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Hyperbolic metric and membership of
conformal maps in the Bergman space

Dimitrios Betsakos, Christina Karafyllia, and Nikolaos Karamanlis

Abstract. We prove that for 0 < p < +∞ and−1 < α < +∞, a conformal map defined on the unit disk
belongs to the weighted Bergman space Ap

α if and only if a certain integral involving the hyperbolic
distance converges.

1 Introduction

For 0 < p < +∞ and −1 < α < +∞, the weighted Bergman space A
p
α is the set of all

holomorphic functions f in the unit disk D such that

∥ f ∥p
Ap

α

∶= ∫
D

∣ f (z)∣p(1 − ∣z∣2)αdA(z) < +∞,

where dAdenotes the Lebesgue areameasure onD. Closely related to Bergman spaces
are the classical Hardy spacesH p . For p > 0,H p consists of all holomorphic functions
in the unit disk such that

∥ f ∥pH p ∶= sup
0<r<1
∫

2π

0
∣ f (re i t)∣

p
dt < +∞.

It is well known that H p ⊂ Ap
α , for all a ∈ (−1,+∞), and moreover,

lim
α→−1+

∥ f ∥Ap
α
= ∥ f ∥H p

(see [16]). For the theory of Bergman spaces, see [4, 7].�e problem of characterizing
conformal maps which are contained in H p has been extensively studied in the past
with the work, among others, of Prawitz [13], Hardy and Littlewood [6], Pommerenke
[12], and Poggi-Corradini [11]. �e following characterization of conformal maps in
Hardy spaces is due to Prawitz [13], Hardy and Littlewood [6], and Pommerenke [12].
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Hyperbolic Metric and Conformal Maps in the Bergman Space 175

�eorem A Let 0 < p < +∞ and suppose f is a conformal map on D. �en f ∈ H p

if and only if

∫
1

0
M(r, f )pdr < +∞,

where M(r, f ) =max∣z∣=r ∣ f (z)∣, 0 ≤ r < 1, is the maximum modulus of f on the circle
of radius r centered at 0.

For a conformal map f onD and r > 0, set Fr = {z ∈ D ∶ ∣ f (z)∣ = r}. Let dD(0, Fr)
denote the hyperbolic distance in D between 0 and the set Fr , i.e., dD(0, Fr) =
inf z∈Fr dD(0, z), where dD(0, z) is the hyperbolic distance between 0, z in D. Poggi-
Corradini in [11] posed the question of whether a conformal map f belongs to H p if
and only if

∫
+∞

0
r p−1e−dD(0,Fr)dr < +∞.

�is question was settled by Karafyllia in [8] providing another characterization for
conformal maps in H p .

�eorem B Let 0 < p < +∞ and suppose f is a conformal map on D. For r > 0, let
Fr = {z ∈ D ∶ ∣ f (z)∣ = r}.�en f ∈ H p if and only if

∫
+∞

0
r p−1e−dD(0,Fr)dr < +∞.

Conformalmaps in Bergman spaces have been characterized byBaernstein,Girela,
and Peláez [2] and also by Pérez-González and Rättyä [10].

�eorem C Let 0 < p < +∞ and −1 < α < +∞ and suppose f is a conformal map in
D. �en f ∈ Ap

α if and only if

∫
1

0
(1 − r2)α+1M(r, f )pdr < +∞.

Note that �eorem C is the analogue of �eorem A. It is therefore natural to ask
what the counterpart of �eorem B is for Bergman spaces. In this direction we prove
the following theorem.

�eorem 1.1 Let 0 < p < +∞ and −1 < α < +∞. Suppose f is a conformal map on D

and for r > 0 let Fr = {z ∈ D ∶ ∣ f (z)∣ = r}. �en f ∈ Ap
α if and only if

∫
+∞

0
r p−1e−(α+2)dD(0,Fr)dr < +∞.

For a bounded function f, the integral that appears in �eorem 1.1 converges
trivially. �erefore, we will assume for the rest of this paper that f is an unbounded
conformal map on the unit disk.
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2 Preliminaries

�e hyperbolic distance between z,w ∈ D is defined by

dD(z,w) = log
1 + ∣z−w∣

∣1−zw∣

1 − ∣z−w∣
∣1−zw∣

,

and the Green function for the unit disk is

gD(z,w) = log ∣1 − zw∣∣z −w∣ = log
edD(z ,w) + 1
edD(z ,w) − 1 .

LetD be a simply connected domain inC and let f ∶ D→ D be a conformalmap from
the unit disk onto D. �e hyperbolic distance in D between z,w ∈ D is defined by

dD(z,w) = dD( f −1(z), f
−1(w)).

Since dD is invariant under the group of conformal selfmaps of the unit disk, it follows
that dD is well defined. Moreover, the function

gD(z,w) = log edD(z ,w) + 1
edD(z ,w) − 1(2.1)

is the Green function for the domain D and is also invariant under conformal maps.
See, for example, [1, 3, 5, 9].

We will need a few facts about the function M(r, f ) that appears in �eorems A
and C. Recall that for a (non constant) holomorphic function f on D and 0 ≤ r < 1,
the maximummodulus function of f is defined as

M(r, f ) =max
∣z∣=r
∣ f (z)∣.

It is well known thatM is a continuous, strictly increasing function of r, and thus its
derivative M′ exists everywhere in (0, 1) except for at most countably many points.
Let 0 < a < b < 1 and let za , zb ∈ D be points such thatM(a, f ) = ∣ f (za)∣, M(b, f ) =
∣ f (zb)∣, ∣za ∣ = a, ∣zb ∣ = b. Also, let z′a be the point where the segment [0, zb] meets
the circle of radius a. Observe that

0 < M(b, f ) −M(a, f ) = ∣ f (zb)∣ − ∣ f (za)∣ ≤ ∣ f (zb)∣ − ∣ f (z′a)∣
≤ ∣ f (zb) − f (z′a)∣ = ∣∫[z′a ,zb] f

′(w)dw∣.
By the triangle inequality,

0 < M(b, f ) −M(a, f ) ≤ sup
∣z∣≤b
∣ f ′(z)∣∣b − a∣.

�is shows that M is locally Lipschitz in [0, 1) and thus absolutely continuous in [0,
1 − ε] for any ε > 0 sufficiently small. We can now proceed with a lemma that will be
useful in the proof of �eorem 1.1.

Lemma 2.1 Suppose f is an unbounded conformal map defined on the unit disk such
that f (0) = 0. �en the maximum modulus function M, defined above, satisfies the
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following change of variable formula:

∫
+∞

0
r p−1e−(α+2)dD(0,Fr)dr = ∫

1

0
M(s, f )p−1( 1 − s

1 + s )
α+2

M′(s, f )ds.
Proof For 0 < r < +∞, recall that Fr = {z ∈ D ∶ ∣ f (z)∣ = r}. Let zr be a point on
Fr such that dD(0, Fr) = dD(0, zr) = log 1+ρ

1−ρ , where ρ = ρ(r) = ∣zr ∣. �e point zr may

not be unique, but it is one of the points of Fr that is closest to the origin. �is is
true, because of the definition of dD and the fact that the function log 1+x

1−x is strictly
increasing in [0, 1). �e first integral in the statement of the lemma can therefore be
written as

∫
+∞

0
r p−1e−(α+2)dD(0,Fr)dr = ∫

+∞

0
r p−1e

−(α+2) log 1+ρ(r)
1−ρ(r) dr

= ∫
+∞

0
r p−1( 1 − ρ(r)

1 + ρ(r))
α+2

dr.

Let 0 < ε < 1. By a standard result in real analysis (see, for example, [15, p. 326]) and
the facts aboutM stated before the lemma, we have that

∫
M(1−ε , f )

M(0, f )
r p−1( 1 − ρ(r)

1 + ρ(r))
α+2

dr =

∫
1−ε

0
M(s, f )p−1( 1 − ρ(M(s, f ))

1 + ρ(M(s, f )))
α+2

M′(s, f )ds.
By the definition of ρ(⋅), it is not hard to see that for any s > 0, ρ(M(s, f )) =∣zM(s , f )∣ = s. �e last equality, therefore, becomes

∫
M(1−ε , f )

M(0, f )
r p−1( 1 − ρ(r)

1 + ρ(r))
α+2

dr =

∫
1−ε

0
M(s, f )p−1( 1 − s

1 + s
)α+2M′(s, f )ds.

Since we are assuming that f is unbounded and f (0) = 0, letting ε → 0 and using the
Monotone Convergence�eorem yields the required formula. ∎

Next, we need to establish a differential inequality for the functionM that will also
be used in the proof of �eorem 1.1

Lemma 2.2 Let f be a conformal map on the unit disk satisfying f (0) = 0 and
f ′(0) = 1. �en

M′(r, f ) ≤ M(r, f ) 1 + r

r(1 − r) ,
for any r ∈ (0, 1) such that M′(r, f ) exists. Moreover, equality occurs for some r if and
only if f is a Koebe function, i.e., f (z) = z

(1−λz)2 , ∣λ∣ = 1.
Proof Let r ∈ (0, 1) be a point such that M′(r, f ) exists and let h be a small
positive number.WriteM(r, f ) = ∣ f (zr)∣ andM(r − h, f ) = ∣ f (zr−h)∣, where ∣zr ∣ =
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r, ∣zr−h ∣ = r − h. Let z′r−h be the point where the segment [0, zr] meets the circle of
radius r − h. �en we have

M(r, f ) −M(r − h, f )
h

= ∣ f (zr)∣ − ∣ f (zr−h)∣
h

≤ ∣ f (zr)∣ − ∣ f (z′r−h)∣
h

.

Observe that, as h → 0, the limit of the right-hand side in the last inequality is
∂
∂r ∣ f ∣(zr). �us letting h → 0 gives

M′(r, f ) ≤ ∂

∂r
∣ f ∣(zr).

By the Cauchy–Schwarz inequality, ∂
∂r ∣ f ∣(zr) ≤ ∣∇∣ f ∣(zr)∣. A quick calculation shows

that

∣∇∣ f ∣(zr)∣ = ∣ f ′(zr)∣.
It follows that

M′(r, f ) ≤ ∣ f ′(zr)∣.
Since we are assuming that f is a normalized univalent function, i.e., f ∈ S, by a
standard estimate for maps in S (see [5, p. 22]), we conclude that

∣ f ′(zr)∣ ≤ ∣ f (zr)∣ 1 + ∣zr ∣∣zr ∣(1 − ∣zr ∣) = M(r, f ) 1 + r

r(1 − r) ,
and the lemma is proved. Finally, we treat the equality case. If f is a Koebe function,
then M(r, f ) = r

(1−r)2 , and therefore we have equality for all r ∈ (0, 1). Conversely, if
equality holds for some r, then we must have equality in the estimate for maps in S
that we used above and therefore f is a Koebe function. ∎

Finally, we will make use of the following fact about the norm ∥ f ∥p
Ap

α

. Let 0 < p <
+∞ and −1 < α < +∞. �e quantity

∥ f ∥p
Ap

α

∶= ∫
D

∣ f (z)∣p(1 − ∣z∣2)αdA(z)
is comparable (see [14]) to

∫
D

∣ f (z)∣p−2∣ f ′ (z)∣2(log 1

∣z∣ )
α+2

dA(z) + ∣ f (0)∣ p .
It follows that

f ∈ Ap
α ⇐⇒ ∫

D

∣ f (z)∣p−2∣ f ′ (z)∣2(log 1

∣z∣ )
α+2

dA(z) < +∞.(2.2)

3 Proof of Theorem 1.1

�e first part of the proof is similar to the proof of [8, �eorem 1.1]. Suppose that for
some 0 < p < +∞ and some −1 < α < +∞,

∫
+∞

0
r p−1e−(α+2)dD(0,Fr)dr < +∞.(3.1)
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Let dA denote the Lebesgue area measure, and let D = f (D). We denote by
gD( f (0), z), z ∈ D the Green function for D and we set gD( f (0), z) = 0 for z ∉ D.
By a change of variable and the conformal invariance of the Green function, we
deduce that

∫
D

∣ f (z)∣p−2∣ f ′ (z)∣2(log 1

∣z∣ )
α+2

dA(z)(3.2)

= ∫
D

∣ f (z)∣p−2∣ f ′ (z)∣2gD (0, z)α+2 dA(z)
= ∫

D
∣w∣p−2gD ( f (0),w)α+2 dA(w)

= ∫
+∞

0
rp−1(∫ 2π

0
gD ( f (0), re iθ)α+2 dθ)dr.

By elementary calculus,

log
ex + 1

ex − 1
≤ 3e−x ,(3.3)

for all x sufficiently large. Note that for D unbounded and simply connected,
dD ( f (0), f (Fr))→ +∞ as r → +∞ which also follows from the hypothesis (3.1).
�erefore, by (3.3) and (2.1), we deduce that there exists an r0 > 0 and a positive
constant C such that for every r ≥ r0,

gD ( f (0), re iθ)α+2 ≤ Ce−(α+2)dD( f (0),re iθ)

≤ Ce−(α+2)dD( f (0),{w∈D∶ ∣w∣=r})

= Ce−(α+2)dD(0,Fr) .
Integrating with respect to θ, we get

∫
2π

0
gD ( f (0), re iθ)α+2 dθ ≤ C ∫ 2π

0
e−(α+2)dD(0,Fr)dθ

= 2πCe−(α+2)dD(0,Fr) ,(3.4)

for every r ≥ r0. So, by (3.2) and (3.4), we infer that there exist positive constants
C1 , C2 such that

∫
D

∣ f (z)∣p−2∣ f ′ (z)∣2(log 1

∣z∣ )
α+2

dA(z) ≤
C1 ∫

+∞

r0
r p−1e−(α+2)dD(0,Fr)dr + C2 < +∞.

�us by (2.2), we conclude that f ∈ Ap
α .

For the converse, suppose that f ∈ Ap
α is conformal. In addition, assume temporar-

ily that f (0) = 0 and f ′(0) = 1. By Lemma 2.1, it suffices to show that

∫
1

0
M(s, f )p−1(1 − s)α+2M′(s, f )ds < +∞.
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Note that the singularity of this integral occurs at 1, and thus it is enough to prove that

∫
1

δ
M(s, f )p−1(1 − s)α+2M′(s, f )ds < +∞,

for some number δ ∈ (0, 1). By Lemma 2.2,

∫
1

δ
M(s, f )p−1(1 − s)α+2M′(s, f )ds ≤ 2∫ 1

δ
M(s, f )p (1 − s)α+1

s
ds.

Observe that

2∫
1

δ
M(s, f )p (1 − s)α+1

s
ds ≤ 2

δ
∫

1

δ
M(s, f )p(1 − s2)α+1ds

≤ 2

δ
∫

1

0
M(s, f )p(1 − s2)α+1ds.

Since f ∈ Ap
α , the last integral converges by�eorem C. Hence,

∫
+∞

0
r p−1e−(α+2)dD(0,Fr)dr < +∞.

We will now remove the extra assumptions f (0) = 0 and f ′(0) = 1. For f ∈ Ap
α ,

let h(z) = f (z)
f ′(0) and g(z) = h(z) − h(0). For r > 0, let Hr = {z ∈ D ∶ ∣h(z)∣ = r} and

Gr = {z ∈ D ∶ ∣g(z)∣ = r}. Set Ω = h(D). Note that g ∈ Ap
α . Since g(0) = 0 and g′(0) =

1, it follows from what we have proved that

∫
+∞

0
r p−1e−(α+2)dD(0,Gr)dr < +∞.

By the conformal invariance of the hyperbolic distance,

∫
+∞

0
r p−1e−(α+2)dD(0,Gr)dr = ∫

+∞

0
r p−1e−(α+2)dΩ−h(0)(0,r∂D∩(Ω−h(0)))dr

= ∫
+∞

0
r p−1e−(α+2)dΩ(h(0),(h(0)+r∂D)∩Ω)dr

= ∫
+∞

0
r p−1e−(α+2)dΩ(h(0),w̃r)dr,

where w̃r ∈ {w ∶ ∣w − h(0)∣ = r} ∩Ω. Let Ŵ be the hyperbolic geodesic in Ω joining
h(0) to w2r , where ∣w2r ∣ = r and dΩ(h(0), 2r∂D ∩Ω) = dΩ(h(0),w2r). If r is suf-
ficiently large, then {w ∶ ∣w − h(0)∣ ≤ r} ⊂ 2rD, and thus we can find a point wr on
Ŵ ∩ {w ∶ ∣w − h(0)∣ = r}. �en

dΩ(h(0), w̃r) ≤ dΩ(h(0),wr) < dΩ(h(0),w2r).
It follows that

+∞ > ∫
+∞

0
r p−1e−(α+2)dD(0,Gr)dr ≥ ∫

+∞

0
r p−1e−(α+2)dΩ(h(0),w2r)dr

= ∫
+∞

0
r p−1e−(α+2)dΩ(h(0),2r∂D∩Ω)dr

= ∫
+∞

0
r p−1e−(α+2)dD(0,H2r)dr.
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Hyperbolic Metric and Conformal Maps in the Bergman Space 181

By a change of variable, we conclude that

∫
+∞

0
r p−1e−(α+2)dD(0,Hr)dr < +∞.

Finally, observing that Hr = Fr∣ f ′(0)∣ and using another change of variable gives

∫
+∞

0
r p−1e−(α+2)dD(0,Fr)dr < +∞,

and the proof is complete. ∎
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