
MEAN-VALUES OF THE RIEMANN ZETA-FUNCTION

K. SOUNDARARAJAN

§1. Introduction. Let

IT

Asymptotic formulae for Ik{T) have been established for the cases k=\ (Hardy-
Littlewood, see [13]) and k = 2 (Ingham, see [13]). However, the asymptotic
behaviour of Ik(T) remains unknown for any other value of k (except the
trivial k = 0, of course). Heath-Brown, [6], and Ramachandra, [10], [11],
independently established that, assuming the Riemann Hypothesis, when
0<A:<2, Ik(T) is of the order r(log T)k\ One believes that this is the right
order of magnitude for 4(7") even when k = 2 and indeed expects an asymptotic
formula of the form

where Ck is a suitable positive constant. It is not clear what the value of Ck

should be.
In [3], Conrey and Ghosh showed that the Riemann Hypothesis implies

where

" (k(k+\)...(k + m-

The dependency on the Riemann Hypothesis was removed by Balasubramanian
and Ramachandra, [2], in the special case where k is an integer. In a later
paper, [4], Conrey and Ghosh used results of Balasubramanian, Conrey and
Heath-Brown, [1], to improve this lower bound. In this paper we obtain further
improvements on the results of Conrey and Ghosh. In the case when k ^3 is
an integer our results double the previous bounds and a comparable (although
smaller) improvement is obtained in the non-integral cases as well. This work
is motivated and inspired by Ramachandra's proof of the fourth power
moment, [9].
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Let k 5= 3 be an integer. Let N- T6 where 0e(O, 1) will be fixed later. Let
r=k— 1 and

Ar(s,P)= X ;
nUN n

where s = cr + fr is a complex variable and P is a polynomial which will be
chosen appropriately. The lower bounds of [4] were obtained by analysing the
right-hand side of the inequality

1/2 + 2/7"

0^-. I \as)\2\?(s)-Ms,F)\2ds.
1/2 + iT

We 'twist' the right-hand side and consider
1/2 + 2IT

\as)\2\C(s)-Ar(s,P)-X
r(s)Ar(l-s,P)\2ds

1/2 + iT

where x(s) is the factor arising from the asymmetric functional equation

THEOREM 1.1. Suppose 6<\ when k = 3. Put
1/2 + 2IT

With the above notations the bound

holds, unconditionally when k=3 and on the assumption of the Lindelof
Hypothesis when k~^4,for arbitrary fixed £>0.

COROLLARY 1.2. The lower bound

h > (20-26 + o(l))c3r(logr)9

holds unconditionally. If the Lindelof Hypothesis is assumed then the following
k \ (4^k^

^ 56260.

asymptotic lower bounds for Fk = Ik/{ckT(\og T)kl), (4<A:^6) hold:

Observe that Corollary 1.2 improves Corollary 1 of [4] by a factor of 2.
Conrey and Ghosh also obtain results assuming the validity of their Theorems
1 and 2 in a wider range of 9. This assumption is roughly of the same strength
as the conjecture in [1]. Upon making this assumption we obtain corresponding
improvements since our Theorem 1.1 is valid for all 0< 1 when
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COROLLARY 1.3. Assuming the LindelofHypothesis and that Theorems 1
and 2 of Conrey and Ghosh, [4], remain valid for any 9<\ the improved asymp-
totic lower bounds

74>43056c4r(log T)16; /5^96877600c5r(log T)2S

hold. Also as k->co

where c

If k ̂  7 then the assumption that 8 < 1 is permissible is necessary to obtain
improvements over the bound of Conrey and Ghosh, [3]. This is a consequence
of the 0k2, present in our Lemma 2.3, which rapidly goes to 0 as k becomes
large. However the results of Conrey and Ghosh, [3], can be improved uncon-
ditionally by considering

2 + 2<T

K\s) -Ak(s, P)-X\s)Ak(l-s, P)\2ds.
1/2 + iT

Let
1/2 + 2IT

X\s)Ak(\-s,Pfds.
1/2 + iT

THEOREM 1.4. If k is an integer and 6<\ then, unconditionally,

Theorem 1.4 may be proved along the exact same lines as Theorem 1.1.
As a consequence we obtain the aforementioned improvement.

COROLLARY 1.5. Ifk^l is an integer then

Note that Corollary 1.5 is independent of any hypothesis. This is a conse-
quence of the results of [2] which remove the dependency upon the Riemann
Hypothesis in [3].

We now turn to the case when k is not an integer. The difficulties in this
case arise from the failure of the equality

when k is not an integer.
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THEOREM 1.6. Suppose k>2 and assume the truth of the Riemann Hypoth-
esis. Put

( r - l ) l o g r - 2 1 o g z

la lo&y\, ((r-6)logT+2logz-logxiff— 11«~'
r\~ logT/""\ ( r -1 -0 ) log T-log z

Then, if 6 <min (1/2, ( r- l)/2),

1/2 + 21T

I
\/2 + iT

u,v<Te[u, v]

where bu = dr(u)P(\og u/(0 log T)).

COROLLARY 1.7. Put

\ } r Z X Zj \ } r Z

T2(r+l)r(r2+l) • ( ! •
\ 0

COROLLARY 1.8. If 6 < 1 is permissible in Theorems 1
Ghosh, [4], anrf in owr Theorem 1.6, ?/;e«, a.? k—*co,

h>\2 + o(^j\c(ek/2)2k-3/2ckT(log Tf

where, as in Corollary 1.3, c= \/(e

of Conrey and

As in the integral case, when fc becomes large it is necessary to assume the
9 = 1 conjectures to obtain improvements upon the bound of [3]. Again, as in
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the integral case, considering
1/2+21T

7 J ?(s)-Ak(s,P)-- Ak{\-s,P) ds

1/2 + iT

leads to improvements that are independent of the 0 = 1 conjectures.

THEOREM 1.9. Suppose k is not an integer and assume the validity of the
Riemann Hypothesis. Then, if 0< min (1, k/2),

1/2 + 2IT

5 ^ Ak(\-s,P)2ds
1/2 + IT

dk(n)2P(log n/(9 log T)f log T

JL-r L\

J
to*-H- I n(k\ogT-2\ogn)

{o

Og

k log T- 2 log n

COROLLARY 1.10.

/»(*) = (

Then

\(k-0)logT-logn

•-^k- s if k^2 and 6 = 1 - e if k^2. Take

1 A: / k-20x
2x(k-20x) + n; Og\k-0-0x.

Ik(x)>(! + o(l))2ck9
k2T(log Tf (i'

\ o

lP(x)dx .

As k-*co,

Theorem 1.9 may be proved using exactly the same techniques as the proof
of Theorem 1.6. If 1 < k < 2, Conrey and Ghosh, [4], have explicit lower bounds
for Ik(T). If the 0 = 1 conjectures are not assumed then these bounds are never
better than

Ik(T)^hlckT(\ogTf.

It is evident that our Corollary 1.10 gives

Ik(T)^(2-e)ckT(\ogTf

provided k is sufficiently close to 2. In practice, this improvement is noticeable
only when k^l-95. It is possible to refine the bounds of Theorems 1.6 and
1.9 by moving the line of integration to 5 + c/log T (instead of just ju >j) with
an appropriately chosen c. This would enable us to take longer Dirichlet
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polynomials A, when k<2 (in Theorem 1.9) or r<2 (in Theorem 1.6).
However, the improvements arising from these refinements do not justify the
extra efforts required.

We often write A^B when we mean A <(1 + o{\))B. This should not be
cause for confusion.

I am grateful to Professors H. L. Montgomery and T. D. Wooley for
encouragement.

§2. Some Lemmata. Let
1/2 + 2/T

= 1
i

l/2 + (T

and
1/2+21T

Js = - [ K{s)\2\Ar(s,P)\2ds.
1 J

1/2+/T

LEMMA 2.1. With the above notation

Proof. Observe that
1/2+21T

1/2+

1/2+:

1 r ir/,l2tJ ^ 1 r
« J « J

1/2 + iT

1/2 + 2/T 1/2 + 2/T

\as)\2?(s)Ar(l-s,P)ds
1/2 + iT 1/2 + iT

1/2 + 2/T 1/2 + 21T

2 f if
I J J J

1/2 + iT l/2 + (T

Rearranging we obtain the lemma.

Let
/ 2 -

1/2

/•

1/

+ iT

1J
1/2 H

2/7
«

- i T

(*M*(1-*,

M*(*,-P)l2

P)ds,

ds,
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and
1/2 + 2(7"

-H
1/2 + iT

LEMMA 2.2. With the above notation

(-i ^ ^ 41a A2 ~ z A3 ~ .

Proof. The proof is identical to the proof of Lemma 2.1.

LEMMA 2.3. Let

h(a)= (p-ayP(P)dp
j
0

and let 2F\ denote the usual hypergeometric function. Then, if 6<\,

'—L- + 2rh(a)h'(a)\da
J \ 6
0

and

~r 1
2Fi{-r,-r-\,k2-r-\,-a6)da.

Proof. See Theorems 1 and 2 of Conrey and Ghosh, [4].

LEMMA 2.4. The following asymptotic formulae hold.

and

Proof. This is easily obtained by slightly modifying the results in Conrey
and Ghosh, [3].
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LEMMA 2.5. Let x, T> 1 and p — fi + iy run over the complex zeros o
Then

X xp = -^- A(*) + O(x log (2x) log log Ox) + x log 2T)
2TT

+ 0llogjcminlr, — l + rninl1^5-^, Hog
' x \logx

where <x> is the distance from x to the nearest prime power other than x.

Proof. This is Theorem 1 of Gonek, [5].

LEMMA 2.6. Let r>0 and h = \\ php be a positive integer. Define

( °°

so that when 5Rs> 1,

n^x n T{r+\)

Also

z Dr(n'h ^"=(1+0(1)) t-r+ixv;;2
v;' *"*(iog*r

n«x n i(r)

Proof These results are easily obtainable via the results of Selberg, [12].
They may also be found as Lemmata 4 and 5, and equations (36) and (37) of
Conrey and Ghosh, [4].

§3. Proof of Theorem 1.1 and its Corollaries. We first treat the case
and when the Lindelof Hypothesis is assumed. By Cauchy's theorem

( fl + 2iT p+iT fl+2iT \

j + J - J K\s)X(sy-lAr(l-s,P)2ds
fl + iT 1/2 + iT 1/2 + 2/7"/

where n >\ is some constant. Since \Ar{\ -s, P)\ = O{T6(a+e)), \x(\ + it)\ = 1
and \£(s)\ = O(T£) by the Lindelof Hypothesis, the horizontal integrals are
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bounded by O(Te+e) = 0{T^~c). Since \%{s)\ = O(T0/2~a)) it follows that the
integral on the //-line is bounded by

(
By the mean-value theorem for Dirichlet polynomials, this is

It remains now to treat the case k = 3 and 9<\. Again, by Cauchy's
theorem,

' p +it\ ii + itQ fi + i7)

);2(s)Xr"\s)Ar(l-s,P)2ds

I (n 2T\

\
where toe(T+Tl/3 + e, T+ Tx/2~e) and he(2T-Tl/2~£, 2T-Tl/3+e) will be
fixed later. Since the mean-square of the ^-function is known with an error
0(J l / 3 + £ ) (see [13]) the error term in the above relation is

Also the integral on the /i-line is easily seen, as before, to be small.

It suffices to estimate the horizontal integrals. We choose t0 so that

?(s)X
r-\s)Ar(l-s,P)2dsJ

•1/3 + ,; ] / 2

-017- '' ~
1/2

A similar bound holds for the integral on it\. This completes the proof.
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To prove Corollaries 1.2 and 1.3, we use Theorem 1.1 with Lemma 2.1 to
see that

2iT

-. f \as)\2^r(s)Ar(l-s, \a*)Ar(s, P)\2ds.

1/2 + iT 1/2 + iT

The bounds of Conrey and Ghosh, [4], were based on the inequality

-
i J

1/2 + 2IT

r(l-s, P)ds~-
i

r(s, P)\2ds.

1/2 + iT 1/2 + iT

Thus making the same choice of P which leads to their Corollaries 1 and 2 we
obtain our improved Corollaries 1.2 and 1.3.

§4. Proof of Theorem 1.6 and its Corollaries. Let S(t) = \/K arg £(i + it)
and N(t) denote the number of zeros of £(s) with ordinates between 0 and t.
Then

It follows that

where 0 < yt ^ y2 ̂  •
upper half-plane.

Let

are the ordinates of the zeros of the ^-function in the

Let n > \ be some fixed constant and put
y

h\{x,y) = -li-it)xr(jt + it)A(\ -ii-it, Pfdt

and

J42(x) =

1/2
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Using Cauchy's theorem it is easily seen that

Thus

\e2"ir-l\

f \Xr(s)Ar(l-s,
+ iT

1/2

say.
Clearly

2T

(,-D+. r |

- - l ) - Next,

1/2

r
— I 'TV'

J1/2

say. By the approximate functional equation (see [13])

Hence
4r(l - (7 - / > , ,

- +'T+iyi n1'""'71
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where

and

Ar{\-o-iy,,P)

Ar{\-a-ir,,P)x{<y+ird I

For brevity, write

Ar(s,P)=

and

where

Thus,

In
cm(cr)c(cr)

cm(ff)cn(<r)

From Lemma 2.5 and the Riemann Hypothesis we see that

1 {~] -~JmA[i;

— i — — - — i

n(,m/ny s/rn log {m/n))

Observe that

J-
1/2

I I
u\n v\m

<ub^ [(Tir %
f^n J I (uvf da

1/2

=sz (l+o(l))bubv

u v Jnm({r— 1) log T+log (nm) — 2 log (uv))
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since 6< i{r — 1). In particular

f
J1/2

From this estimate and our earlier estimate for £ r < <2T(m/n)'r, it easily
follows that

1/2

1/2

+ 2 X cB,(«T)c»(ff)x/-A(-))rfff.

Now

r (r_1)(1/2_CT)

(l+o(l))bubv

< I (r-l)logr+21ogn-21og(«D)
a£ ^/TUV/2JZ ,[u,v]\n

6.6.(«, o) / r log r - log (wt>)

" 2MV \(r- 1) log T-2 log («, v)

Next,

J
1/2

u\n,v\np
yfmin(u,v/p) ' /

\n P)

I *,6. I
P u,v^Te u\n,v\np J \n P)

7 P U,VST° n «((r-l)logJ+log(«»-21og

= ^ , + ^2
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where Y\ corresponds to those terms for which pXv and Y2 to those for which
p\v.

Putting h = h(u, v,p) = rma {u, v/p) ^yfuvjp, we see that,

' " p k° " " » ( ( r 1 ) log T+ log [n2
y bb Y

p u,kr° " " Mm »((r- 1) log T+ log [n2p) - 2 log (««))

\ogp

P Z,

bub»

P Z, 2[u, v] ° V(r- 1) log T-2 log («, ») + log/»/

Z, 2[u, v] \(r - 1) log T- 2 log (u, v)

Further

(l + o ( l ) )M,
, /» «<r»..<7-//, IJM\* «((»— 1) log r+log ( I I 2 ? ) -2 log («»/»))

vlog/> Wp,

P u v I", UJ

^_log/» bubpv ,__/ r logr-21ogu-log/>

", /> U)U2[M, «] V(r-l)logr-21og(M, u)-log^,

( r - 0) l ogT - log u
T-log v) log

\(r-l-9)\ogT-log(u,v))

Piecing these results together and using 9 <min ( I , (̂'•— 1)) we see that

M L (tog

1/2

log 77 \(r - 1 - 6>) log T - log (M, «),/

Similarly, we see that,

T\^n T U U /

log
1 r logT- log (u,

1/2

logu\ Ur—9) log r + 2log(w, v) — log«Y\
loTr/ ° 8 \ (r-9)logT-logv //'
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Thus

2K
-€•-

TlogT TlogT
1/2

V M L L /(r+l)log7'-21og[»«,o]
u,v[u,v]\ \(r-l)logT-2log(u,v)

+ r (e _ 1° !^ log
\ l 77̂

 log f
log 77 \ (r-l-0)logr-log(«,«)

This proves Theorem 1.6. To obtain Corollary 1.7, note that if u, v^T6, then

Hence

TlogT U.£T*[U,V]\
 a\r-\-20) \ log 77 V-1-20

h h

= 1 I UVW

x (log (Ltiz2?) + r ( , _ b ^ ) log
\ r - 1 - 2 0 .

\ A A

= z. z z UVW

ii (r+l-20\ I logwf ,̂ / r
x log \ + r\ 0 log

log 7/ °\r-l-20

= S I

(. (r+\-20\ (. logWw\,
x log \ + r\6 bg

\ B V- l -20/ \ log r / S
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Using partial summation in conjunction with Lemma 2.6, we see

u u I
loguv \ *\r-\-20) \ log

Dr(wd, I)2/ f r(log>Qr ' p/log(ydw)\^
T2(r+1) y J y \ OlogT ) y

t

' T*/wd

By an obvious change of variables this is

T2(r+1) » < r ' ^ r V d2w \d\ogT

_(6\ogT)2r Dr{n, 1)V(«) / logn
T2(r+1) „£> n2 \01og3

Corollary 1.7 follows immediately by partial summation and Lemma 2.6.
Corollary 1.8 is a simple consequence of Corollary 1.7 and Corollary 2 of
Conrey and Ghosh, [4].
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