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Hyperbolic metric and membership of
conformal maps in the Bergman space

Dimitrios Betsakos, Christina Karafyllia, and Nikolaos Karamanlis

Abstract. We prove that for 0 < p < +o00 and -1 < @ < +00, a conformal map defined on the unit disk
belongs to the weighted Bergman space A%, if and only if a certain integral involving the hyperbolic
distance converges.

1 Introduction

For 0 < p < +00 and —1 < & < +00, the weighted Bergman space A% is the set of all
holomorphic functions f in the unit disk D such that

£y = [ 1) (1= [2F)"dA(z) < +eo,

where d A denotes the Lebesgue area measure on . Closely related to Bergman spaces
are the classical Hardy spaces H?. For p > 0, H? consists of all holomorphic functions
in the unit disk such that

2
it\|P
| fHZP = sup / |f(re”)| dt < +o0.
0<r<170
It is well known that H? c A?, foralla € (-1, +00), and moreover,
im || fllae =1 fle
a—>—1 «

(see [16]). For the theory of Bergman spaces, see [4, 7]. The problem of characterizing
conformal maps which are contained in H? has been extensively studied in the past
with the work, among others, of Prawitz [13], Hardy and Littlewood [6], Pommerenke
[12], and Poggi-Corradini [11]. The following characterization of conformal maps in
Hardy spaces is due to Prawitz [13], Hardy and Littlewood [6], and Pommerenke [12].
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Theorem A Let 0 < p < +o0 and suppose f is a conformal map on D. Then f € H?
if and only if

1
f M(r, f)Pdr < +oo,
0

where M(r, f) = max,-, | f(2)], 0 < r <1, is the maximum modulus of f on the circle
of radius r centered at 0.

For a conformal map f onDand r > 0,set F, = {zeD: | f(z)| =r}. Letdp(0, F,)
denote the hyperbolic distance in D between 0 and the set F,, ie., dp(0,F,) =
inf,er, dp(0, z), where dp(0, z) is the hyperbolic distance between 0, z in . Poggi-
Corradini in [11] posed the question of whether a conformal map f belongs to H? if
and only if

+00o 1 d E
[ rPlemd(OF) gy ¢ 400,
0

This question was settled by Karafyllia in [8] providing another characterization for
conformal maps in H?.

Theorem B Let 0 < p < +oo and suppose f is a conformal map on D. For r > 0, let
F,={zeD: | f(z)|=r}. Then f € H? if and only if

+0o0o d
f rP e (OF) g ¢ 4 oo,
0

Conformal maps in Bergman spaces have been characterized by Baernstein, Girela,
and Peldez [2] and also by Pérez-Gonzalez and Rittya [10].

Theorem C Let 0 < p < +o0 and —1 < a < +oo and suppose f is a conformal map in
D. Then f € A, if and only if

1
f (1= ) M(r, f)Pdr < +oo.
0
Note that Theorem C is the analogue of Theorem A. It is therefore natural to ask
what the counterpart of Theorem B is for Bergman spaces. In this direction we prove

the following theorem.

Theorem 1.1 Let 0 < p < +oo and —1 < a < +00. Suppose f is a conformal map on D
andforr>0letF, = {zeD: | f(2)| =r}. Then f € AL ifand only if

+oo d
f Pl (0 2)dn(0F) gy 4o
0

For a bounded function f, the integral that appears in Theorem 1.1 converges
trivially. Therefore, we will assume for the rest of this paper that f is an unbounded
conformal map on the unit disk.
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2 Preliminaries

The hyperbolic distance between z, w € D is defined by

lz—w|
dp(z,w) =log ‘;:Zl ,
[1-zw|
and the Green function for the unit disk is
[1-zw| e (W) 11

gD(z’W) = log |Z— W| - log edn(zw) _1°

Let D be a simply connected domain in C andlet f : D — D be a conformal map from
the unit disk onto D. The hyperbolic distance in D between z, w € D is defined by

dp(z,w) = do(f 7 (2), £ (W))-
Since dp is invariant under the group of conformal self maps of the unit disk, it follows
that dp is well defined. Moreover, the function
et (W) 4
(2.1) gn(z,w) =log G 1

is the Green function for the domain D and is also invariant under conformal maps.
See, for example, [1, 3, 5, 9].

We will need a few facts about the function M(r, f) that appears in Theorems A
and C. Recall that for a (non constant) holomorphic function f on D and 0 < r <1,
the maximum modulus function of f is defined as

M(r,f) = max| f(2).

It is well known that M is a continuous, strictly increasing function of r, and thus its
derivative M’ exists everywhere in (0,1) except for at most countably many points.
Let0 < a < b<landletz,, z, € Dbe points such that M(a, f) = | f(z,)|, M(b, f) =
| f(zp)|, |za| = a, |zp| = b. Also, let z/, be the point where the segment [0, z;, | meets
the circle of radius a. Observe that

0<M(b,f)-M(a, f) = | f(z)l = | f(za)| <] f(20)] - | £(20)]
< f@) -Gl =| [ Fonan]
By the triangle inequality,

0<M(b, f)-M(a, )< \STIIZ | f'(2)||b - al.
z|<
This shows that M is locally Lipschitz in [0,1) and thus absolutely continuous in [0,
1 - ¢] for any ¢ > 0 sufficiently small. We can now proceed with a lemma that will be

useful in the proof of Theorem 1.1.

Lemma 2.1 Suppose f is an unbounded conformal map defined on the unit disk such
that f(0) = 0. Then the maximum modulus function M, defined above, satisfies the
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following change of variable formula:

+o0 1 _ a+2
f rp‘le‘(“+2)dD(O’F')dr:f M(s, f)p_l(1 S) M'(s, f)ds.
0 0

1+s

Proof For 0 <r < +oo, recall that F, ={zeD: | f(z)| = r}. Let z, be a point on
F, such that dp (0, F,) = dp(0, z,) = log t—i, where p = p(r) = |z,|. The point z, may
not be unique, but it is one of the points of F, that is closest to the origin. This is
true, because of the definition of dp and the fact that the function log 1= is strictly
increasing in [0,1). The first integral in the statement of the lemma can therefore be

written as

+o0 L +o00o o 1+p(r)
/' P (a42)dp (0.F,) g, _ /' p-1,-(at2)log 203 4
0 0

+o00 1- a+2
:f ) P(f)) dr
0 1+ p(r)
Let 0 < £ < 1. By a standard result in real analysis (see, for example, [15, p. 326]) and
the facts about M stated before the lemma, we have that

fM(l—s, f) rp—l(l_ p(r) )a+2dr _
M(0, f) 1+ p(r)

e S L=p(M(s, )2
\/0‘ M(S, f)P (m) M (S, f)dS

By the definition of p(-), it is not hard to see that for any s >0, p(M(s, f)) =
|zp(s, £ = - The last equality, therefore, becomes

/M(l—s, f) rpfl(l_ P(r) )tx+2dr _
M(0, f) 1+ p(r)

fol_sM(s, f)P_l(i;—z)MzM'(s, f)ds.

Since we are assuming that f is unbounded and f(0) = 0, letting ¢ - 0 and using the
Monotone Convergence Theorem yields the required formula. ]

Next, we need to establish a differential inequality for the function M that will also
be used in the proof of Theorem 1.1

Lemma 2.2 Let f be a conformal map on the unit disk satisfying f(0) =0 and
f'(0) =1 Then
1+7r
r(l-r)’
for any r € (0,1) such that M'(r, f) exists. Moreover, equality occurs for some r if and

only if fis a Koebe function, i.e., f(z) = e A =1

M'(r, ) <M(r, f)

Proof Let re(0,1) be a point such that M'(r, f) exists and let h be a small
positive number. Write M(r, f) =| f(z,)|and M(r - h, f) =| f(2z,-)|, where|z,| =
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t, |zr—n| = r = h. Let z,_, be the point where the segment [0, z,] meets the circle of
radius r — h. Then we have
M(r, ) =M(r=h, f) _|f@)| =1 f(zn)| _ [ ()= f(z)]
h h N h '

Observe that, as h — 0, the limit of the right-hand side in the last inequality is
%| f1(z:). Thus letting h — 0 gives

M f) < o] flGen).

By the Cauchy-Schwarz inequality, % | fI(z:) < |V| fl(2+)|- A quick calculation shows
that

VIAI(z) =1 £ (z0)l.

It follows that

M'(r, f) <] f'(z)l.

Since we are assuming that f is a normalized univalent function, ie., f €S, by a
standard estimate for maps in S (see [5, p. 22]), we conclude that

(2 z 1+|zf| - r 1+—1’
£l < | FEl oy = MO s

and the lemma is proved. Finally, we treat the equality case. If f is a Koebe function,

then M(r, f) = ﬁ, and therefore we have equality for all r € (0,1). Conversely, if

equality holds for some r, then we must have equality in the estimate for maps in S
that we used above and therefore f is a Koebe function. ]

Finally, we will make use of the following fact about the norm || f ||i,,. LetO<p<
+00 and —1 < « < +o0. The quantity

1115, = [ 1@ (1-12P) dAC)

is comparable (see [14]) to

L7 @E 7 @ (os ) A+ FO)"
It follows that
(2.2) feAl — A|f(z)|P_2\ f'(z)|2(log|—i|)a dA(z) < +oo.

3 Proof of Theorem 1.1

The first part of the proof is similar to the proof of [8, Theorem 1.1]. Suppose that for
some 0 < p < +o00 and some -1 < & < +00,

(1) / T 1@ DA (O0F) g ¢ o
0
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Let dA denote the Lebesgue area measure, and let D = f(ID). We denote by
gp(f(0), z), z € D the Green function for D and we set gp( f(0), z) = 0 for z ¢ D.
By a change of variable and the conformal invariance of the Green function, we
deduce that

1

(32) S @I @F (1og
- [1£ @I () g0 (0.2 dA ()
= [ Wl g (£(0), W)™ dA(w)
= fom rp’l(fozngn (£(0),re®)"" do)dr.

By elementary calculus,

)a+2dA(Z)

X
e* +1 <3¢,
* -1

3.3 1
(33) og -

for all x sufficiently large. Note that for D unbounded and simply connected,
dp ( f(0), f(F,)) — +o0 as r - +o0o which also follows from the hypothesis (3.1).
Therefore, by (3.3) and (2.1), we deduce that there exists an 7o > 0 and a positive
constant C such that for every r > ro,

go ( £(0), reie)mz < oD n( FOre)
< G~ (Do ( F(0),fweD: [wl=r})

— Ce—(lx+2)dD(O,F,).

Integrating with respect to 0, we get

2 9\ % 2m
[ e (f)re®) g < [T emniomgg
0 0
(3.4) = 27Ce(@+Ddn(0.F,)

for every r > rg. So, by (3.2) and (3.4), we infer that there exist positive constants
Cy, C, such that

1

L@ @ ls) ac s

2]

+o0o
G f rPle (@b (OF) gp 4 ) < 4oo.
To

Thus by (2.2), we conclude that f € A%,
For the converse, suppose that f € A% is conformal. In addition, assume temporar-
ily that f(0) = 0 and f’(0) = 1. By Lemma 2.1, it suffices to show that

/:M(s, )PA=5)**2M (s, f)ds < +oo.
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Note that the singularity of this integral occurs at 1, and thus it is enough to prove that
fé M(s, )P (1= )M (s, f)ds < +oo,

for some number § € (0,1). By Lemma 2.2,

[ M(s, )P (1-5)"2M'(s, f)ds <2 [ M(s, f)

Observe that

2 [ mGs, )

P (1 _ S)a+1 s,

p (1=s)t (l _ S)OH—I

ds< = f M(s, )P(1-s2)**ds
M(s, £P(1-s*)**ds.
0
Since f € A, the last integral converges by Theorem C. Hence,

+00 d
/ r P71~ (@)dn(0F) g 4 o
0

We will now remove the extra assumptions f(0) = 0 and f'(0) = 1. For f € A,
let h(z) = ]{(,((ZO)) and g(z) = h(z) — h(0). For r > 0,1et H, = {zeD: |h(z)|=r} and

={zeD: |g(z)| = r}.Set Q = h(D). Note that g € AL Since g(0) = 0and g'(0) =
1, it follows from what we have proved that

+oo d
f Pl (@A (0.6 gy ¢ 4 oo,
0

By the conformal invariance of the hyperbolic distance,

f+°° P 071, (@42)dn(0,G1) g _ f+°° -1 g=(@+2)da_y0) (0,rIDN(Q-h(0))) 4,
0 0

_ f+°° 1 g~(a+2)da (h(0),(h(0)+raD)N0) 7,
0

- [“’" pp1 - (@r2)da(h(0).) g,
0

where w, € {w :|w — h(0)| = r} n Q. Let T be the hyperbolic geodesic in Q joining
h(0) to wy,, where |wy,| =1 and dq(h(0),2rdD N Q) = dq(h(0), w,,). If r is suf-
ficiently large, then {w : |w — h(0)| < r} c 2rD, and thus we can find a point w, on
Cn{w:|w-h(0)|=r}. Then

da(h(0),w,) <dq(h(0),w,) <dq(h(0),wy,).
It follows that

too > f+°° P 1~ (@42)ds(0.G,) g 5 f+°° 01— (ar2)da (h(0).w3r) g
0 0

B f+°° 1 g~ (a+2)da (h(0),2r9D00) 4,
0

+o0o d
_ / PPl —(a42)ds (0. Har) g,
0
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By a change of variable, we conclude that
f“’" rP e (@A (O ) gp ¢ 4 oo,
0

Finally, observing that H, = F,| f/(9)| and using another change of variable gives
f+°o Pl (@ Ddo(0F) gy 4 oo,
0

and the proof is complete. ]
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