinear
coefficient o does not change sign over the slope. Then due to the conservation of
wave-action flux, an adiabatic law a® oc o relates the solitary wave amplitude a with
the coefficient «. At the same time, to conserve mass, the deforming solitary wave
is accompanied by a trailing shelf. But if there is a polarity change on the slope,
which means « reaches zero at a certain critical point on the slope, then the adiabatic
law breaks down as the wave approaches this critical point. After that the whole
wave system transits this critical point, and the original incident wave develops into
a leading rarefaction wave of the same polarity, on which rides a solitary wave train
of the opposite polarity. As the vKdV equation is based on the weakly nonlinear
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long-wave regime, a complementary fully nonlinear non-hydrostatic MIT general
circulation model (MITgcm) is also used here. Importantly, unlike the vKdV model,
these simulations are not restricted to a single vertical mode, and can detect the
possible generation of mode-1 waves during the propagation up the slope, as found
by Terletska et al. (2016) when a mode-2 wave impacts a vertical step. In particular
the MITgcm model can be used to study the case when the three-layer stratification
terminates on the slope and thereafter there is only a two-layer stratification. In this
scenario, the mode-2 cannot exist on the shelf anymore, and any wave disturbance
reaching the shelf must be a mode-1 wave.

This paper is organised as follows. In § 2, we present the vKdV theory and a mode
decomposition technique, used to analyse the output from the MITgcm, together with
an analysis of the energy budget. Then in §3 we discuss a three-layer configuration
and derive the coefficients of the vKdV equation. Next the result of the shoaling
process from a three-layer to a three-layer system, and from a three-layer to a two-
layer system are presented in §§4 and 5 respectively. We conclude in § 6.

2. Formulation

The vKdV equation commonly used to describe internal waves in the coastal ocean,
in the usual physical variables (see the reviews by Grimshaw (2006), Grimshaw et al.
(2007, 2010) and the references therein) is

cQx
20

Here A(x, t) is the amplitude of the wave, x, r are space and time variables and
subscripts denote derivatives. The coefficient ¢ is the relevant linear long-wave speed,
and Q is the linear magnification factor, explicitly defined below in (2.14) so that QA>
is the linear long-wave wave-action flux. The coefficients i and A of the nonlinear and
dispersive terms are determined by the waveguide properties of the specific physical
system, and for the present oceanic application, are defined below. For a variable
medium, each of these is a slowly varying function of x. The derivation of the vKdV
equation (2.1) assumes the usual KdV balance that the nonlinear term AA, has the
same order as the linear dispersive term A,,,, so that formally the amplitude A is of the
same order as 92/dx>. In addition the derivation assumes that the waveguide properties
(that is, the coefficients ¢, Q, u, 4) vary slowly so that Q,/Q for instance is of the
same order as the linear dispersive term. In this scenario, the first two terms in (2.1)
are the dominant terms, and it is convenient and useful to make a transformation

A +cA + A4 pnAA 4+ A, =0. (2.1)

* dx * dx
X= ——t, T= —. (2.2a,b)
c ¢
Then, to the same order of asymptotic approximation as in the derivation of (2.1),
Or
AT + EA + UAAX + SAXXX = O, (23)
A
v=E =2, (2.4a,b)
c ¢
A further simplification is
U=A\/Q. Ur+ BUUx+8Uxx=0, (2.5a,b)
2 - 8 1 (2.6a,b)
=—, =—. .6a,
N
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Here the coefficients 8, § are functions of 7" alone. Note that although T is a variable
along the spatial path of the wave, we shall subsequently refer to it as the ‘time’.
Similarly, although X is a temporal variable, in a reference frame moving with speed
¢, we shall subsequently refer to it as a ‘space’ variable. To simplify the calculation,
a final transformation yields the canonical form,

U-L- +OlUUx+UXXX=0, (27)

T
where 1 =/ 6dT, a= ? (2.8a,b)
The coefficient o varies with 7, that is @« = «(7) in general.

For the application to the coastal ocean, we consider only a two-dimensional
configuration, where the depth varies slowly in the propagation direction x, that is,
the ocean depth & = h(x). In this present application, we assume that the background
density field py(z) and the background horizontal current uy(z) do not vary with x. If
they did then an extra term is needed in the vKdV equation, see Grimshaw (1981),
Zhou & Grimshaw (1989). Then, to the leading order in an asymptotic expansion,
based on the joint parameters measuring small-wave amplitudes and weak linear
dispersion, the vertical particle displacement relative to the basic state is given by

¢(x,z, 1) =Ax, DP(z; x), (2.9)

where ¢(z; x) is the modal function, defined by
{po(c — u0)*¢-): + poN*¢p =0 for —h<z<0, (2.10)
=0 atz=—h; (c—uy’p,=g¢ atz=0. (2.11a,b)

Here ¢(z; x) is chosen as one of the possibly infinite number of vertical modes,
see the discussion below, and the system (2.10), (2.11) also serves to define the
corresponding linear long-wave phase speed c(x). The buoyancy frequency N is
defined by poN? = —gpy.. Importantly, the modal function ¢(z; x) and the speed c(x)
inherit a slow variation with x due to the slow horizontal variation on the ocean depth
h(x) and in the basic state hydrology. Since the modal equations are homogeneous,
a normalisation condition can be imposed. Here we choose ¢(z,) =1 where |¢(2)]
achieves a maximum value at z=z, with respect to z. In this case the amplitude A is
uniquely defined as the amplitude of ¢ (to the leading order) at z,. The coefficients
W, A, Q in (2.1) are given by

0
In=3 / po(c — uo)*? dz, (2.12)
—h
0
1= / polc — up)*¢* dz, (2.13)
—h
0
I= 2/ 0olc — u0)¢z2 dz, Q=¢cl. (2.14a,b)
—h

Like ¢, these also vary slowly with x. Taking the Boussinesq and rigid lid
approximation commonly used in oceanography, and as we will assume here, in
the absence of a background current uy =0, the modal equation (2.10) and boundary
conditions (2.11) reduce to

.+ N¢p=0 for —h<z<0, (2.15)
¢=0 atz=-h,0. (2.16)
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As a result, the expressions for u, A reduce to

0

In=3 / ¢l dz, (2.17)
—h
0

= / A¢*dz, (2.18)
—h
0

1:2/ cp? dz. (2.19)
—h

Since we will be projecting the output from the MITgcm onto the complete set of
vertical modes, it is now necessary to outline how this will be achieved. In general the
modal system (2.15), (2.16) defines an infinite set of internal modes ¢,,n=1,2,3, ...
and speeds c,, where ¢, > ¢, >--- . Mode-1 has n=1 with no internal zeros and mode-
2 has n=2 with just one internal zero. These modes are complete and orthogonal with
respect to the weight function N2, that is

0 0
N2¢n¢m dz=S,6,m, S,= / N2¢§ dz, (2.20a,b)
—h —h

where the subscript n and m represent mode number, and §,, is the Kronecker delta.
Using (2.15), (2.16), we can further obtain

0 2
Sn=c5/ <8¢"> dz, (2.21)
—h 07

and an equivalent orthogonality condition,

0 3 n a m
c / 9n 99 dz=5,8,m. (2.22)
—h dz 0z

The vertical particle displacement ¢ (x, z, ) can be projected onto these modes,
L0620 =Y Au(x, (), (2.23)
1

where A, (x, ) is the amplitude of mode n. Note that once a mode has been selected,
A, is just the amplitude A in the vKdV equation (2.1). Then we have

0
/ N*¢¢,dz = A,S,. (2.24)
—h

This can also usefully be written in an alternative form

0 9¢, 0
c / afat dz= A,S,. (2.25)
—h dz 0z

When using the MITgcm, one of the outputs readily available is the velocity field
(u, w). To find an expression for ¢, and noting that taking a z-derivative is not
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convenient, possibly introducing new errors, we proceed as follows. In the linear
long-wave approximation

Gi=w, (2.26)
which can be combined with the conservation of mass equation
g+ w, =0, 2.27)
to yield
U, &= (2.28)

Then, also noting that to the leading linear long-wave order, for each mode n, the
vertical displacement ¢, has

d&n e

n ~0, 2.29
3 T ox (229)
the final approximate expression for A, is
0
Lo
AnSn%cn/ u ¢ dz. (2.30)
—h 0z

With the aid of this mode decomposition technique (2.30), the amplitude A, of
each mode can be easily obtained from the output of the MITgcm. Further, the energy
budget of each can also be obtained. Confining attention to linear long-wave theory,
see Gill (1982) for instance, the domain-integrated available potential energy (APE)
in each mode is

1
Po= [ [ Sone dxas @31)

Again invoking the Boussinesq approximation, and also considering (2.20), (2.21),
(2.23), this can be rewritten in an alternative and more convenient form,

2 0 8 . 2
Pn:Jn/Aﬁdx, J,,:cz"/ 20 ( a‘i) dz. (2.32a,b)
—h

Note that the modal functions ¢, and speed ¢, also contain a slow x-dependence, but
that is suppressed here at the leading order. In the same slowly varying environment,
the velocities in each internal wave mode can be obtained as follows,

0¢,(2)

un(x7 <, [) =Cp An(xa t), (233)
Z
0A,(x, 1)
Wi (X, 2, 1) = —Cun () —— (2.34)
ox

Then the domain-integrated kinetic energy (KE) in each mode is

1 2 2 1 2
K, = 5:00(% +w;) dxdz~ 5:00”;1 dxdz=J, | A, dx, (2.35)

as in the long-wave limit used here w, < u,. As expected, ‘equipartition of energy’
holds here and the total energy can be found as E, =2K, =2P,. Hence it is sufficient
to calculate either K, or P,. Further, It is clear that due to the orthogonality of the
modes the total kinetic energy and total potential energy are

K:ZK,I, P:ZP,,. (2.36a,b)
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3. Three-layer fluid system

It is well known that a three-layer fluid system is the simplest model that can
support mode-2 waves, see Yih (1960). Indeed, three-layer density structures have
been observed in the ocean, see Yang et al. (2010) for instance. Hence a three-layer
ocean model is used here to investigate the dynamics of mode-2 internal solitary
waves. We assume that

po(2) = (p2+Ap)O(—z—hi —h) + PO (=2 — ") O (z+hi + o) + (02 — Ap) O (z+ ),

3.1
where p, is the density of the middle layer, and the density difference Ap > 0; Ay,
h, and h; are the thicknesses of the three layers from top to bottom respectively and
®(-) is the Heaviside function. Note that with this piece-wise constant density field
only two of the infinite set of modes can be found, namely mode-1 and mode-2; the
remaining modes are confined to the two interfaces, and cannot be found explicitly
with this density profile. In principle the densities of these three layers can take any
reasonable values depending on the specific circumstances, but here to illustrate the
dynamics, we choose one special case in which the density of the middle layer is
exactly the mean value of that in the upper layer and bottom layer. From (2.15), (2.16)
the modal function is given by

¢=—A1h5, —h <z<0,
1
z+h+h z+h
p=A, hl 2 _ A, ; L —hi—hy<z<~—h, (3.2)
2 2
z+h
p=A— —. —h<z<—h—h.
3

Note that ¢ = A, at the upper interface z = —h;, and ¢ = A, at the lower interface
7= —h; — h,. The solution is normalised by max[|¢|] = 1, so that max[|A;], |A;|]] =
1, and without loss of generality, we require that 0 < A; < 1. The speed ¢ is now
found by noting that at z=—h,, —h; — h,, ¢, is discontinuous and p,, consists of two
S-functions. Integrating the modal equation (2.15) across each interface leads to

A
gl +gp=0, g=g=", (3.3a.b)

P2

where [-] is the difference between above and below each interface. Note that these
jump conditions represent continuity of total pressure across each interface. Hence the
speed c is found from the 2 x 2 eigenvalue problem,

, 11\ A
A [ —4+— | -2 —gA =0,
hy  hy hy (3.4)

1/2
220 _ (1,2 1 11 2+4 35)
A \h ok i hy  hs h3 ‘ ‘
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The signs F correspond to mode-1 and mode-2 respectively, so that, as expected
c1 > c,. It then follows that

Al_ _ 2 1/2 A2_1_ 2 1/2 h2< 1>
1, =R=H+tH +1)"", A "R- HEXH+1)"7", H= 2\ )

(3.6a—c)
Hence R > 0(< 0) for mode-1 and mode-2 respectively, so that, as expected, mode-1
has no internal zeros, and mode-2 has just one internal zero. Thus both the phase
speed and internal zero criteria for distinguishing between mode-1 and mode-2 are
valid here. Also, for mode-1, R > 1(< 1) according as H > 0(< 0), that is h;/h; >
1(< 1), while for mode-2 |R| < 1(> 1) according as H > 0(< 0). Note that

'h hy h
gcf ;7+1+H:F<H2 1)”2=,72+1—H¢(H2+1>”2. 3.7)
1 3

Then the coefficient © (2.17) is given by

A3 (A — Ay)? A? (A — Ay)?
In=32-"“Lt4+24" =2 L J=2 =4+ —— "5, (3.8a,b
7 c{ h2+h2+ h% } C{h1+h3+ I } (3.8a,b)

Substituting the expressions (3.6) into (3.8) we get that

3cA; 2 Roh
Q=—22R+2

— 2+ R-1), H—h—R2+h+(R 1)?. (3.9a—c)
2h, I n C

n hy hs

'LL:

Our main concern is how these expressions vary as the lower-layer depth h; decreases.
Since for all the cases we consider, in the deep water h; = h;, we can assume that
hy > hs as the waves propagate up the slope. In this case H >0, R> 1 for mode-1 and
—1 <R <0 for mode-2, so that recalling the convention that A; >0, A, =1,0<A; <1
for mode-1 and 0 <A; <1, A, = —1 for mode-2. A useful approximation is s, < hj 3
when H — 0 and so

> , 30(/’11 - hg)
mode-1: ¢ =28h1h3/(l’l1+]’l3), A1 Az—l, MW=——,
3 2hyhy (3.10)
c
mode-2: I =g¢gh/2, Ai=—A=1, p=-—.
2h,
Another useful limit is 43 — 0 when H — 400, and so
3c(hy —h
mode-1: > =g'hihy/(hi +hy), A =1,A=0, p= M,
3 2hihy (3.11)
c
mode-2: c*~gh;, A =0A4,=—1, p=—"
2hy

Note that in the deep water, hy =h;, H=0, R==%1, A, =A, =1 for mode-1, A; =
—A, =1 for mode-2 and

mode-1: ¢*=gh;, n=0,

g'hih, 3¢(2hy — hy) (3.12)
d —2: 2 = P EE——— =
mode= = o+ my M 2y
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FIGURE 1. Plot of the nonlinear coefficient u (3.9) for mode-1 (a) and mode-2 (b).
Shaded areas show negative value, u < 0. Labels are H, = h,/h,, H; = hy/h;.

These expressions show that for mode-1 w > 0 when h; > h; in the limit h, < Ay 3,
@ =0 when hy > h, in the limit 23 — 0 and u =0 when h; = h;. For mode-2, u >0
in the limit A, < h; 3, while © <0 in the limit #; — 0, but x>0 when 2k, > h, for
the case h; = hs. In general the sign of w is determined by the sign of A,£2, which
is defined in (3.9), and in particular & =0 when

—(1 =R =—-2H+{4H’R* + (1 — R(1 — R)*}'?, (3.13)

which defines the curves in the h,/hy, h,/h; plane where = 0. Recalling that &, > 53,
H >0, for mode-1 R > 1, the discriminant is positive and only the lower sign can be
taken. In the limit 4, — h3, this yields h,/h; — 4/3, so that there is a change of sign at
this point just above the line h,/h; = hy/hs. For mode-2, —1 < R <0, the discriminant
is positive only when H is large enough, and then the upper sign must be chosen. In
the limit h; — hs, this yields hy/h; — 2. The outcome for the sign of u is shown in
figure 1. In practice, h; and h, are constants, and so H; = h,/h; is constant when the
internal solitary wave propagates shoreward, while H; = h,/h; is the only variable to
change as /3 changes. Hence we consider two cases: a polarity change and no polarity
change, which will be shown in the next section.

4. From one three-layer system to another

As discussed in §1 the vKdV equation (2.1) and various extensions have been
extensively used to model the evolution of internal waves over topography in the
coastal oceans. For instance, Grimshaw et al. (2004) used an extended vKdV equation
to study the transformation of a mode-1 internal solitary wave as it evolves over three
representative continental shelves; Holloway, Pelinovsky & Talipova (1999) studied
the evolution of internal tides when they propagate shoreward with a generalised
KdV equation, which considers the combined effect of both quadratic and cubic
nonlinearity, the Earth’s rotation, and frictional dissipation. However, the investigation
of the evolution and propagation of mode-2 internal solitary waves over a slope
seems to be very rare. Indeed, the only comparable studies we are aware of are those
by Guo & Chen (2012) and Terletska et al. (2016), and we will make comparisons
and discussions of these works in the summary, § 6.
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FIGURE 2. (Colour online) Coefficients of the vKdV equation (2.3) for mode-2, together
with the corresponding bathymetry and density layers. (a) The EXP1, in which there is a
polarity change (h; = 50 m in the shallow water); (b) the EXP2, in which there is no
polarity change (3 = 60 m in the shallow water). The dark dash-dotted line indicates
where v =0, while the grey dashed lines denote the two interfaces. Note that in the EXP1,
the critical point (v =0) locates at approximately x= 1.8 x 10° m, just in the vicinity of
the end of the slope at x =1.82 x 10° m.

We consider a three-layer system, in which the background current is zero and the
density variations across each interface are the same, that is, the density is p, — Ap,
p> and p, + Ap respectively from top to bottom, where Ap > 0, exactly as listed in
§ 3. Two configurations are investigated, both of which keep the thicknesses of the
upper and middle layer as constants, that is, #;; =200 m and /4, = 100 m, and only
the bottom layer h; varies as the waves move into shallow water. To model a realistic
ocean situation, the idealised bathymetry used here has a typical slope-shelf structure,
see figure 2. Initially in the deep water, the bottom layer h; =200 m, then decreases
along the linearly varying slope to h3; = 50 m (labelled as EXP1) or h; = 60 m
(labelled as EXP2) respectively onto the shelf. As a consequence, the thickness ratio
H, =hy/hy =0.5 is a constant, while H3 = h,/h; adjusts from H; = 0.5 in the deep
water to H; = 2 and H; = 1.67 respectively on the shelf. Although in these two
cases EXP1 and EXP2, this 10 m thickness difference on the shelf may seem small,
especially when compared with the total water depth (500 m), the corresponding
dynamics can be completely distinguished from each other. When /i3 =50 m (H; =2)
on the shelf, referring to figure 1, the nonlinear coefficient w in (2.1) (and so also
o in (2.7)) is negative, opposite from the positive value in the deep water, which
indicates there must be a critical point on the slope, where o = 0, and passing
through that point, the initial convex wave (u > 0) inverses its polarity and turns
into a concave wave (u < 0), that is, there is a polarity change. In contrast, the
other case EXP2 is in a different regime, since p preserves its sign, u > 0, so there
is no polarity change. Our numerical simulations are performed in the transformed
space on (2.7), using a pseudo-spectral method based on a Fourier interpolant, see
Boyd (2001) and Weideman & Reddy (2000) for details. The ‘spatial’ resolution is
0.5 s in X, while the ‘temporal’ resolution is 0.08 s* in 7, and finally the outcome
is transformed back to the physical space.

In the shoaling process, as the depth decreases the linear magnification factor Q
increases, while the linear dispersive coefficient § decreases, see figure 2. In particular,
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FIGURE 3. (Colour online) The amplitudes of the mode-2 internal solitary waves in
simulations of the vKdV equation (2.7). Note that the results are transformed back to
the physical space from the calculation space. (a,c,e) The EXPI1, and the critical point is
at approximately x = 1.8 x 10° m; (b.d,f) the EXP2. One point worth mentioning is that
in order to emphasise the waveform, the horizontal scale changes, especially from the top
to the middle panel.

the decrease in & consequently enhances the effect of nonlinearity as the wave
propagates shoreward, which can subsequently change the waveform.

The deformation scenarios of the EXP1 and EXP2 are depicted in figure 3. In the
EXP1, a single convex wave with an initial amplitude of 18 m propagates shoreward,
and as expected, the evolution is adiabatic without significant change until it reaches
the critical point. Prior to the critical point, the vKdV theory predicts that the
amplitude decreases as «!/® reduces, where « is the nonlinear coefficient in (2.7).
Then, approaching the critical point, this slowly varying solitary wave generates
a trailing shelf of the opposite polarity, and this combination passes through the
critical point. Thereafter as & becomes negative, this disturbance forms into a leading
positive rarefaction wave at whose trailing edge an incipient jump is resolved by an
undular bore whose leading component is a solitary wave train of negative polarity,
see Grimshaw & Yuan (2016). The case with no polarity change EXP2 is distinct,
as o decreases, the mass of the solitary wave increases as «~'/?, and this generates
a negative trailing pedestal to conserve the total mass. But then instead of passing
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through a critical point, o approaches a constant value on the shelf, and hence the
leading convex wave continues steadily, while new internal solitary waves of small
amplitude and negative polarity form from the trailing pedestal.

Next, we compare these results to simulations using a primitive equation model, the
MIT general circulation model (MITgcm), with zero horizontal and vertical Laplacian
frictional dissipation, so that formally it solves the incompressible Boussinesq
equations with fully nonlinear and non-hydrostatic terms, employed here in a
two-dimensional configuration. This model uses a finite-volume method and has
been successfully used to study internal waves in the ocean, such as Vlasenko
et al. (2010) and Guo & Chen (2012). For details of the MITgcm model, refer to
Marshall et al. (1997). Our model domain and bathymetry are the same as those in
the vKdV equation. The spatial steps are 1 and 50 m in the vertical and horizontal
direction respectively, and using a similar method to that introduced in Guo & Chen
(2012), two boundary layers, where the resolution exponentially decreases from 50
to 2.5 x 10° m, are added at the ends of domain to suppress any reflections. In
addition, considering the time scale of the waves, we set the time step to be 4 s.
The background temperature is uniform in this model, 25°C, while the salinity is 5,
20 and 35 PSU respectively for the three layers. Neglecting the pressure deviation
in the fluid, the corresponding densities can be achieved by the equation of state at
atmospheric pressure with values of 1000.8, 1012.0 and 1023.3 kg m~>. In addition,
to ensure that the model runs smoothly, we invoke a Leith scheme, see Leith (1996),
to introduce some viscosity. The KdV-type mode-2 solitary wave is not an exact
solution of the Boussinesq equations solved by the MITgcm model, but nevertheless,
essentially only some slight modulations are needed. Thus to obtain the initial wave,
a preliminary MITgcm model run with the KdV wave as the initial condition is
performed. As expected, the final usable stable incident mode-2 waves are followed
by some small trailing waves.

Using the modal system (2.15), (2.16), it is found the fluctuation of the interface
between the upper and middle layer in the MITgcm model is just the amplitude A in
the vKdV equation (2.1). Figure 4 shows a comparison between the vKdV and the
MITgcem simulations. Here for brevity, only the result of the EXP1 is exhibited. Note
that all the coefficients ¢, Q, i, 4 in (2.1) have to be solved by numerical methods,
and as a result, an interpolation is implemented in the transformation from U in (2.7)
to A in (2.3 or 2.1). Nevertheless, considering the very fine resolution (X : 0.5 s,
7:0.08 s°) used in the calculation of (2.7), this transformation can still reach a high
accuracy. Despite the fact that the amplitude of the MITgcm result is smaller than
that from the vKdV equation, these two have a good agreement. The MITgcm model
solves the primitive equation, which can support solutions for all modes, including
the mode-1 and mode-2 waves, while the vKdV equation by construction is not able
to support mode-1 and mode-2 simultaneously. Hence, in the MITgcm simulations
there is a possibility for a generation of mode-1 and higher modes, and energy
exchange between modes, which is possibly the reason why a smaller amplitude
occurs. In addition, the viscosity and numerical wave breaking and turbulent mixing
can be another sink for the energy. Indeed, as analysed in the following results for
the energy budget, these may represent a large portion of the lost energy.

A mode decomposition technique, see (2.30) in § 2, is implemented on the MITgcm
result, see figure 5. As expected, the mode-2 wave decomposition result behaves very
similar to the evolution based on the vKdV equation (2.7), see figure 3. In the
deep water there is a very small mode-1 feature slaved to the main mode-2 wave,
as the latter is not quite an exact mode-2 internal solitary wave as given in the
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FIGURE 4. Three representative snapshots of the EXP1 at times ¢ = 0, 22 and 30 h
(from (a) to (c)) in a three-layer to three-layer system are illustrated. The grey line is
the result from the vKdV equation (2.7), but is transformed back to the physical space,
while the dark line is the isopycnal line p = p, — Ap =1000.8 kg m~3, which is also the
interface between the upper and middle layer, captured from the MITgcm model. As the
origins of coordinates are not the same, the MITgcm result is shifted in order to make
the comparison.

KdV theory. However after this mode-2 wave propagates onto the slope, this slaved
feature grows into a mode-1 wave train, as energy flows from mode-2 into mode-1.
In addition a very small free mode-1 wave is generated which propagates ahead of
the main mode-1 wave. The slaved mode-1 wave train accumulates energy gradually
during the evolution of the mode-2 wave propagating up the slope, and a leading
depression rarefaction forms followed by trailing oscillatory wave trains. Ahead of
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FIGURE 5. (Colour online) The MITgcm simulation of the EXP1 in a three-layer to three-
layer system. The upper panel (a) is the mode decomposition result for mode-2 internal
solitary waves at times #=0, 10,21 and 30 h, which are shown by blue, orange, green and
red solid lines respectively. The four panels (b) are results for mode-1 at the same times,
and are represented by the same coloured lines as that for mode-2. Dark dots indicate the
start and the end of the linearly varying slope, respectively. The lowest two panels (c) are
snapshots which are bounded by the corresponding dark dashed rectangle.

this slaved component, there is a small freely propagating mode-1 rarefaction. Note
that the vKdV theory predicts that nonlinear effects become more significant as
the mode-1 wave moves up the slope, see figure 6. Finally, on the flat shelf, the
slaved mode-1 wave continues to develop but the freely propagating mode-1 wave
can hardly be seen. Importantly, the amplitudes of these mode-1 waves remain much
smaller than that of the main mode-2 wave, so the energy transfer is quite small.
This can be confirmed from an analysis of the energy budget, see figure 7. Here
we use the expressions (2.32), (2.35) for the energy in each mode, consistent with
the vKdV theory. But we note that in the fully nonlinear MITgcm simulations, for
large amplitude waves this could lead to some significant errors, see Lamb (2007).
Nevertheless, mode-2 waves lose 0.68 TJ (x 10'? joules) of energy over the continental
slope, of which 23.1 GJ (3.4 %) is converted into mode-1 waves, and the rest of the
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FIGURE 6. (Colour online) Coefficients of the vKdV equation (2.3) for mode-1 in the
EXP1. The lowest panel is the corresponding bathymetry and density layers.
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FIGURE 7. (Colour online) The total energy E, =K, + P, in the EXP1, calculated from
the MITgcm result, of which mode-1 (n = 1) is denoted by the blue dashed line, and
mode-2 (n=2) is represented by the orange solid line, together with the corresponding
bathymetry and density layers inset. The dark rectangle represents the start and end of
the slope respectively. Note that the time cutoff point is selected at r=32 h, and beyond
that point, the freely propagating mode-1 waves radiate away from the calculation domain
into the boundary layer, and finally vanish there.

energy is presumably lost to the viscosity and the effects of numerical wave breaking
and turbulence.

5. From three-layer to two-layer system
The configurations in § 4 were set up so that the three-layer fluid system persisted

from deep to shallow water, onto the shelf. Thus a mode-2 wave can exist over the
whole fluid domain. Here we examine the case when the three-layer fluid system
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does not extend onto the shelf, where there is instead only a two-layer fluid system.
That is, the lower-layer depth h; decreases to zero at a certain point on the slope.
In this scenario a mode-2 wave cannot exist past this point and on the shelf. Hence
the question examined here is what happens to a mode-2 internal solitary wave as
it propagates up the slope. The vKdV theory cannot describe this situation beyond
the point where h; = 0 and consequently we can only use the MITgcm results to
investigate this issue.

In the deep water, following the set-up examined in § 4, we again build a three-layer
system, namely h; = 200, h, = 100 and h3; = 200 m, but here the bottom layer
terminates on the slope, that is, there is a transition point where #; =0 and thereafter
it becomes a two-layer system on the remainder of the slope and further on the flat
shelf, which is labelled as EXP3. With this set-up, comparing with the EXP1 in
§4, the evolution scenario is similar on the slope before the bottom layer reaches
50 m, see figure 8 for the details. After that, the nonlinear coefficient p in the vKdV
equation (2.1), see (3.9) and figure 2, which is initially positive, passes through zero,
and then keeps decreasing as the bottom-layer depth h; — 0, and finally i — —oo0,
see (3.11), where the KdV theory fails. The MITgcm results show that at first the
behaviours on the slope are similar to those in the EXP1 (figure 5) with a decay of
the main mode-2 wave and generation of a small amplitude slaved mode-1 wave and
an even smaller freely propagating mode-1 wave. But now, as the transition point
is approached, the mode-2 wave is extinguished, and replaced by a mode-1 wave
with two components; a slowly moving oscillatory wave train, and a small elevation
bore propagating ahead up the slope and onto the shelf. After the waves completely
transmit to the two-layer system, the mode-2 wave cannot technically exist and only
mode-1 waves can survive. But note that in the MITgecm simulations, the interfaces
have a small but finite thickness, which technically does allow mode-2 and higher
modes to exist, and form an identifiable signal in the perturbed density field of the
pycnocline.

Figure 10 shows another simulation (labelled as EXP4) in which the thicknesses
of the layers are h; = 100, hy, =300 and 43 = 100 m in the deep water, and again
the bottom layer terminates on the slope. In this case, the nonlinear coefficient p
in the vKdV equation (2.1), see (3.9) and figure 2, is initially negative, opposite
from the EXP3, and keeps decreasing as the bottom-layer depth h; — 0, and finally
U — —oo, where again the KdV theory fails. Note that here the initial mode-2 wave
is a concave wave, and is not a perfect mode-2 wave in the MITgcm simulation,
but has a trailing wave train, as KdV theory predicts. Here no mode-1 waves are
visible in the deep water, but as the wave propagates up the slope, again mode-1
waves are generated, similar to those shown in figures 5 and 8. In this case, after
the termination of the three-layer system, a mode-1 coherent wave packet forms,
identifiable in the density signal of the thin, but of finite thickness, pycnocline in the
MITgcem simulation (not shown here). This wave packet retains its structure on the
shelf, but disperses, spreading out and decreasing in amplitude. At the same time a
small depression bore forms ahead of this packet, but also disperses and decreases in
amplitude as it propagates on the shelf.

These two cases, although different, show that when there is a transition from a
three-layer to a two-layer fluid system, the dynamics of the conversion of a mode-2
wave to mode-1 waves is overall similar. In both the EXP3 and EXP4 as the mode-2
wave propagates up the slope it deforms and generates some small-amplitude mode-1
waves. After the transition from a three-layer to a two-layer system, small-amplitude
mode-1 waves continue and move up the slope and onto the shelf. In the EXP3
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FIGURE 8. (Colour online) The MITgcm simulation of the EXP3 in a three-layer to
two-layer fluid system. The upper panel (a) is the mode decomposition result for mode-2
internal solitary waves at times # =0, 10 and 21 h. The four panels (b) are results for
mode-1 at times =0, 10,21 and 30 h, and are represented by the same coloured coding
as in figure 5. Dark dots indicate the start and the end of the linearly varying slope,
respectively. The last two panels (c) are the same as the lower two panels of (), that is,
the results for mode-1 at times t=21 and 30 h, but with an enhanced scale to accentuate
the leading mode-1 waves.

(figure 8), when there is a polarity change on the shelf prior to the transition to
a two-layer system, the initial mode-2 wave undergoes a polarity reversal before
reaching the transition point, and forms a system of a convex rarefaction wave on
which rides a wave train of concave waves. As the transition point is approached,
this system disperses and decreases in amplitude. Note that as h; — 0, for the
mode-2 wave R = A;/A;, — 0, see (3.6), and the corresponding horizontal velocity
field becomes concentrated in the middle and lower layers, and is positive in the
middle layer for the leading rarefaction wave, refer to (2.33). Also as h; — 0, for
a mode-1 wave R — 0o, and so ¢, > 0 in the middle layer. This implies, from the
expression (2.30) with n» =1 for the generation of a mode-1 wave from a velocity
field u > 0 of a mode-2 wave that this will generate a mode-1 wave of elevation.
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FIGURE 9. (Colour online) The total energy E, =K, + P, of EXP3 (a) and EXP4 (b). The
layout is the same as in figure 7, except in EXP3, one extra inset of the mode-2 internal
solitary wave propagating to a critical depth 4 =353 m (where the nonlinear coefficient
n =0) is drawn at time ¢t = 20.5 h, and thereafter the mode-1 wave is subject to an
adjustment with an increase following a decrease in energy.

Thus, after the transition, the combination of a rarefaction wave and following wave
train forms into a mode-1 elevation bore, from the convex rarefaction wave, followed
by a dispersive wave train, both riding on the thin pycnocline. As this system moves
onto the shelf, the bore moves ahead of the dispersive wave train, and evolves into
a solitary wave, where we note that for this mode-1 wave u > 0, see (3.11). In the
EXP4 (figure 10), there is no polarity reversal and the initial concave wave decreases
adiabatically in amplitude, with a trailing convex pedestal which grows in amplitude.
After the transition, this combination again forms into a mode-1 nonlinear wave
packet, but now with a leading depression bore. This is because in this case the
leading wave is concave, and the corresponding horizontal velocity field is negative
in the middle layer. Hence the mode-1 wave that is generated from this horizontal
velocity is now one of depression at its leading edge. As the system evolves onto
the shelf, the depression bore begins to break up into a nonlinear wave train, while
the following wave packet disperses and decreases in amplitude. Importantly we note
that although the leading small amplitude bore has a similar amplitude to the EXP3,
compare figures 8 and 10, the following wave packet is noticeably larger in this latter
case. We interpret this difference as being due to the relatively larger amplitude and
less dispersed structure of the mode-2 wave as it approaches the transition point. The
results of the energy budget for these simulations are shown in figure 9. In EXP3,
only 2.0 % of the lost energy 0.92 TJ by the mode-2 waves flows into mode-1 waves,
while in the EXP4, the conversion rate can reach 15.9 % (the mode-2 waves lose
4.14 TJ and 0.66 TJ is obtained by the mode-1 waves). Again, as in the EXPI,
EXP2 there would seem to be a loss of energy to the effects of wave breaking and
turbulence.

6. Summary and discussion

As discussed above in the introduction, § 1, second mode internal solitary waves
have been observed in the coastal ocean, see Yang et al. (2009, 2010), Shroyer et al.
(2010), Liu et al. (2013), and are now receiving more attention. However, in situ data
of mode-2 waves captured by a limited number of deployed moorings is not able
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FIGURE 10. (Colour online) The MITgem simulation of the EXP4 in a three-layer to
two-layer fluid system. The layout and coloured coding are the same as in figure 8 except
that two insets are added onto the last two panels (c¢) which are snapshots bounded by
the corresponding dark dashed rectangle.

to show their comprehensive features, and so here we use analyses and simulations
to study their evolution. In the ocean, mode-2 waves, like their more common
counterparts, mode-1 waves, usually propagate from deep water to shallow water,
and in this shoaling process, the deformation, dispersive decay and energy exchange
occurs, which may play a significant role in mixing with biological implications. In
this paper we have presented a study on the shoaling of mode-2 internal solitary
waves over a slope-shelf topography, using two complementary methodologies, that
is, the vKdV theory and MITgcm simulations.

We use the simplest configuration which can support a mode-2 wave, namely a
three-layer fluid system, as then the number of fluid parameters is quite small. Given
the density field, the topography determines two scenarios. In each an initial mode-2
internal solitary wave propagates onto a slope. In the first case, a three-layer to a
three-layer fluid system is considered on a shelf-slope configuration. Depending on
the variation of the quadratic nonlinear coefficient w (v), this was further classified
into two cases. When p changes sign from positive to negative at a certain critical
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point on the slope, the amplitude of the mode-2 wave decreases as it propagates up
the slope. Then in the vicinity of the critical point, the wave generates a trailing
shelf of the opposite polarity. After passing through this critical point and further
onto the shelf, the incident mode-2 wave is replaced by a concave solitary wave train,
riding on a convex rarefaction wave. This case is contrasted with that when p does
not pass through zero, and there is no such critical point, instead the wave system
can move onto the shelf with a reduced, but always positive ©, and thereafter the
leading convex solitary wave continues steadily, followed by a small amplitude solitary
wave train riding on a concave pedestal. Both these cases are analogous to the case
of a mode-1 internal solitary wave propagating up a slope, see Grimshaw (2006),
Grimshaw et al. (2007, 2010) for instance. The MITgcm simulations have a good
agreement with the vKdV theory, both qualitatively and quantitatively. Importantly
the MITgcm simulation can also capture the generation of mode-1 waves, which is,
by construction, beyond the capability of the vKdV theory. The implementation of a
mode decomposition technique facilitates the identification of a small energy transfer
from the mode-2 wave to mode-1 waves, mostly slaved to the mode-2 wave, but with
a small component propagating ahead of the mode-2 wave.

The other set-up we have considered is when the bottom layer vanishes at a
transition point on the slope, where /i; =0, thereby forming a three-layer to two-layer
fluid system. Since the vKdV theory eliminates the possibility of the coupling
of mode-2 waves and mode-1 waves, this problem can only be examined using
the MITgcm simulations. As expected, the behaviour of the mode-2 wave in the
three-layer system is quite similar to that described above, that is, characterised by a
decreasing amplitude of the mode-2 wave, a train of the slaved mode-1 waves and
some smaller freely propagating mode-1 waves ahead. Then after the transition from
a three-layer to a two-layer system, only small amplitude mode-1 waves continue
up the slope and onto the shelf. Nevertheless, the configurations in a three-layer
system have a key role in the evolution of the waves even after they propagate into
a two-layer system. If a polarity reversal occurs for the mode-2 wave before the
transition, then after passing through that critical point (where p = 0), a system of
a convex rarefaction wave carrying a solitary wave train is formed, see figure 3.
Afterwards this combination transmits to a two-layer system, where mode-2 waves
cannot technically be supported and only a mode-1 wave can exist. In the two-layer
system, the original leading convex wave fully breaks, and part of the energy goes
to a mode-1 bore, which further develops into a elevation mode-1 internal solitary
wave, followed by a dispersive wave train. For the case without a polarity change
before the transition, qualitatively there is similar dynamics. But, it is noticeable that,
after the transition from a three-layer system to a two-layer system, the consequent
following wave train is more organised, and has a relatively large amplitude, which
indicates a much higher energy transfer rate, 15.9% versus 2.0% as revealed from
the energy budget.

As we noted in the introduction, § 1, Guo & Chen (2012) used the MITgcm model
to simulate a large amplitude second mode internal solitary wave propagating over
a slope-shelf topography, with a set-up close to a realistic situation in the South
China Sea. Their model had a continuous stratification, and allowed mode-2 waves
to exist at all depths, and in that respect is comparable with our three-layer to
three-layer configuration. Also, their incident mode-2 wave was a concave wave
with a polarity change on the slope just before the shelf break. Nevertheless,
there are some similarities with the present results for our case of a three-layer
to three-layer configuration with a polarity change, although they did not perform,
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as here, a quantitative modal analysis with a theoretical explanation. Their results show
the incident mode-2 wave deforming at the polarity change as expected into a mode-2
concave rarefaction wave and trailing wave packet, together with the generation of
a very small amplitude mode-1 wave, see their figure 7 for instance. The only other
related analytical work on shoaling mode-2 waves that we are aware of is the recent
numerical study by Terletska et al. (2016) of the impact of a mode-2 internal solitary
wave onto a vertical step. As in the present study, the fluid configuration was in three
layers in the deep water before the step, and their study had also three layers after the
step. But the essential difference from the present study in that there was no shoaling
region over a slope, and so the transformation of the incident mode-2 wave at the
step is abrupt. Consequently, there is some reflection, but otherwise there is some
similarity with our study, in that it was found that on the shelf the incident mode-2
internal solitary wave broke up into nonlinear mode-2 wave packets and a mode-1
wave either slaved or propagating ahead. However, we note that in their simulations
the waves generated on the shelf were quite short relative to the lower-layer depth,
and hence it was not clear that the long-wave theory used here could be applied.

In conclusion, these studies and our present study suggest that mode-2 internal
solitary waves propagate up a slope in much the same manner as mode-1 internal
solitary waves, as one would expect since each can be described by a vKdV
equation, and the main difference is that in the process, some small but significant
mode-1 waves can be generated, presenting a rather complex wave field on the
shelf. Importantly, this topographic generation of long-wavelength mode-1 waves is
essentially different from the generation of short-wavelength mode-1 waves, which
can occur on a constant depth and is due to a long—short wave resonance, see Akylas
& Grimshaw (1992). However, such co-propagating mode-1 waves are typically
exponentially small in the wave amplitude, and we suggest that, unlike the present
topographically generated mode-1 waves, are unlikely to be readily observable.
Finally, it is pertinent here to note that Stastna & Peltier (2005) found in numerical
simulations that mode-2 waves are more likely to decay to wave breaking than by
mode-1 radiation.
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