MEAN-VALUES OF THE RIEMANN ZETA-FUNCTION
K. SOUNDARARAJAN
§1. Introduction. Let
2T
L(T)= j |¢G+ir)|*dt.

Asymptotic formulae for I,(T') have been established for the cases k=1 (Hardy-
Littlewood, see [13]) and k=2 (Ingham, see [13]). However, the asymptotic
behaviour of I,(T) remains unknown for any other value of k (except the
trivial k=0, of course). Heath-Brown, [6], and Ramachandra, [10], [11],
independently established that, assuming the Riemann Hypothesis, when
0<k<2, I,(T) is of the order T(log T Y. One believes that this is the right
order of magnitude for I,(T) even when k =2 and indeed expects an asymptotic
formula of the form

L(T)=(Ce+o0(1))T(log T)¥,

where C, is a suitable positive constant. It is not clear what the value of C,
should be.
In [3], Conrey and Ghosh showed that the Riemann Hypothesis implies

I(T)=(1+0(1)T ¥ fi—’c—:})=(ck+o(l))T(log T)¥

ngT

where

. 1 H{(l—l) i(k(k+1)..r;ﬂ(k+m—1))p_m}

TR+ p P/ mzo

The dependency on the Riemann Hypothesis was removed by Balasubramanian
and Ramachandra, [2], in the special case where k is an integer. In a later
paper, [4], Conrey and Ghosh used results of Balasubramanian, Conrey and
Heath-Brown, [1], to improve this lower bound. In this paper we obtain further
improvements on the results of Conrey and Ghosh. In the case when k>3 is
an integer our results double the previous bounds and a comparable (although
smaller) improvement is obtained in the non-integral cases as well. This work
is motivated and inspired by Ramachandra’s proof of the fourth power
moment, [9].
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Let k>3 be an integer. Let N= T? where 0€(0, 1) will be fixed later. Let
r=k—1and

As, P)= d,(n)P(logsn/log N)

nsN

where s=o +it is a complex variable and P is a polynomial which will be
chosen appropriately. The lower bounds of [4] were obtained by analysing the
right-hand side of the inequality
1/2+2T
1 -
0<; f 1$()I*157(s) — As, P)|%ds.
1/2+iT
We ‘twist’ the right-hand side and consider
1/2+2iT
0< J IS8 (s) — As, P)— 2" (5)4,(1 —s, P)|’ds
1/24iT

where x(s) is the factor arising from the asymmetric functional equation

g =x(s)¢(1-s).

THEOREM 1.1. Suppose 0 <} when k=3. Put

1/2+2iT

1 2,7 2
J4=; j ICOI"x (9)4,(1 =, P)°ds.

1/2+iT
With the above notations the bound
J=0(T"' %)

holds, unconditionally when k=3 and on the assumption of the Lindelof
Hypothesis when k =4, for arbitrary fixed £>0.

CoROLLARY 1.2. The lower bound
L;=(20-26 +0(1))c3T(log T)®

holds unconditionally. If the Lindelof Hypothesis is assumed then the following
asymptotic lower bounds for F,=1,/(c;,T(log )<, (4<k<6) hold:

F,>410, Fs>6484, F¢>56260.

Observe that Corollary 1.2 improves Corollary 1 of [4] by a factor of 2.
Conrey and Ghosh also obtain results assuming the validity of their Theorems
1 and 2 in a wider range of 8. This assumption is roughly of the same strength
as the conjecture in [1]. Upon making this assumption we obtain corresponding
improvements since our Theorem 1.1 is valid for all 6 <1 when k>4.
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COROLLARY 1.3. Assuming the Lindelof Hypothesis and that Theorems 1
and 2 of Conrey and Ghosh, [4], remain valid for any 6 <1 the improved asymp-
totic lower bounds

1,>43056c,T(log T)'®;  Is>96877600csT(log T')*
hold. Also as k—
I =2c(ek/2)%* 3¢, T(log T)*

where c=1/(e./2re).

If k=7 then the assumption that 6 <1 is permissible is necessary to obtain
improvements over the bound of Conrey and Ghosh, [3]. This is a consequence
of the 6%, present in our Lemma 2.3, which rapidly goes to 0 as k becomes
large. However the results of Conrey and Ghosh, [3], can be improved uncon-
ditionally by considering

1/2+2iT
j 1£5(s) — Ails, P) = x*(s)Au(1 =5, P)|’ds.
1/2+iT
Let
1/2+42iT
K== f 24(9) A1~ s, P)ds.
ll/2+iT

THEOREM 1.4. If k is an integer and 0 <1 then, unconditionally,

|Kd=0(T"™).

Theorem 1.4 may be proved along the exact same lines as Theorem 1.1.
As a consequence we obtain the aforementioned improvement.

CoROLLARY 1.5. If k=2 is an integer then

L= (2+o0(1))e . T(log T) .

Note that Corollary 1.5 is independent of any hypothesis. This is a conse-
quence of the results of [2] which remove the dependency upon the Riemann
Hypothesis in [3].

We now turn to the case when k is not an integer. The difficulties in this
case arise from the failure of the equality

40)

SR

when k is not an integer.
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THEOREM 1.6. Suppose k> 2 and assume the truth of the Riemann Hypoth-
esis. Put

(r+1)log T—2log (xy/z))
(r—-1)log T—2logz

-— + —_
+r (0— log y) log ((r 0)log T+2logz—log x>.
log T, (r—=1-0)log T—logz

H(x,y,z)=log (

Then, if 8 <min (1/2, (r—1)/2),

1/2+2T
L= 2&& 1-s, P)d
| 4| J‘ |§(S)‘ ;r(l_s) ( s ) d
1/2+iT
SMMZ’""— 1] ¥ 2"—b—”— H(u, v, (u, v)),
T uo<T? [u’ U]

where b,=d.(u)P(log u/(6 log T)).

CoROLLARY 1.7. Put

r+1-260 r
0(x) = P(x)(log (m_—zg)+ r(9-0x) log (,_ = 29))

and

1 1

G(x)= J r(z—x)" "' P(z)dz Jr(z -x)7'0(2)dz |.

Then, if 6 <min (1/2, (r—1)/2),

1

8 'T(log T)¥ Iy’z_'G(y)dy )

0

Tk*+1)
STr+ DI+ 1)

|/l

CoroLLARY 1.8. If <1 is permissible in Theorems 1 and 2 of Conrey and
Ghosh, [4], and in our Theorem 1.6, then, as k-0,

L= (2 + 0(%)) c(ek/2)* 3¢, T(log TY*
where, as in Corollary 1.3, c=1/(e\/2ne).

As in the integral case, when k becomes large it is necessary to assume the
0 =1 conjectures to obtain improvements upon the bound of [3]. Again, as in
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the integral case, considering

1/2+2T ,
1 ey _ £ (s) _
O<1 J IC (S) Ak(S, P) gk(l—s) Ak(l S, P) ds
1/2+iT

leads to improvements that are independent of the 6 =1 conjectures.

THEOREM 1.9. Suppose k is not an integer and assume the validity of the
Riemann Hypothesis. Then, if @ <min (1, k/2),

1/2+ 2T
k
| K| = f f () A(1—s, P)%ds
F(1—s)
1/2+iT
<l 1] _.’I_‘( di(n)’P(log n/(6 log T))* log T
= T\ p<rt n(klog T—2logn)
2 2 —
%y d(n)*P(log n/(6 log T)) " ( klog T—2logn ))
nsT? n (k—6)logT—logn

COROLLARY 1.10. Put 0=3k—e if k<2 and 0=1—¢ if k>2. Take
-1
P(x)=<l+|e2””‘—1](~——~1-—+klog<£—zgi—>>> .
2n(k—26x) =« k—6-0x

1

Li(x) = (1+0(1))2c6T(log T)¥ f K 1P(x)dx |.

0

Then

As k— oo,

1k>(2+ 0(%)) eT(log TH*.

Theorem 1.9 may be proved using exactly the same techniques as the proof
of Theorem 1.6. If 1 <k <2, Conrey and Ghosh, [4], have explicit lower bounds
for I,(T'). If the 8= 1 conjectures are not assumed then these bounds are never
better than

I(T)=>1-7¢,T(log T)¥.
It is evident that our Corollary 1.10 gives
I(T)> (2~ &)aT(log T)*

provided k is sufficiently close to 2. In practice, this improvement is noticeable
only when k>1-95. It is possible to refine the bounds of Theorems 1.6 and
1.9 by moving the line of integration to 3+ c/log T (instead of just u >3) with
an appropriately chosen ¢. This would enable us to take longer Dirichlet
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polynomials 4, when k<2 (in Theorem 1.9) or r<2 (in Theorem 1.6).
However, the improvements arising from these refinements do not justify the
extra efforts required.

We often write 4 <B when we mean A< (1+0(1))B. This should not be
cause for confusion.

I am grateful to Professors H. L. Montgomery and T. D. Wooley for
encouragement.

§2. Some Lemmata. Let

1/2+2iT
1
J2=; j 1E(I*¢(s)A,(1~ s, P)ds
1/2+iT
and
1/2+2iT
_1 2 2
Js—i |$($)|7| A(s, P)|"ds.
1/2+iT

LEMMA 2.1.  With the above notation
L>24RJ,—2J,—2RJ.,.
Proof. Observe that

1/242T
1 r
0 S; f (OIS (5) = Adls, PY— 1" (5)4,(1 =5, P)|’ds
1/2+iT
1/2+2iT 1/2+2iT
1 1 .
=2 f ¢ (9)|*ds — 4R R J ICOIC(s)A,(1 —s, P)ds
1/2+iT 1/2+iT
1/2+2iT 1/2+2T
2 1
+- J |¢(5)A,(s, P)|ds+2R ~ f 1E()%x ()41 s, P)*ds.
i i
1/2+iT 1/2+iT

Rearranging we obtain the lemma.

Let
1/2+2T
1
K;=- J $(s)A(1 —s, P)ds,
l
1/2+iT
1/2+2iT
1
K3=_, j ’Ak(sa P)lzds,
3
1/2+iT
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and
1/2+ 2T

_1 gk(s) . 2
K4—i f Ck(l—s)Ak(l s, P)ds.

1/2+iT

LEMMA 2.2. With the above notation

I(T)24RK,—2K;—2RK,.
Proof. The proof is identical to the proof of Lemma 2.1.

LEMMA 2.3. Let
h(a)= f(ﬁ —a)'P(B)dp

and let »,F, denote the usual hypergeometric function. Then, if 6 <3,

Ckr(k2 + 1)

— 22
=(1+0(1))T(log N) TS

1

Xja ( (@) +2rh(a)h’(a))da

0

and

D+ 1)87" "

Jo=(1+0(1))T(log N) T(r+2)T (P +r)

1

x JP(oz)a"”"2 JFi(=r,—r—1,K*=r—1, —af)da.

0
Proof. See Theorems 1 and 2 of Conrey and Ghosh, [4].

LEMMA 2.4. The following asymptotic formulae hold.
2
—(+o(IT ¥ di(n)P(log n/(6 log T))

n<T? n

and

2
=(1+o(I)T ¥ di(m)P(logn/(0log T))

n<T n

Proof. This is easily obtained by slightly modifying the results in Conrey
and Ghosh, [3].
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LEMMA 2.5. Let x, T> 1 and p= 8 + iy run over the complex zeros of {(s).
Then

Y xf=- 21 A(x)+ O(x log (2x) log log (3x) + x log 2T)
n

T<y<2T
+ O(log X min (T, i)+min (log T, Tlog T))
{x) log x

where {x) is the distance from x to the nearest prime power other than x.

Proof. This is Theorem 1 of Gonek, {5].

LEMMA 2.6. Let r=0 and h=]_[p p" be a positive integer. Define

D,(h, )= Mﬂh ((l*p”)' E dr(p'"”"’)p"'"s)

m=0

so that when Rs> 1,

o0 A h
Dk )= T .

Then

d(hm)_D,(h Dllogx) | o p

nex N rer+1) T
say, where
Y |E(r, )| = O(H(log H)'™1).

h<H

Also

e T +(F+1)H)
')

x(log x)” 1.

2
D V0™ _ 1 4 o(1y)
n

n<x

Proof. These results are easily obtainable via the results of Selberg, [12].
They may also be found as Lemmata 4 and 5, and equations (36) and (37) of
Conrey and Ghosh, {4].

§3. Proof of Theorem 1.1 and its Corollaries. We first treat the case k>4
and when the Lindel6f Hypothesis is assumed. By Cauchy’s theorem

u+2T u+iT u+2T
1
Ja=~ f+ J— f $(9)x(s) ™' 4,(1-s, P)ds
i
u+iT 1/24iT  1/2+2iT

where y >4 is some constant. Since |4,(1—s, P)|=O(T?“*), |x(3+if)| =1
and |{(s)] = O(T®) by the Lindelof Hypothesis, the horizontal integrals are
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bounded by O(T?*%)=0(T""*). Since |y (s)| = O(T"/>*~?) it follows that the
integral on the y-line is bounded by
u+2T
o) T~ DU/2mme J |4,(1=s, P)|%ds |.
u+iT

By the mean-value theorem for Dirichlet polynomials, this is

_ _ dX(n)P*(log n/log N) _ -

1+(r—1)(1/2—u)+¢ r _ 1+(r—1-20)(1/2~p)+ &

ofpreo-non-wes g HOPUHIOBI)_r1co-smmi-ny
n<N
=O(T'™%).
It remains now to treat the case k=3 and #<3. Again, by Cauchy’s
theorem,
M tif u+ity u+ity

Ja=- f*‘ J - J S’ " ()41 —s, P)’ds
u+itg 1/2+irg  1/2+in
I 2T
+0| 1" f+f |£(3 +ir)|dt
T fn

where toe(T+T'?*5, T+ T'?7%) and t,eQT—T"* %, 2T—T'***) will be
fixed later. Since the mean-square of the {-function is known with an error
O(T'* ) (see [13]) the error term in the above relation is

O(T?* (tg— T+2T—1,)' "5y =O(T"'~*).

Also the integral on the pu-line is easily seen, as before, to be small.

It suffices to estimate the horizontal integrals. We choose f, so that

M+t
$($)x " ()41~ s, P)’ds
1/2+itg
T+7TV2-¢ »
_TE 2\ 2 enr—1 . 2
=0\ 7z [{(a+it)y(c+it) " '4,(1- o —it, P)|dodt
T+T'3%¢ 12
T+ T1/2-¢ m
=0 # J T290‘+(r-—1)(l/2~(7)|§(o_+l-t)I2do_dt
T+T'3%¢ 12
H
=0 Te szgU+(r_l)(l/2_U)dO' ZO(T‘/Z).
1/2

A similar bound holds for the integral on it,. This completes the proof.
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To prove Corollaries 1.2 and 1.3, we use Theorem 1.1 with Lemma 2.1 to

see that
1/2+42iT 1/2+2iT
1 2
I(T )24‘3; f 1C()*¢()A4,(1 =5, P)d: — j 1£(5)A,(s, P)|’ds.
1/2+iT 1/2+iT

The bounds of Conrey and Ghosh, [4], were based on the inequality
1/2+2iT 1/2+2iT
1
I(T) 229‘% j 11X (94,1 —s, P)ds—; f 1$(s)A(s, P)|*ds.
1/2+iT 1/2+iT

Thus making the same choice of P which leads to their Corollaries 1 and 2 we
obtain our improved Corollaries 1.2 and 1.3.

§4. Proof of Theorem 1.6 and its Corollaries. Let S(1)=1/m arg { (3 +i)
and N(?) denote the number of zeros of {(s) with ordinates between 0 and .

Then
rel o

gr(? +l.t)=e2rrirS(t)=e2m'rN(l)xr(% +it).

')
It follows that

Vi1
is| T e J 6 +in*x"(z + i) A3 — it, PY’dt
2Tzyi2T

vt

where 0<y,<y,< ... are the ordinates of the zeros of the {-function in the
upper half-plane.
Let

Yi+1
Ja(¥i, Yie1) = f 13 +it))*y (3 + it)A,(3 — it, P)%dLt.
Yi

Let u >3 be some fixed constant and put
y
Ja(x, )= JC(# +in{ (1 - p~—in)y (u+inA(1 - p —it, PY’dr
and

Ja(x)= J L(o+ix)(1 -0 —ix)y' (o +ix)A,(1 — o —ix, P)do.

1/2
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Using Cauchy’s theorem it is easily seen that
iJl(ve, Yie) =ida(ye, Y1) FIa(¥) = Ja(Yie1).

Thus
FAES D) 92””1-74(71, Yis1)
2T2y=T
< Z eZm'rIJ“(,y[’ Yis l) + |e2n'ir - ll Z e2nirIJ42(y[)
2T'zvi2T 2Tz2yvi2T
u+2T
< j [27() A1 =5, PY*{(s){ (1 —5)ds| + e ~1]
u+iT
I
x Y (e+ivd{(1—o—iy)x'(c+iy)d(1—o~iy, P)’|do
2Tzy2T
1/2
=L,+|e*™" —1|L,,
say.
Clearly
2T

L, gTV/?~#-hre f |4,(1—u —it, P)|%dt
T

<T(1/2—u)(r-—1)+sx Tx T(2p~1)9< Tl—s,

if 6<3(r—1). Next,

M
Lzsf T("'“'/Z"”( ) sA,(l—c—iy,,P)c(ow,)P)da
2T2y2T
1/2
u

= j T¢=D02=9K(g)do,

1/2

say. By the approximate functional equation (see [13])
1 1 -
Lo+in= ¥ — + zlo+i) T == + O D).
n</t/2n n<. Jt/2n

Hence
X(0)=Y |4(1- o —iy;, P){ (o +iy)|*

i
2
) 1 x(o+iy)
Ar(l—a—”/ls P)( 2 ( cr+iy/+ I—o~iy
n</T/2n n n

=2

<2(X1(0) + Xy(0)),

https://doi.org/10.1112/50025579300011438 Published online by Cambridge University Press


https://doi.org/10.1112/S0025579300011438

MEAN-VALUES OF THE ZETA-FUNCTION 169

where
i 2
X(o)=Y|4(1-o=iy,P) ¥ —p
v n< T2z It
and
1 2
X(o)=Y |A(1-o—iy, P)x(o+iy) ¥ ——= |-
v n</T72n 1
For brevity, write
A(s, P)= Y b,n"
nsTa
and
A(l-c—it,P) Y n = Y c.(o)n”
n</T/2x n<T?* 2 22
where
c(0)= y bu’ v =n"° ¥ b,
uv=n uln
usT® o< /T/2n n/2rx/T<u<T®
Thus,
2nX, (o) 2 m\”
ol= Y em(0)en(o) Y | —
TlOgT TlOg Tm,nsT‘“'/z/\/z—n r<y<g2T \ 1

<(+4o(l)) T cl0)+2
n<T? V2 foy

From Lemma 2.5 and the Riemann Hypothesis we see that

iy
T
T<y<2T \ R 2 m n

+0<\/E log> T+ \/mlog T, y/nlog T )
n Jn<m/ny  /mlog (m/n)

Y cnl0)e(d) T (%) .

Observe that
M
f em(T)e )T~ P20 G

1/2
u

=1y, \1/2-¢
- 5 5 b,b, J(T nm) do

uln vlm A/ nm (uv)z
n/2n/T<u< T’ m\/msusTe 172
(1+0(1))b.b,

Ry Jnm((r—1) log T+log (nm) —2 log (uv))’
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since 0 < 3(r—1). In particular

r-11/2-0) g o _ dk(n)dk(m))
j cm(0)e )T do O(————\/n_m. .

172

From this estimate and our earlier estimate for Y, _,.(m/n)’ 7, it easily
follows that

m
f TC-D02=9x (5)do
/2

1

u
J‘ (r 1)1/2-0) (log T z cn(o_)Z
A n<TOt 2 fig

+2 ) cm(o)c,,(a)\/ZA i
To+‘/2/\/2_7r>m>n m

Now
H
J‘ T(r—l)(l/z—a) Z cn(o_)zdo_
1/2 n<T?* V2 fon
< 5 (1+0(1))b.b,
up<T? {(r—1) log T+2log n—2log (uv)
n<./Tuv/2x,[u,v]|n
<7y b,b,(u, v) log ( rlog T—log (uv) )
woeT®  2uv (r—1)log T—2log (u, v)
Next,

nsm

u 1/2
jT(r nQ/2-0) 3 cn(c)cm(")< ) A(%)dc
/2

1

H
-x82 3 bb, 3 f re-oa=o) W7
P p ,vSTo uln, v|np (n p)
nsﬁmin (u,0/p) 172
M
=382 5 bb, 3 f po-boo W7 4
P P u,vs bad uln, v|np (n P)
n$ﬁmin (u,v/p) 1/2
_yplogr o s (L+o(1))
> P ous<rd  wn((r—1)log T+log (n°p) —2 log (uv))
=Y, +7Y,
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where Y, corresponds to those terms for which ptv and Y, to those for which

plv.
Putting 5= h(u, v, p) =min (, v/p) <Juv/p, we see that,

1+o(1
r<s e’ 3§ hb 3 o0
woeT? waolin 7((r—1)log T+log (n'p)—2 log (uv))
nshﬁ
logp . b,b, 1+0(1)

D ue [U, l)] n</Th/(u,0] n((r- 1) IOg T-2 log (u’ U) +10g (P”z))

<(+o(l)) ¥ l°gl’z bubs (rlogTﬂog(h ') —2 log (uv) )
p<t® P uwp2u, 0] (r—1)log T—21log (u, v) +logp

<E——
4

rlog T—log (uv) )

b.b,
<(9+o(1))logTZ 2u, 0] Og((r_.l)]og T—-2log (u, v)/

Further
logp (1+0(1))b,b,
Y>< Z Z Z _ 2 f_
usTw<tp e N((r—1)log T+log (n'p) — 2 log (uvp))
n<min (u,v)ﬁ
SZIng b,bp, 1+0(1)

rp P ouv [ua U] nsu\/;'/[u,u] n((r_ 1) lOg T+10g (nZ) -2 log (u9 U) —Ing)

szlogbz b,byy o ( rlog T—2logv—-logp )
% p m2uol - \(r—1)log T—2log (4, v)~logp

( (r—8)logT—logv )
(r—1—0)log T—log (u, v)/

]

Piecing these results together and using 6 <min (% ,3(r— 1)) we see that

H
fT(’"”“/z“’)X.(cr)dos Tlog TZ b,b, <log< r log T—log (uv) )
2 wo L1, V] (r—1log T—-2log (u, v)

+r<0—10gv)log( (r-0)logT-logv ))
log T, (r—1-0)log T—log (u, v)

1/2

Similarly, we see that,

2 rlog T—log (u, v)

u

J FO-D02-0% (Vdo < Tlog T _ b,b, (10 ((r+ 1) log T—2log [uv])
2 L, lu, vl

/2

1

— + J—
+r<0— log U)log ((r 0)log T+2log (u, v) —log u))
log T (r—0)logT—logv
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Thus

u
fT(r—l)(l/z—"')(X](O')+X2(G))da

/2

7l'L2 < 2r
TlogT TlogT
1

<5 b,b, <1og ((r+ 1) log T—2 log [, v])
wo [Us V] (r—DlogT—2log(u,v)

+r(0— log v)lo ((r— 0) log T+ 2 log (u, v) — log u))
log T (r—1—-0)log T—log (u, v)

<me
AR

H(u, v, (u, v)).

This proves Theorem 1.6. To obtain Corollary 1.7, note that if 4, v< T, then

r+1-26 log v r
H(u, v, (4, v)) <log (——-—r_ 1 _20)+r<9—lo: T) log (——r_ 1 _29).

Hence

+ J—
il v bub, (log(r 1 20)+r<0_logv>log< r ))
Tlog T ,.<r¢[u, v] r—1-—20 log T r—1-20
buwbvw
=y Zuw Dow

ws ad U Te/w uvw
(u,v)=1

r+1-—20 log wo r
<loe (50 o e ()
r—1-260 log T r—1-26

S d)) By Borw

uvw

XX

w<T? uosT?w ( dlud)v

r+1-240 log wo r
X|log| ————|+r[6— log| ———
r—1-26 log T r—1-20

Z Z /1 (d) z budw b vdw

2
weT? ds1%w dw wosTwa UV

r+1-26 log wdv r
X (log (———)+r<9—- >log< ))
r—1-26 log T r—1-280
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Using partial summation in conjunction with Lemma 2.6, we see

T bt boaw (log (r+ 1- 20)+ r( 0 log wdv) log ( r ))
wo<TOwd UV r—1-20 log T r—1-20

T9/wd
2 r—1
SDrz(wd, 1) f r(logy) ™" , (log (ydW)) p
r“(r+1) y BlogT

1
T9/wd
r—1
y fr(logy) Q(log (ydw)) i
y OlogT

1

By an obvious change of variables this is
1
2 r—1
- Drz(Wd, 1) (0 log T)Zr J‘ r(z . log (dW)> P(z)dz
I'(r+1) BlogT

log (dw)/(8 log T')
1
r—1
x f r(z - M) 0(2)dz
f@logT

log (aw)/(8 log T)

2
_ G(log (wd)) Di(wd, 1) 0106 7y,
BlogT) I'“(r+1)

Thus

nL: (6 log > u(d)D,(wd, 1)* G(log (dw))
Tlog T~ TXr+1) W<roacrom — d'w 6log T
_(0log T)” o Di(n,1)’p(n) G( log )
T(r+1) .55 n’ Olog T/
Corollary 1.7 follows immediately by partial summation and Lemma 2.6.

Corollary 1.8 is a simple consequence of Corollary 1.7 and Corollary 2 of
Conrey and Ghosh, [4].
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