

Hyperbolic metric and membership of conformal maps in the Bergman space

Dimitrios Betsakos, Christina Karafyllia, and Nikolaos Karamanlis

Abstract. We prove that for $0 and <math>-1 < \alpha < +\infty$, a conformal map defined on the unit disk belongs to the weighted Bergman space A^p_α if and only if a certain integral involving the hyperbolic distance converges.

1 Introduction

For $0 and <math>-1 < \alpha < +\infty$, the weighted Bergman space A^p_α is the set of all holomorphic functions f in the unit disk $\mathbb D$ such that

$$||f||_{A_{\alpha}^{p}}^{p} := \int_{\mathbb{D}} |f(z)|^{p} (1-|z|^{2})^{\alpha} dA(z) < +\infty,$$

where dA denotes the Lebesgue area measure on \mathbb{D} . Closely related to Bergman spaces are the classical Hardy spaces H^p . For p > 0, H^p consists of all holomorphic functions in the unit disk such that

$$||f||_{H^p}^p := \sup_{0 \le r \le 1} \int_0^{2\pi} |f(re^{it})|^p dt < +\infty.$$

It is well known that $H^p \subset A^p_\alpha$, for all $a \in (-1, +\infty)$, and moreover,

$$\lim_{\alpha \to -1^+} \| f \|_{A^p_{\alpha}} = \| f \|_{H^p}$$

(see [16]). For the theory of Bergman spaces, see [4, 7]. The problem of characterizing conformal maps which are contained in H^p has been extensively studied in the past with the work, among others, of Prawitz [13], Hardy and Littlewood [6], Pommerenke [12], and Poggi-Corradini [11]. The following characterization of conformal maps in Hardy spaces is due to Prawitz [13], Hardy and Littlewood [6], and Pommerenke [12].

Received by the editors February 11, 2020; revised April 28, 2020.

Published online on Cambridge Core May 6, 2020.

This research was co-financed by Greece and the European Union (European Social Fund-ESF) through the Operational Programme "Human Resources Development, Education and Lifelong Learning 2014–2020" in the context of the project "Angular derivatives and the hyperbolic metric" (MIS 5047551).

AMS subject classification: 30H20, 30F45, 30C35.

Keywords: Bergman space, hyperbolic distance, Green function, conformal mapping.

Theorem A Let 0 and suppose <math>f is a conformal map on \mathbb{D} . Then $f \in H^p$ if and only if

$$\int_0^1 M(r,f)^p dr < +\infty,$$

where $M(r, f) = \max_{|z|=r} |f(z)|$, $0 \le r < 1$, is the maximum modulus of f on the circle of radius r centered at 0.

For a conformal map f on $\mathbb D$ and r>0, set $F_r=\{z\in\mathbb D:|f(z)|=r\}$. Let $d_{\mathbb D}(0,F_r)$ denote the hyperbolic distance in $\mathbb D$ between 0 and the set F_r , *i.e.*, $d_{\mathbb D}(0,F_r)=\inf_{z\in F_r}d_{\mathbb D}(0,z)$, where $d_{\mathbb D}(0,z)$ is the hyperbolic distance between 0, z in $\mathbb D$. Poggi-Corradini in [11] posed the question of whether a conformal map f belongs to H^p if and only if

$$\int_0^{+\infty} r^{p-1} e^{-d_{\mathbb{D}}(0,F_r)} dr < +\infty.$$

This question was settled by Karafyllia in [8] providing another characterization for conformal maps in H^p .

Theorem B Let 0 and suppose <math>f is a conformal map on \mathbb{D} . For r > 0, let $F_r = \{z \in \mathbb{D} : |f(z)| = r\}$. Then $f \in H^p$ if and only if

$$\int_0^{+\infty} r^{p-1} e^{-d_{\mathbb{D}}(0,F_r)} dr < +\infty.$$

Conformal maps in Bergman spaces have been characterized by Baernstein, Girela, and Peláez [2] and also by Pérez-González and Rättyä [10].

Theorem C Let $0 and <math>-1 < \alpha < +\infty$ and suppose f is a conformal map in \mathbb{D} . Then $f \in A^p_\alpha$ if and only if

$$\int_0^1 (1-r^2)^{\alpha+1} M(r,f)^p dr < +\infty.$$

Note that Theorem C is the analogue of Theorem A. It is therefore natural to ask what the counterpart of Theorem B is for Bergman spaces. In this direction we prove the following theorem.

Theorem 1.1 Let $0 and <math>-1 < \alpha < +\infty$. Suppose f is a conformal map on $\mathbb D$ and for r > 0 let $F_r = \{z \in \mathbb D : |f(z)| = r\}$. Then $f \in A^p_\alpha$ if and only if

$$\int_0^{+\infty} r^{p-1} e^{-(\alpha+2)d_{\mathbb{D}}(0,F_r)} dr < +\infty.$$

For a bounded function f, the integral that appears in Theorem 1.1 converges trivially. Therefore, we will assume for the rest of this paper that f is an unbounded conformal map on the unit disk.

2 Preliminaries

The hyperbolic distance between $z, w \in \mathbb{D}$ is defined by

$$d_{\mathbb{D}}(z,w) = \log \frac{1 + \frac{|z-w|}{|1-z\overline{w}|}}{1 - \frac{|z-w|}{|1-z\overline{w}|}},$$

and the Green function for the unit disk is

$$g_{\mathbb{D}}(z,w) = \log \frac{|1-z\overline{w}|}{|z-w|} = \log \frac{e^{d_{\mathbb{D}}(z,w)}+1}{e^{d_{\mathbb{D}}(z,w)}-1}.$$

Let *D* be a simply connected domain in \mathbb{C} and let $f : \mathbb{D} \to D$ be a conformal map from the unit disk onto *D*. The hyperbolic distance in *D* between $z, w \in D$ is defined by

$$d_D(z, w) = d_{\mathbb{D}}(f^{-1}(z), f^{-1}(w)).$$

Since $d_{\mathbb{D}}$ is invariant under the group of conformal self maps of the unit disk, it follows that d_D is well defined. Moreover, the function

(2.1)
$$g_D(z, w) = \log \frac{e^{d_D(z, w)} + 1}{e^{d_D(z, w)} - 1}$$

is the Green function for the domain D and is also invariant under conformal maps. See, for example, [1, 3, 5, 9].

We will need a few facts about the function M(r, f) that appears in Theorems A and C. Recall that for a (non constant) holomorphic function f on \mathbb{D} and $0 \le r < 1$, the maximum modulus function of f is defined as

$$M(r,f) = \max_{|z|=r} |f(z)|.$$

It is well known that M is a continuous, strictly increasing function of r, and thus its derivative M' exists everywhere in (0,1) except for at most countably many points. Let 0 < a < b < 1 and let z_a , $z_b \in \mathbb{D}$ be points such that $M(a, f) = |f(z_a)|$, $M(b, f) = |f(z_b)|$, $|z_a| = a$, $|z_b| = b$. Also, let z_a' be the point where the segment $[0, z_b]$ meets the circle of radius a. Observe that

$$0 < M(b, f) - M(a, f) = |f(z_b)| - |f(z_a)| \le |f(z_b)| - |f(z'_a)|$$

$$\le |f(z_b) - f(z'_a)| = \Big| \int_{[z'_a, z_b]} f'(w) dw \Big|.$$

By the triangle inequality,

$$0 < M(b, f) - M(a, f) \le \sup_{|z| \le b} |f'(z)| |b - a|.$$

This shows that M is locally Lipschitz in [0,1) and thus absolutely continuous in $[0,1-\varepsilon]$ for any $\varepsilon > 0$ sufficiently small. We can now proceed with a lemma that will be useful in the proof of Theorem 1.1.

Lemma 2.1 Suppose f is an unbounded conformal map defined on the unit disk such that f(0) = 0. Then the maximum modulus function M, defined above, satisfies the

following change of variable formula:

$$\int_0^{+\infty} r^{p-1} e^{-(\alpha+2)d_{\mathbb{D}}(0,F_r)} dr = \int_0^1 M(s, f)^{p-1} \left(\frac{1-s}{1+s}\right)^{\alpha+2} M'(s, f) ds.$$

Proof For $0 < r < +\infty$, recall that $F_r = \{z \in \mathbb{D} : |f(z)| = r\}$. Let z_r be a point on F_r such that $d_{\mathbb{D}}(0, F_r) = d_{\mathbb{D}}(0, z_r) = \log \frac{1+\rho}{1-\rho}$, where $\rho = \rho(r) = |z_r|$. The point z_r may not be unique, but it is one of the points of F_r that is closest to the origin. This is true, because of the definition of $d_{\mathbb{D}}$ and the fact that the function $\log \frac{1+x}{1-x}$ is strictly increasing in [0,1). The first integral in the statement of the lemma can therefore be written as

$$\begin{split} \int_0^{+\infty} r^{p-1} e^{-(\alpha+2)d_{\mathbb{D}}(0,F_r)} dr &= \int_0^{+\infty} r^{p-1} e^{-(\alpha+2)\log\frac{1+\rho(r)}{1-\rho(r)}} dr \\ &= \int_0^{+\infty} r^{p-1} \Big(\frac{1-\rho(r)}{1+\rho(r)}\Big)^{\alpha+2} dr. \end{split}$$

Let $0 < \varepsilon < 1$. By a standard result in real analysis (see, for example, [15, p. 326]) and the facts about M stated before the lemma, we have that

$$\int_{M(0, f)}^{M(1-\varepsilon, f)} r^{p-1} \left(\frac{1-\rho(r)}{1+\rho(r)}\right)^{\alpha+2} dr = \int_{0}^{1-\varepsilon} M(s, f)^{p-1} \left(\frac{1-\rho(M(s, f))}{1+\rho(M(s, f))}\right)^{\alpha+2} M'(s, f) ds.$$

By the definition of $\rho(\cdot)$, it is not hard to see that for any s > 0, $\rho(M(s, f)) = |z_{M(s, f)}| = s$. The last equality, therefore, becomes

$$\int_{M(0, f)}^{M(1-\varepsilon, f)} r^{p-1} \left(\frac{1-\rho(r)}{1+\rho(r)}\right)^{\alpha+2} dr = \int_{0}^{1-\varepsilon} M(s, f)^{p-1} \left(\frac{1-s}{1+s}\right)^{\alpha+2} M'(s, f) ds.$$

Since we are assuming that f is unbounded and f(0) = 0, letting $\varepsilon \to 0$ and using the Monotone Convergence Theorem yields the required formula.

Next, we need to establish a differential inequality for the function M that will also be used in the proof of Theorem 1.1

Lemma 2.2 Let f be a conformal map on the unit disk satisfying f(0) = 0 and f'(0) = 1. Then

$$M'(r, f) \le M(r, f) \frac{1+r}{r(1-r)},$$

for any $r \in (0,1)$ such that M'(r, f) exists. Moreover, equality occurs for some r if and only if f is a Koebe function, i.e., $f(z) = \frac{z}{(1-\lambda z)^2}$, $|\lambda| = 1$.

Proof Let $r \in (0,1)$ be a point such that M'(r, f) exists and let h be a small positive number. Write $M(r, f) = |f(z_r)|$ and $M(r - h, f) = |f(z_{r-h})|$, where $|z_r| = |f(z_r)|$

r, $|z_{r-h}| = r - h$. Let z'_{r-h} be the point where the segment $[0, z_r]$ meets the circle of radius r - h. Then we have

$$\frac{M(r, f) - M(r - h, f)}{h} = \frac{|f(z_r)| - |f(z_{r-h})|}{h} \le \frac{|f(z_r)| - |f(z'_{r-h})|}{h}.$$

Observe that, as $h \to 0$, the limit of the right-hand side in the last inequality is $\frac{\partial}{\partial r} |f|(z_r)$. Thus letting $h \to 0$ gives

$$M'(r, f) \leq \frac{\partial}{\partial r} |f|(z_r).$$

By the Cauchy–Schwarz inequality, $\frac{\partial}{\partial r}|f|(z_r) \leq |\nabla|f|(z_r)|$. A quick calculation shows that

$$|\nabla| f|(z_r)| = |f'(z_r)|.$$

It follows that

$$M'(r, f) \leq |f'(z_r)|$$
.

Since we are assuming that f is a normalized univalent function, *i.e.*, $f \in S$, by a standard estimate for maps in S (see [5, p. 22]), we conclude that

$$|f'(z_r)| \le |f(z_r)| \frac{1+|z_r|}{|z_r|(1-|z_r|)} = M(r, f) \frac{1+r}{r(1-r)},$$

and the lemma is proved. Finally, we treat the equality case. If f is a Koebe function, then $M(r, f) = \frac{r}{(1-r)^2}$, and therefore we have equality for all $r \in (0,1)$. Conversely, if equality holds for some r, then we must have equality in the estimate for maps in S that we used above and therefore f is a Koebe function.

Finally, we will make use of the following fact about the norm $\|f\|_{A^p_\alpha}^p$. Let $0 and <math>-1 < \alpha < +\infty$. The quantity

$$|| f ||_{A^p_{\alpha}}^p := \int_{\mathbb{D}} |f(z)|^p (1 - |z|^2)^{\alpha} dA(z)$$

is comparable (see [14]) to

$$\int_{\mathbb{D}} |f(z)|^{p-2} |f'(z)|^2 \left(\log \frac{1}{|z|}\right)^{\alpha+2} dA(z) + |f(0)|^p.$$

It follows that

$$(2.2) f \in A_{\alpha}^{p} \longleftrightarrow \int_{\mathbb{D}} |f(z)|^{p-2} |f'(z)|^{2} \left(\log \frac{1}{|z|}\right)^{\alpha+2} dA(z) < +\infty.$$

3 Proof of Theorem 1.1

The first part of the proof is similar to the proof of [8, Theorem 1.1]. Suppose that for some $0 and some <math>-1 < \alpha < +\infty$,

(3.1)
$$\int_{0}^{+\infty} r^{p-1} e^{-(\alpha+2)d_{\mathbb{D}}(0,F_{r})} dr < +\infty.$$

Let dA denote the Lebesgue area measure, and let $D = f(\mathbb{D})$. We denote by $g_D(f(0), z)$, $z \in D$ the Green function for D and we set $g_D(f(0), z) = 0$ for $z \notin D$. By a change of variable and the conformal invariance of the Green function, we deduce that

(3.2)
$$\int_{\mathbb{D}} |f(z)|^{p-2} |f'(z)|^{2} \left(\log \frac{1}{|z|}\right)^{\alpha+2} dA(z)$$

$$= \int_{\mathbb{D}} |f(z)|^{p-2} |f'(z)|^{2} g_{\mathbb{D}}(0, z)^{\alpha+2} dA(z)$$

$$= \int_{D} |w|^{p-2} g_{D}(f(0), w)^{\alpha+2} dA(w)$$

$$= \int_{0}^{+\infty} r^{p-1} \left(\int_{0}^{2\pi} g_{D}(f(0), re^{i\theta})^{\alpha+2} d\theta\right) dr.$$

By elementary calculus,

(3.3)
$$\log \frac{e^x + 1}{e^x - 1} \le 3e^{-x},$$

for all x sufficiently large. Note that for D unbounded and simply connected, $d_D(f(0), f(F_r)) \to +\infty$ as $r \to +\infty$ which also follows from the hypothesis (3.1). Therefore, by (3.3) and (2.1), we deduce that there exists an $r_0 > 0$ and a positive constant C such that for every $r \ge r_0$,

$$g_{D}(f(0), re^{i\theta})^{\alpha+2} \leq Ce^{-(\alpha+2)d_{D}(f(0), re^{i\theta})}$$

$$\leq Ce^{-(\alpha+2)d_{D}(f(0), \{w \in D: |w| = r\})}$$

$$= Ce^{-(\alpha+2)d_{D}(0, F_{r})}.$$

Integrating with respect to θ , we get

$$\int_{0}^{2\pi} g_{D} \left(f(0), re^{i\theta} \right)^{\alpha+2} d\theta \le C \int_{0}^{2\pi} e^{-(\alpha+2)d_{\mathbb{D}}(0, F_{r})} d\theta$$

$$= 2\pi C e^{-(\alpha+2)d_{\mathbb{D}}(0, F_{r})},$$
(3.4)

for every $r \ge r_0$. So, by (3.2) and (3.4), we infer that there exist positive constants C_1 , C_2 such that

$$\int_{\mathbb{D}} |f(z)|^{p-2} |f'(z)|^2 \left(\log \frac{1}{|z|}\right)^{\alpha+2} dA(z) \le C_1 \int_{r_0}^{+\infty} r^{p-1} e^{-(\alpha+2)d_{\mathbb{D}}(0,F_r)} dr + C_2 < +\infty.$$

Thus by (2.2), we conclude that $f \in A^p_\alpha$.

For the converse, suppose that $f \in A^p_\alpha$ is conformal. In addition, assume temporarily that f(0) = 0 and f'(0) = 1. By Lemma 2.1, it suffices to show that

$$\int_0^1 M(s, f)^{p-1} (1-s)^{\alpha+2} M'(s, f) ds < +\infty.$$

Note that the singularity of this integral occurs at 1, and thus it is enough to prove that

$$\int_{\delta}^{1} M(s, f)^{p-1} (1-s)^{\alpha+2} M'(s, f) ds < +\infty,$$

for some number $\delta \in (0,1)$. By Lemma 2.2,

$$\int_{\delta}^{1} M(s, f)^{p-1} (1-s)^{\alpha+2} M'(s, f) ds \le 2 \int_{\delta}^{1} M(s, f)^{p} \frac{(1-s)^{\alpha+1}}{s} ds.$$

Observe that

$$2\int_{\delta}^{1} M(s, f)^{p} \frac{(1-s)^{\alpha+1}}{s} ds \leq \frac{2}{\delta} \int_{\delta}^{1} M(s, f)^{p} (1-s^{2})^{\alpha+1} ds$$
$$\leq \frac{2}{\delta} \int_{0}^{1} M(s, f)^{p} (1-s^{2})^{\alpha+1} ds.$$

Since $f \in A^p_\alpha$, the last integral converges by Theorem C. Hence,

$$\int_0^{+\infty} r^{p-1} e^{-(\alpha+2)d_{\mathbb{D}}(0,F_r)} dr < +\infty.$$

We will now remove the extra assumptions f(0) = 0 and f'(0) = 1. For $f \in A^p_\alpha$, let $h(z) = \frac{f(z)}{f'(0)}$ and g(z) = h(z) - h(0). For r > 0, let $H_r = \{z \in \mathbb{D} : |h(z)| = r\}$ and $G_r = \{z \in \mathbb{D} : |g(z)| = r\}$. Set $\Omega = h(\mathbb{D})$. Note that $g \in A^p_\alpha$. Since g(0) = 0 and g'(0) = 1, it follows from what we have proved that

$$\int_0^{+\infty} r^{p-1} e^{-(\alpha+2)d_{\mathbb{D}}(0,G_r)} dr < +\infty.$$

By the conformal invariance of the hyperbolic distance,

$$\int_{0}^{+\infty} r^{p-1} e^{-(\alpha+2)d_{\mathbb{D}}(0,G_{r})} dr = \int_{0}^{+\infty} r^{p-1} e^{-(\alpha+2)d_{\Omega-h(0)}(0,r\partial \mathbb{D}\cap(\Omega-h(0)))} dr$$

$$= \int_{0}^{+\infty} r^{p-1} e^{-(\alpha+2)d_{\Omega}(h(0),(h(0)+r\partial \mathbb{D})\cap\Omega)} dr$$

$$= \int_{0}^{+\infty} r^{p-1} e^{-(\alpha+2)d_{\Omega}(h(0),\tilde{w}_{r})} dr,$$

where $\tilde{w}_r \in \{w : |w - h(0)| = r\} \cap \Omega$. Let Γ be the hyperbolic geodesic in Ω joining h(0) to w_{2r} , where $|w_{2r}| = r$ and $d_{\Omega}(h(0), 2r\partial \mathbb{D} \cap \Omega) = d_{\Omega}(h(0), w_{2r})$. If r is sufficiently large, then $\{w : |w - h(0)| \le r\} \subset 2r\mathbb{D}$, and thus we can find a point w_r on $\Gamma \cap \{w : |w - h(0)| = r\}$. Then

$$d_{\Omega}(h(0), \tilde{w}_r) \leq d_{\Omega}(h(0), w_r) < d_{\Omega}(h(0), w_{2r}).$$

It follows that

$$\begin{split} +\infty > \int_{0}^{+\infty} r^{p-1} e^{-(\alpha+2)d_{\mathbb{D}}(0,G_{r})} dr & \geq \int_{0}^{+\infty} r^{p-1} e^{-(\alpha+2)d_{\Omega}(h(0),w_{2r})} dr \\ & = \int_{0}^{+\infty} r^{p-1} e^{-(\alpha+2)d_{\Omega}(h(0),2r\partial \mathbb{D}\cap \Omega)} dr \\ & = \int_{0}^{+\infty} r^{p-1} e^{-(\alpha+2)d_{\mathbb{D}}(0,H_{2r})} dr. \end{split}$$

By a change of variable, we conclude that

$$\int_0^{+\infty} r^{p-1} e^{-(\alpha+2)d_{\mathbb{D}}(0,H_r)} dr < +\infty.$$

Finally, observing that $H_r = F_{r|f'(0)|}$ and using another change of variable gives

$$\int_0^{+\infty} r^{p-1} e^{-(\alpha+2)d_{\mathbb{D}}(0,F_r)} dr < +\infty,$$

and the proof is complete.

References

- [1] L.V. Ahlfors, Conformal invariants: topics in geometric function theory. McGraw-Hill, New York, 1973.
- [2] D. Girela, A. Baernstein and J.Á. Peláez, Univalent functions, Hardy spaces and spaces of Dirichlet type. Illinois J. Math. 48(2004), 837–859.
- [3] A. F. Beardon and D. Minda, The hyperbolic metric and geometric function theory. In: Quasiconformal mappings and their applications, Narosa, New Delhi (2007), pp. 9–56.
- [4] P. Duren and A. Schuster, Bergman spaces. Mathematical Surveys and Monographs, 100, American Mathematical Society, Providence, RI, 2004. https://doi.org/10.1090/surv/100
- J. B. Garnett and D. E. Marshall, Harmonic measure. New Mathematical Monographs, 2,
 Cambridge University Press, Cambridge, 2005. https://doi.org/10.1017/CB09780511546617
- [6] G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals II. Math. Z. 34(1932), 403–439. https://doi.org/10.1007/BF01180596
- B. Korenblum H. Hedenmalm and K. Zhu, Theory of Bergman spaces. Graduate Texts in Mathematics, 199, Springer-Verlag, New York, 2000. https://doi.org/10.1007/978-1-4612-0497-8
- [8] C. Karafyllia, *Hyperbolic distance and membership of conformal maps in the Hardy space.* Proc. Amer. Math. Soc. 147(2019), 3855–3858.
- [9] D. Kraus and O. Roth, Conformal metrics. In: Topics in modern function theory, Ramanujan Math. Soc. Lect. Notes Ser. 19(2013), 41–83. https://doi.org/10.1090/proc/14512
- [10] F. Pérez-González and J. Rättyä, Univalent functions in Hardy, Bergman, Bloch and related spaces. J. Anal. Math. 105(2008), 125–148. https://doi.org/10.1007/s11854-008-0032-6
- [11] P. Poggi-Corradini, Geometric models, iteration, and composition operators. Ph.D. thesis, University of Washington (1996).
- [12] C. Pommerenke, Schlichte Funktionen and analytische Funktionen von beschränkten mittlerer Oszillation. Comment. Math. Helv. 52(1997), 591–602. https://doi.org/10.1007/BF02567392
- [13] H. Prawitz, Über Mittelwerte analytischer Funktionen. Ark. Mat. Astr. Fys. 20(1927), 1-12.
- [14] W. Smith, Composition operators between Bergman and Hardy spaces. Trans. Amer. Math. Soc. 348 (1996), 2331–2348. https://doi.org/10.1090/S0002-9947-96-01647-9
- [15] K.R. Stromberg, Introduction to classical real analysis. Wadsworth International Mathematics Series, Wadsworth International, Belmont, CA, 1981.
- [16] K. Zhu, Translating inequalities between Hardy and Bergman spaces. Amer. Math. Monthly, 111 (2004), 520–525. https://doi.org/10.2307/4145071

Department of Mathematics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece e-mail: betsakos@math.auth.gr nikaraman@math.auth.gr

Institute for Mathematical Sciences, Stony Brook University, Stony Brook, New York 11794-3651 e-mail: christina.karafyllia@stonybrook.edu