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Abstract

We consider a stochastic model, called the replicator coalescent, describing a system of
blocks of k different types that undergo pairwise mergers at rates depending on the block
types: with rate Cij ≥ 0 blocks of type i and j merge, resulting in a single block of type i.
The replicator coalescent can be seen as a generalisation of Kingman’s coalescent death
chain in a multi-type setting, although without an underpinning exchangeable partition
structure. The name is derived from a remarkable connection between the instantaneous
dynamics of this multi-type coalescent when issued from an arbitrarily large number of
blocks, and the so-called replicator equations from evolutionary game theory. By dilat-
ing time arbitrarily close to zero, we see that initially, on coming down from infinity, the
replicator coalescent behaves like the solution to a certain replicator equation. Thereafter,
stochastic effects are felt and the process evolves more in the spirit of a multi-type death
chain.
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1. Introduction

In this article, we are interested in developing a multi-type analogue of Kingman’s coales-
cent as a death chain, called a replicator coalescent, with the following interpretation. Blocks
take one of k different types. Mergers within blocks may take place, as well as mergers of
blocks with two different types. In the latter case, we will need to specify what type the two
merging blocks of different type will take. To this end, let us introduce the k × k rate matrix
C = (Ci,j), the merger rate matrix, with Ci,j ≥ 0 for all i, j ∈ {1, . . . , k}. This matrix (which
is not an intensity matrix) encodes the evolution of a continuous-time Markov chain, say
(n(t), t ≥ 0), on the state space Nk∗ = {

η ∈N
k
0 :
∑k

i=1 ηi ≥ 1
}
, where N0 = {0, 1, 2, . . .}, which

is defined in the following way. Given that n(t) = (n1, . . . , nk) ∈N
k∗ such that

∑k
i=1 ni > 1:
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n2

n1

n3

(1, 0, 0)

(5, 6, 2)

FIGURE 1. A path of replicator coalescent block numbers with k = 3, initiated from n(0) = (5, 6, 2) and
reducing to a population of one with n(γ1) = (1, 0, 0). The diagram represents the range of the process

and there is no time axis.

• For i ∈ {1, . . . , k}, any two specific blocks of type i will merge at rate Ci,i, and hence the
total merger rate of type i blocks is equal to Ci,i

(ni
2

)
.

• For i �= j, both selected from {1, . . . , k}, any block of type i will merge with any block
of type j, producing a single block of type i, at rate Ci,j. The total rate of events of this
type is thus Ci,jninj.

We can interpret (n(t), t ≥ 0) as the evolution of the population of k types that exhibit both
inter-type and intra-type competition. The rate Ci,i is the rate at which two individuals of type i
compete for resource, resulting in one of them not surviving. Moreover, at rate Ci,j individuals
of types i and j encounter one another in a competition for resource, resulting in j not surviving.
In this respect, our replicator coalescent echoes features of the so-called ‘O.K. Corral’ model
describing a famous nineteenth-century Arizona shoot-out between lawmen and outlaws in [5,
6, 7], as well as the (birth–)death process in [1]. An example of the sample path of the process
n is given in Figure 1 in the setting k = 3.

The reader will note that the rate at which inter-type mergers occur is that of Kingman’s
coalescent. When there is only one type, and hence only inter-type coalescence occurs, the
replicator coalescent is therefore nothing more than the death chain of a Kingman coalescent.
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The replicator coalescent 3

In this sense, the process (n, P) may be thought of as a multi-type variant of the Kingman death
chain.

We also note that the requirement Ci,j > 0 for all i, j is a sufficient condition to ensure that
populations of different types are able to interact with one another, which, in turn, will allow
for the population to collapse to a single surviving individual. If, for example, we were to
take Ci,j = 0 for all i �= j, then we have k independent Kingman coalescence processes that do
not interact, in which case the absorbing state of (n(t), t ≥ 0) is the vector (1, . . . , 1). That
said, even sticking to the requirement that the model ensures that the population reduces to a
single surviving individual, the condition Ci,j > 0 for all i, j may well be replaced by a weaker
‘irreducibility’-type condition. Nonetheless, we refrain from exploring this further at this point
as, later on in this article, we will require more conditions on the matrix Ci,j, for different
reasons, that will supersede the current discussion.

The specific structure of the replicator coalescent does not permit an interpretation in terms
of exchangeable partition structures, as is the case for Kingman’s coalescent, neither when
considering the total population nor when considered as a vector-valued process. In the former
case, this is obviously because blocks are subject to different rates according to their type and
therefore cannot be exchangeably labelled. In the latter case, a notion of multi-type exchange-
ability is possible and was discussed in the context of coalescence in [4]. Unfortunately, the
way in which mergers occur across different types of blocks is just outside the definition given
in [4], which insists on a random selection of multiple mergers that cannot be arranged to be a
single merger via parameter choices.

Although the replicator coalescent lives in the space N
k∗, we prefer to describe it via a so-

called L1-polar decomposition in the spirit of, e.g., [1]. To this end, define σ (t) = ‖n(t)‖1 =
n1(t) + · · · + nk(t) ∈N and let r(t) = arg (n(t)) := σ (t)−1n(t) ∈ Sk, where

Sk :=
{

(x1, x2, . . . , xk) ∈R
k :

k∑
i=1

xi = 1, xi ≥ 0 for all i

}

is the (k − 1)-dimensional simplex, with vector entries ri(t) = σ (t)−1ni(t), i = 1, . . . , k. We
will additionally writem and occasionally use, Sk+ to have the same definition as Sk, albeit
with each of the xi > 0.

We often refer to the process n as (r, σ−1). In particular, if η = (η1, . . . , ηk) ∈N
k∗, we will

use Pη for the law of the replicator coalescent issued from state n(0) = η. The usual convention
would be to think of the family of probabilities P= (Pη, η ∈N

k∗); however, we interchangeably
also think of P= (Pη, η ∈ Sk ×N

−1), where Sk ×N
−1 := {(x, 1/n) : x ∈ Sk and n ∈N}.

In the setting of the block-counting process for Kingman’s coalescent, there are three fun-
damental facts that are now taken for granted in the mainstream literature. First, Kingman’s
coalescent block-counting process comes down from infinity almost surely. Second, it comes
down from infinity in such a way that the number of blocks divided by 1/t converges to a con-
stant as t → 0. Third, and somewhat trivially, the block-counting process is a death chain with
an absorbing state that is a single block. This inspires us to address the following questions for
our replicator coalescent:

(i) Does it ‘come down from infinity’ in an appropriately prescribed sense?

(ii) What is the distribution on {1, . . . , k} of the type of the terminal block?

We are interested in characterising the behaviour of the replicator coalescent as we start
it from an initial population that ‘tends to infinity’ in a prescribed way, and as such we will
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give a response to (i). In doing so, we will unravel a remarkable connection with the theory of
evolutionary dynamical systems described by so-called replicator equations, hence our choice
of the name replicator coalescent. Our response to (ii) is by no means a complete story. For
example, we don’t show the existence of entrance laws on Skorokhod space, but rather we
focus on the behaviour of the process as we limit its initial state to a boundary state ‘at infinity’,
which means an initial condition for (r, σ−1) in Sk+ × {0}.
Definition 1. Henceforth we will say that (ηN, N ≥ 1) tends to (r0, 0) ∈ Sk+ × {0} if ηN ∈N

k∗
such that ‖ηN‖ = N and arg (ηN) → r0 as N → ∞.

We are unable to provide any results for (ii) and believe this to be an extremely difficult
problem; even in light of related results, e.g. on the aforementioned O.K. Corral model in
[5, 6, 7]. This short article is but an introduction to replicator coalescence, offering the oppor-
tunity for further analysis to take place. Indeed, in future work we aim to give a more precise
statement on the convergence on the Skorokhod space of the process to a unique entrance law
that exhibits continuity at time zero. We comment further on this in the final section of this
paper.

2. Main results

For our first result, we show that the replicator coalescent comes down from infinity in a
relatively specific sense. We study the time γm = inf{t > 0: σ (t) ≤ m}, m ∈N, that the coales-
cent first reaches a state with m blocks in total, which can be bounded in probability for large
N according to the following result.

Lemma 1. Without any further requirement on Ci,j, there exists a Kingman coalescent
death chain ν− such that σ ≥ ν− under Pη for each η = ( arg (n(0)), σ (0)−1) ∈ Sk ×N

−1.
Conversely, if Ci,j > 0 for all i,j, there exists a Kingman coalescent death chain ν+ such that
σ ≤ ν+ under Pη for each η = ( arg (n(0)), σ (0)−1) ∈ Sk ×N

−1.
In particular, under the assumption that Ci,j > 0 for all i, j, the replicator coalescent comes

down from infinity in the sense that, for all ε > 0, limm→∞ limN→∞ PηN (γm < ε) = 1.

As it comes down from infinity, the standard Kingman coalescent with merger rate c > 0
has block count (ν(t), t ≥ 0), which is approximately described by the ordinary differential
equation (ODE)

ν̇(t) = −cν(t)2/2. (1)

It turns out that the corresponding ODE for our coalescent is already known in the evolutionary
game theory literature as the replicator equation.

Replicator equations are used to describe a population of k types, with the proportion of
the total population of type i ∈ {1, . . . , k} at time t ≥ 0 denoted xi(t) ∈ [0, 1]. These values
sum to one, so x(t) := (x1(t), . . . , xk(t)) lives in Sk. The replicator equations are then written
as ẋi(t) = xi(t)(fi(x(t)) − f (x(t))), i = 1, . . . , k, t ≥ 0, where fi : Sk 
→R describes the ‘fitness’
of type i as a function of the current population density, and f (x(t)) =∑n

i=1 xifi(x(t)) is the
average population fitness.

Fitness is often assumed to depend linearly upon the population distribution, with coeffi-
cients organised in the ‘payoff matrix’ A. Specifically, let Ai,j denote the payoff for a player
of type i facing an opponent of type j. Then fi(x) =∑n

j=1 Ai,jxj. This replicator equation,
henceforth referred to as the A-replicator equation, may be written as

ẋi(t) = xi(t)
(
[Ax(t)]i − x(t)�Ax(t)

)
, i = 1, . . . , k, t ≥ 0. (2)
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If the system in (2) admits a fixed point in the simplex, i.e. xi(t) = x∗
i , i = 1, . . . , k, for

some vector x∗ = (x∗
1, . . . , x∗

k ) ∈ Sk, so that d
(∑k

i=1 xi(t)
)
/dt = 0, then we see that, necessar-

ily, [Ax∗]i = (x∗)�Ax∗, i = 1, . . . , k. In turn, this implies that there is a constant c > 0 such
that Ax∗ = c1, so x∗ = cA−11, where 1 is the vector in R

k with unit entries. Since x∗ ∈ Sk, it
follows that 1�x∗ = 1, and hence c = (1�A−11)−1, thus (2) is solved by x∗ = A−11/1�A−11.

If x∗ satisfies the relation (x∗)�Ax > x�Ax for all x �= x∗ in a neighbourhood of x∗, then it
is called an evolutionary stable state (ESS). Theorem 7.2.4 of [3] states that if x∗ is an ESS,
then

lim
t→∞ x(t) = x∗. (3)

The following results give us a remarkable connection between the theory of replicator
equations and our coalescent model. To this end we define our A matrix by

Ai,j = −
(

Cj,i1j �=i + 1

2
Ci,i1i=j

)
. (4)

For the remainder of the paper we will assume that the rates C are such that (3) holds.
Let us now state the connection between the notion of coming down from infinity for the

replicator coalescent and the corresponding replicator equations.

Theorem 1. Suppose that A is such that (3) holds, and that (ηN, N ≥ 1) tends to (r0, 0). Then,
for all T > 0, limN→∞ EηN

[
supt≤T ‖R(t) − x(t)‖1

]= 0, i = 1, . . . , k, where R(t) = r(τ (t)),
t ≥ 0, x(t) = (x1(t), . . . , xk(t)) solves the A-replicator equation with initial condition x(0) = r0,
and τ (t) = inf

{
s > 0:

∫ s
0 σ (u) du > t}, t ≥ 0. In particular,

lim
t↑∞ lim

N→∞ EηN [‖R(t) − x∗‖1] = 0, i = 1, . . . , k.

In words, Theorem 1 says that by dilating time arbitrarily close to zero, its process r in the
simplex behaves deterministically like the solution to an A-replicator equation. For a special
choice of the matrix Ci,j, Figure 2 shows simulations of the process (R(t), t ≥ 0) that resonate
with the statement of Theorem 1. As part of the proof of Lemma 1, we will see that under
PηN , the process σ is comparable to a Kingman coalescent with some collision rate, say c > 0.

Noting that
∫ τ (t)

0 σ (u) du = t, which implies τ̇ (t) = 1/σ (τ (t)), if, in heuristic terms, we treat
σ as a solution to (1) with σ (0) = N, so that σ (t)−1 = N−1 + ct/2, then τ (t) ≈ 2( exp{ct/2} −
1)/cN ≈ t/N.

For a Kingman coalescent, say (ν(t), t ≥ 0) with merger rate c, classical reasoning tells
us that (ν(t/N)/N, t ≥ 0) converges in an appropriate sense to the solution to the ODE (1)
as ν(0) = N → ∞. In the spirit of these arguments, we would therefore expect that we can
similarly control (σ (t/N)/N, t ≥ 0) as well as (n(t/N)/N, t ≥ 0) as N → ∞. In turn, since we
can write

R(t) ≈ r(t/N) = n(t/N)/N

σ (t/N)/N
, t ≥ 0,

we can therefore think of Theorem 1 as a version of the aforementioned functional scaling
result for Kingman’s coalescent.

The remainder of this paper is structured as follows. In the next section we discuss how we
can compare the process (σ (t), t ≥ 0) with Kingman’s coalescent on the same probability space
when it is issued from a finite number of blocks. This comparison is used frequently in several
of our proofs. In Section 4 we treat the Markov process n as a semimartingale and study its
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FIGURE 2. Simulations of a replicator coalescent with k = 3 initiated from a variety of initial states
with an initial number of blocks σ (0) = 1015. Each path represents a simulation from a different initial
state, presented in barycentric coordinates in the 3-simplex and a logarithmic axis for the total number
of blocks. The matrix C has entries Ci,i = Ci,i+1 = 1 and other entries zero. The reader will note that this

case in particular demonstrates that we clearly do not need to enforce Ci,j > 0 for all i, j.

decomposition as the sum of a martingale and a bounded variation compensator. This provides
the basis for the proof of Theorem 1, given in Section 5. Finally, in Section 6 we conclude with
some technical remarks and two conjectures concerning further behaviour of the entrance law.

3. Stochastic comparison with Kingman’s coalescent

As previously alluded to, there are various points in our reasoning where we will compare
the number of blocks in a replicator coalescent with the number of blocks in an appropriately
formulated Kingman coalescent on the same probability space. The first such result gives us
the proof that the replicator coalescent comes down from infinity.

Proof of Lemma 1. The process σ decreases by one with each block merger, analogously to
the block-counting process of a standard Kingman coalescent. It is therefore sufficient to prove
that σ decreases at least as slowly, or at least as fast, as a Kingman block-counting process
with comparable rates.

Formally, from finite starting states we want to construct such a Kingman coalescent ν+ on
the same space as σ with σ ≤ ν+ by considering the minimal rate of σ .

The total rate of mergers in state n is given by

ρ(n) =
k∑

i=1

(∑
j �=i

Ci,jnjni + Ci,i
(ni

2

) )
,

which depends not just on the total number of blocks, but also on the distribution of block
types. However, since Ci,j ≥ 0 for all i, j, we can choose C > maxi,j Ci,j such that

ρ(n) <

k∑
i=1

1

2
Cni

(∑
j �=i

nj + ni − 1

)
=

k∑
i=1

1

2
Cni(‖n‖1 − 1) = C

(‖n‖1
2

)
. (5)
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Appealing to the skip-free property, it follows that we can stochastically couple a Kingman coa-
lescent death chain (ν−(t), t ≥ 0) with collision rate C and the process (n(t), t ≥ 0) on the same
space such that, with η = ( arg (n(0)), σ (0)−1) ∈ Sk ×N

−1 and ν−(0) = σ (0), σ (t) ≥ ν−(t),
t ≥ 0.

Conversely, when Ci,j > 0 for all i, j, writing C = mini,j Ci,j, we get

ρ(n) ≥
k∑

i=1

1

2
Cni

(∑
j �=i

nj + ni − 1

)
= C

(‖n‖1
2

)
.

In the same spirit, it follows that we can stochastically embed another Kingman death chain
(ν+(t), t ≥ 0) and the process (n(t), t ≥ 0) on the same space such that, with η = ( arg (n(0)),
σ (0)−1) ∈ Sk ×N

−1 and ν−(0) = σ (0), σ (t) ≤ ν+(t), t ≥ 0.
In particular, as ν+ comes down from infinity, since γm ≤ β+

m := inf{t > 0: ν+(t) = m}, it
follows that, for each ε > 0,

lim
m→∞ lim

N→∞ PηN [γm < ε] ≥ lim
m→∞ lim

N→∞ P[β+
m < ε | ν+(0) = N] = 1,

thus completing the proof. �

4. Semimartingale representation

We would like to treat the replicator coalescent (n(t), t ≥ 0) as a semimartingale. It turns out
to be more convenient to consider instead the vectorial process

y(t) =
[

r(t ∧ γ1)

1/σ (t ∧ γ1)

]
, t ≥ 0,

where γ1 = inf{t > 0: σ (t) = 1}. Naturally, by expressing the evolution of (y(t), t ≥ 0) as that
of a semimartingale, our interest is predominantly in the process (r(t), t ≥ 0) in order to make
a link with the replicator equations in (2).

Lemma 2. For each η ∈N
k∗, the process y under Pη has a semimartingale decomposition

y(t) = y(0) + m(t) + α(t), t ≥ 0, where (m(t), t ≥ 0) is a martingale taking the form m(t) =∑
s≤t∧γ1


y(s) − α(t), t ≥ 0, such that 
y(t) = y(t) − y(t−) and (α(t), t ≥ 0) is a compensator
taking the form

α(t) =
∫ t∧γ1

0

σ (s)

σ (s) − 1

k∑
i=1

[
σ (s)(r(s) − ei)

1

]
ri(s)[σ (s)−1diag(A)1 − Ar(s)]i ds.

Proof. A standard computation using the compensation formula tells us that m is a mar-
tingale provided that

∑
s≤t ‖
m(s)‖1 =∑

s≤t ‖
y(s)‖1 has finite expectation for each t ≥ 0,
which is equivalent to the existence of the compensator α(t). The latter is given by the rates
that define the replicator coalescent. More precisely, recalling (4),
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α(t) =
∫ t∧γ1

0

k∑
i=1

⎡
⎢⎢⎣

n(s) − ei

σ (s) − 1
− n(s)

σ (s)
1

σ (s) − 1
− 1

σ (s)

⎤
⎥⎥⎦
[

k∑
j=1, j �=i

nj(s)ni(s)Cji + 1

2
ni(s)(ni(s) − 1)Ci,i

]
ds

=
∫ t∧γ1

0

k∑
i=1

⎡
⎢⎢⎣

n(s) − eiσ (s)

(σ (s) − 1)σ (s)
1

(σ (s) − 1)σ (s)

⎤
⎥⎥⎦
[

ni(s)Ai,i −
k∑

j=1

nj(s)ni(s)Ai,j

]
ds

=
∫ t∧γ1

0

σ (s)

σ (s) − 1

k∑
i=1

[
σ (s)(r(s) − ei)

1

]
ri(s)[σ (s)−1diag(A)1 − Ar(s)]i ds,

as required. Note that if we identify the compensator via the density (λ(t), t ≥ 0), where

α(t) =:
∫ t∧γ1

0
λ(s) ds (6)

then, in the above representation of α, the largest term is of order σ (s), from which, because
the process n is non-increasing, we can easily conclude that, for all η ∈N

k∗ and any time t ≥ 0,

EηN

[ ∑
s≤t∧γ1

‖
y(s)‖1

]
≤Eη

[ ∫ t∧γ1

0
‖λ(s)‖1 ds

]
≤ C‖η‖1EηN [t ∧ γ1] ≤ C‖η‖2t (7)

for an unimportant constant C > 0. This ensures that m is a martingale and that α is well
defined. �

For the proof of Theorem 1, we are interested in the behaviour of the process r under Pη for
any η such that ‖η‖1 → ∞ and arg (η) → r for some r ∈ Sk+. Heuristically speaking, the term
σ (s)(r(s) − ei) in the expression for α suggests that α(t) explodes as t → 0. The undesirable
factor σ (s) can be removed, however, by an appropriate time change; in doing so, we begin to
see where the relationship with the replicator equations emerges.

Lemma 3. Suppose we define the sequence of stopping times (τ (t), t ≥ 0), which are defined
by the right inverse, τ (t) = inf{u > 0:

∫ u
0 σ (s) ds > t}, t ≥ 0. Then yτ := y ◦ τ has the semi-

martingale decomposition yτ = mτ + ατ , where mτ := m ◦ τ is a martingale and, for t ≥ 0,

ατ (t) =
∫ t∧τ−1(γ1)

0

σ (τ (s))

σ (τ (s)) − 1

×
k∑

i=1

⎡
⎣r(τ (s)) − ei

1

σ (τ (s))

⎤
⎦ ri(τ (s))[σ (τ (s))−1diag(A)1 − Ar(τ (s))]i ds. (8)

Proof. We use basic Stieltjes calculus to tell us that dατ (t) = dα(s)|s=τ (t) dτ (t). Moreover,

∫ τ (t)

0
σ (s) ds = t, and hence σ (τ (t)) dτ (t) = dt. (9)

Combining these observations with the conclusion of Lemma 2, the result follows. In
particular, from (6), ∫ τ (t)∧γ1

0
λ(s) ds =

∫ t∧τ−1(γ1)

0

λ(τ (u))

σ (τ (u))
du. (10)
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Technically, we need to verify that mτ is a martingale rather than a local martingale; however,
a computation similar to (7) taking advantage of (8) is easily executed, affirming the required
martingale status. �

Next we look at how to control the second moment of the martingale mτ in the semimartin-
gale decomposition of yτ .

Lemma 4. For each η ∈N
k∗, the martingale mτ under Pη satisfies

EηN
[‖mτ (t)‖2

2

]≤ CEη

[ ∫ τ (t)∧γ1

0

σ (s)2

(σ (s) − 1)2
ds

]
, t ≥ 0.

Proof. Steiltjes calculus, or equivalently general semi-martingale calculus (see, for example,
[8, Theorem II.33]), tells us that, since m has bounded variation,

‖m(t)‖2
2 = 2

∫ t∧γ1

0
m(s−) · dm(s) +

∑
0<s≤t∧γ1

{

‖m(s)‖2

2 − 2m(s−) · 
m(s)
}

= 2
∫ t∧γ1

0
m(s−) · dm(s) +

∑
0<s≤t∧γ1

(
m(s))2.

As all vector entries are bounded, it is easy to show that
∫ t∧γ1

0 m(s−) · dm(s), t ≥ 0, is a
martingale.

Next, we identify the adapted increasing bounded variation process, say β, that is the com-
pensator of

∑
0<s≤t∧γ1

(
m(s))2, t ≥ 0, so that ‖m(t)‖2
2 − β(t), t ≥ 0, is a martingale with

mean 0. To this end, note that 
m(t) = 
y(t). Hence, we have, on the event that t is a time
at which the number of blocks of type i decreases, that (
m(t))2 is given by

χi(t) :=

⎡
⎢⎢⎣

n(t) − σ (t)ei

(σ (t) − 1)σ (t)
1

(σ (t) − 1)σ (t)

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

n(t) − σ (t)ei

(σ (t) − 1)σ (t)
1

(σ (t) − 1)σ (t)

⎤
⎥⎥⎦= n(t) · n(t) − 2σ (t)ni(t) + σ (t)2 + 1

σ (t)2(σ (t) − 1)2
.

It is now straightforward to see that there exists a C > 0 such that

β(t) =
∫ t∧γ1

0

k∑
i=1

χi(s)

[
k∑

j=1, j �=i

nj(s)ni(s)Cji + 1

2
ni(s)(ni(s) − 1)Ci,i

]
ds

≤ C
∫ t∧γ1

0

σ (s)2

(σ (s) − 1)2
ds,

where we have used that σ (t)2 = (n1(t) + · · · + nk(t))2 ≥ n(t) · n(t). Replacing t by τ (t) and
taking expectation gives the desired inequality. �

As the reader may now expect, our ultimate objective is to show that for any sequence
of starting initial configurations ηN ∈N

k∗ such that ‖ηN‖1 → ∞ as N → ∞ and arg (ηN) →
r ∈ Sk+, the martingale component mτ disappears. This tells us that the behaviour of (r(t),
t ≥ 0) behaves increasingly like the compensator term, which is a further key to controlling its
behaviour. To this end, we conclude this section with two more results that provide us with the
desired control of the aforesaid martingale component.

Lemma 5. Fix t > 0 and suppose that (ηN, N ≥ 1) tends to (r0, 0). Then τ−1(t) = ∫ t
0 σ (s) ds →

∞, τ (t) → 0, and |τ (t) ∧ γ1 − τ (t)| → 0 weakly as N → ∞.
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Proof. Recall from the proof of Lemma 1, and specifically (5), that there is a death chain
(ν(t), t ≥ 0) representing the number of blocks in a Kingman coalescent with merger rate C
such that, for any η ∈N

k∗, on the same probability space, we can stochastically bound σ (t) ≥
ν(t), t ≥ 0.

We now note that for any large M > 0 there exists a constant C > 0 (not necessarily the
same as before) such that, for any m sufficiently large,

lim
N→∞ PηN

( ∫ γm

0
σ (s) ds > M

)
≥ lim

N→∞ PηN

( ∫ βm

0
ν(s) ds > M

)

= Pr

( ∞∑
n=m+1

n

C
(n

2
)e(n)

1 > M

)

= Pr

( ∞∑
n=m+1

1

n − 1
e(n)

1 >
CM

2

)
, (11)

where βm = inf{t > 0: ν(t) = m} and (en
1, n ≥ 1) is a sequence of independent and identically

distributed unit-mean exponentially distributed random variables. If we write (N(t), t ≥ 0) for
a Poisson process with unit rate, then almost surely we have

∞∑
n=m+1

1

n − 1
e(n)

1 =
∫ ∞

0

1

N(s) + m
ds =

∫ ∞

0

s

N(s) + m

ds

s
= ∞,

where the final equality follows by the strong law of large numbers for Poisson processes. As
such, the right-hand side of (11) is equal to 1.

Since M and m can be arbitrarily large, this shows the first claim as soon as we note
that τ−1(t) = ∫ t

0 σ (u) du, which is an easy consequence of (9). On the other hand, note that

since
∫ τ (t)

0 σ (s) ds = t when σ (0) = ηN → ∞, the above comparison with Kingman’s coales-
cent shows almost surely that, since

∫ u
0 σ (s) ds converges weakly to infinity for all u > 0,

then τ (t) converges weakly to 0. Indeed, if with positive probability τ (t) > ε in the limit as
N → ∞, then, on that event,

∫ τ (t)
0 σ (s) ds ≥ ∫ ε

0 σ (s) ds, which explodes in distribution. This
in turn contradicts the definition of τ (t). This proves the second and third statements of the
lemma. �

Since the second moment of the martingale mτ can be controlled by its associated time
change, we also get a helpful L2 corollary from Lemma 5.

Corollary 1. From Lemmas 4 and 5, we deduce that, if (ηN, N ≥ 1) tends to (r0, 0), then, for
each t > 0, limN→∞ EηN

[
sups≤t ‖mτ (s)‖2

2

]= 0.

Proof. From Lemma 4 and a change of variable similar to (10),

EηN
[‖mτ (t)‖2

2

]≤ CEηN

[ ∫ τ (t)∧γ1

0

σ (s)2

(σ (s) − 1)2
ds

]

= CEηN

[ ∫ t∧τ−1(γ1)

0

σ (τ (u))2

(σ (τ (u)) − 1)2

1

σ (τ (u))
du

]
≤ CtEηN

[
1

σ (τ (t))

]
.

We can choose N sufficiently large that τ (t) is less than δ with probability at least 1 − ε, so

EηN

[
1

σ (τ (t))

]
≤EηN

[
1

σ (δ)
; τ (t) < δ

]
+ PηN (τ (t) ≥ δ) ≤ δEηN

[
1

δν(δ)

]
+ ε,
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where we have again compared with a lower bounding Kingman coalescent (ν(t), t ≥ 0)
on the same space, as in Lemma 5. Recall the classical result for Kingman’s coalescent
coming down from infinity that, when the collision rate is C > 0, δν(δ) → 2/C almost
surely as δ → 0 [2]. We can now easily conclude with the help of dominated conver-
gence that limN→∞ EηN

[‖mτ (t)‖2
2

]= 0, and this concludes the proof once we invoke Doob’s
submartingale inequality. �

5. Proof of Theorem 1

Recall that we have required from the A-replicator equation that x(t) → x∗ holds.
Reinterpreting (2) in its integral form, this tells us that

xi(t) = xi(0) +
∫ t

0
xi(s)([Ax(s)]i − x(s)�Ax(s)) ds, t ≥ 0. (12)

This representation makes it easier to give the heuristic basis of the proof of Theorem 1.
Following our earlier heuristic reasoning, we can now see that, under Pη as ‖η‖1 → ∞

the integrand in the expression for ατ appears to have a similar structure to the replicator
equations (2). That is, under Pη as ‖η‖1 → ∞ and as t → 0,

dατ (t)

dt
≈
[
θ (t)

0

]
,

where θ i(t) = ri(τ (t))
(
[Ar(τ (t))]i − r(τ (t))�Ar(τ (t))

)
. On the other hand, if we can show that

mτ → 0 as ‖η‖1 → ∞, then, since yτ = mτ + ατ , reading off the first component of yτ , i.e.
R(t) := r(τ (t)), roughly speaking we see that

Ri(t) ≈ ri(0) +
∫ t

0
Ri(s)

(
[AR(s)]i − R(s)�AR(s)

)
ds

as ‖η‖1 → ∞, given that Corollary 1 shows the martingale component is negligible. In other
words, the process (R(t), t ≥ 0), begins to resemble the replicator equation in its integral
form (12). It now looks like a reasonable conjecture that R(t) → x∗, just as the solution to
the replicator equation does.

Let us thus move to the proof of Theorem 1, which, as alluded to earlier, boils down to the
control we have on the martingale mτ under Pη as ‖η‖1 → ∞, thanks to Corollary 1.

Proof of Theorem 1. Write Ri(t) = r(τ (t)) on the event At := {t < τ−1(γ1)}, t ≥ 0, and note
from Lemma 5 and the proof of Lemma 1 that limN→∞ PηN (At) = 1. We have, for each T > 0,

EηN

[
sup
t≤T

∥∥∥∥∥R(t) − r(0) −
∫ t

0

(
k∑

i=1

eiRi(s)[AR(s)]i − (R(s)�AR(s))R(s)

)
ds

∥∥∥∥∥
1

1At

]

≤EηN

[
sup
t≤T

∥∥∥∥∥R(t) − r(0)

−
∫ t

0

σ (τ (s))

σ (τ (s)) − 1

k∑
i=1

(R(s) − ei)Ri(s)[σ (τ (s))−1diag(A)1 − AR(s)]i ds

∥∥∥∥∥
1

1At

]
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+EηN

[
sup
t≤T

∥∥∥∥∥
∫ t

0

1

σ (τ (s)) − 1

(
k∑

i=1

eiRi(s)[AR(s)]i − (R(s)�AR(s))R(s)

)
ds

∥∥∥∥∥
1

1At

]

+EηN

[
sup
t≤T

∥∥∥∥∥
∫ t

0

1

σ (τ (s)) − 1

(
(R(s)�diag(A)1)R(s) −

k∑
i=1

eiRi(s)[diag(A)1]i

)
ds

∥∥∥∥∥
1

1At

]
.

From Corollary 1, and the fact that ‖y‖1 ≤ √
k‖y‖2 for y ∈R

k, the first term after the inequality
tends to zero as N → ∞. Up to a multiplicative constant, the second and third terms after the
inequality can be bounded by

TEηN

[
1

(σ (τ (T)) − 1)
∧ 1

]
,

where we have used the monotonicity of τ ( · ) and σ ( · ). As noted in the proof of Corollary 1,
the latter tends to zero as N → ∞.

It now follows that

lim
N→∞ EηN

[
sup
t≤T

∥∥∥∥∥R(t) − r(0) −
∫ t

0

k∑
i=1

eiRi(s)[AR(s)]i − (R(s)�AR(s))R(s) ds

∥∥∥∥∥
1

1At

]
= 0.

As all of the vectorial and matrix terms in this equation are bounded, it is also easy to see, with
the help of Lemma 5, that

lim
N→∞ EηN

[
sup
t≤T

∥∥∥∥∥R(t) − r(0) −
∫ t

0

k∑
i=1

eiRi(s)[AR(s)]i − (R(s)�AR(s))R(s) ds

∥∥∥∥∥
1

1Ac
t

]

≤ lim
N→∞ CTPηN (Ac

T ) = 0

for some constant C > 0, which gives us

lim
N→∞ EηN

[
sup
t≤T

∥∥∥∥∥R(t) − r(0) −
∫ t

0

k∑
i=1

eiRi(s)[AR(s)]i − (R(s)�AR(s))R(s) ds

∥∥∥∥∥
1

]
= 0. (13)

Consider the replicator equation initiated from any r(0) ∈ Sk+. Similarly to (12), albeit in
vectorial form, we can write the solution to (2) when issued from r(0) as

x(t) − r(0) −
∫ t

0

k∑
i=1

eixi(s)[Ax(s)]i − (x(s)�Ax(s))x(s) ds = 0.

Subtracting this from (13), we see that, for each T > 0,
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EηN
[

sup
t≤T

‖R(t) − x(t)‖1
]

≤EηN

[
sup
t≤T

∥∥∥∥∥R(t) − r(0) −
∫ t

0

k∑
i=1

eiRi(s)([AR(s)]i − R(s)�AR(s)) ds

∥∥∥∥∥
1

]

+
∫ T

0

k∑
i=1

EηN
[|Ri(s) − xi(s)| |[AR(s)]i − R(s)�AR(s)|] ds

+
∫ T

0

k∑
i=1

xi(s)EηN
[|[A(R(s) − x(s))]i − R(s)�A(R(s) − x(s))|] ds

+
∫ T

0

k∑
i=1

xi(s)EηN [|(R(s) − x(s))�Ax(s)|] ds.

Noting that 0 ≤ Ri(s), xi(s) ≤ 1 for all i = 1, . . . , k, s ≥ 0, we have

EηN [ sup
t≤T

‖R(t) − x(t)‖1]

≤EηN

[
sup
t≤T

∥∥∥∥∥R(t) − r(0) −
∫ t

0

k∑
i=1

eiRi(s)
(
[AR(s)]i − R(s)�AR(s)

)
ds

∥∥∥∥∥
1

]

+ C
∫ T

0
EηN [ sup

u≤s
‖R(u) − x(u)‖1] ds,

where C > 0 is an unimportant constant. Hence, using (13), the monotonicity of norms, and
dominated convergence,

u(T) := lim
N→∞ sup

N′≥N
EηN

[
sup
t≤T

‖R(t) − x(t)‖1
]

≤ C
∫ T

0
lim

N→∞ sup
N′≥N

EηN
[

sup
u≤s

‖R(u) − x(u)‖1
]

ds = C
∫ T

0
u(s) ds,

where C > 0 is an unimportant constant. Grönwall’s lemma now tells us that

lim
N→∞ EηN

[
sup
t≤T

‖R(t) − x(t)‖1
]= 0.

By taking t → ∞, we easily deduce that

lim
t→∞ lim

N→∞ EηN [‖R(t) − x∗‖1] ≤ lim
t→∞ lim

N→∞ EηN [‖R(t) − x(t)‖1] + lim
t→∞ ‖x(t) − x∗‖1 = 0.

This completes the proof of the theorem. �

6. Concluding remarks

For the purpose of the following discussion, we can assume that Ci,j > 0 for all i, j ∈
{1, . . . , k}. In further work, it is possible pursue the issue of Skorokhod continuity with respect
to any ‘entrance laws at infinity’ that the process can come down from.

Suppose D is the space of càdlàg paths from [0, ∞) to N
k∗, with D as the Borel sigma

algebra on D generated from the usual Skorokhod metric. A Markovian definition of coming
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down from infinity would require the existence of a law P
∞ on (D,D) that is consistent with

P in the sense that

P
∞(n(t + s) = n) =

∑
n′∈Nk∗‖n′‖1≥‖n‖1

P
∞(n(t) = n′)Pn′ (n(s) = n), s, t > 0, n ∈N

k∗,

with P
∞(σ (t) < ∞) = 1 for all t > 0, and P

∞( limt↓0 σ (t) = ∞) = 1.
As there is no single point on the boundary of Nk∗ that represents an appropriate ‘infinity’

to come down from, one of the associated issues is whether a unique entrance law exists or
whether, e.g., there is an entrance law of (r, σ−1) for each ‘infinity’ of the form (r0, 0), where
r0 ∈ Sk+. We believe the latter to hold.

Conjecture 1. An entrance law, say P
(r0,0), exists for each r0 ∈ Sk+.

There is also the question of how we can see these different entrance laws in terms of
the behaviour of the process at arbitrarily small times. The following conjecture suggests that
looking backwards in time, it will be difficult to differentiate between the different entrance
laws proposed in Conjecture 1.

Conjecture 2. Suppose (ηN, N ≥ 1) tends to (r0, 0) for some r0 ∈ Sk+. Then

lim
m→∞ lim

N→∞ EηN [‖r(γm) − x∗‖1] = 0,

where we recall that γm = inf{t > 0: σ (t) ≤ m} for m ≥ 1.

In contrast to Theorem 1, Conjecture 2 claims that, moving backwards through time towards
the instantaneous event at which the replicator coalescent comes down from infinity at the
origin of time, the process r necessarily approaches x∗. As such, working backwards in time,
the replicator coalescent never gets to see the ‘initial state’ (r0, 0) from which its entrance law
is constructed.

Put together, Theorem 1 and Conjecture 2 are really claiming that x∗ is a ‘bottleneck’ for
the replicator coalescent. Figure 1 simulates an example where k = 3, in which the bottleneck
phenomenon can clearly be seen.

Theorem 1 also shows that under PηN as ηN → (r0, 0), in an arbitrarily small amount of
time (on the natural time scale of the original Markov process), the process r will effectively
jump from r0 to x∗. Taking Conjecture 2 into account, it is for this reason we pose our final
conjecture.

Conjecture 3. Suppose (ηN, N ≥ 1) tends to (r0, 0) for some r0 ∈ Sk+. Then, limN→∞ PηN →
P

(r0,0) continuously on (D,D) if and only if r0 = x∗.
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