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Homocysteine: a role in fetal programming?

Developmental plasticity allows the generation of a number of
phenotypes from a single genome (Gluckman & Hanson,
2004a). There is a substantial and growing body of evidence
from epidemiological studies (Godfrey & Barker, 2001) and
from animal models (Bertram & Hanson, 2001) that supports
the hypothesis that constraints in the fetal environment, such
as undernutrition, induce phenotypes with increased risk of
cardiovascular and metabolic disease in later life; so-called
fetal programming or phenotypic induction (Godfrey &
Barker, 2001; Bateson et al. 2004; Gluckman & Hanson,
2004b). Gluckman & Hanson (2004b) suggest that the pheno-
type of the fetus reflects adaptations during development that
predict the postnatal environment based upon signals from the
mother. Phenotypes at increased risk of disease are due to a
mis-match between the environment experienced in utero
and the challenges of postnatal life (Gluckman & Hanson,
2004b). However, to some, this remains controversial
(Huxley, 2006).

There is an urgent need to identify the mechanism by which
information about the maternal environment is transmitted to
the fetus and how this is interpreted by the fetus to produce
a particular phenotype in response to such developmental
cues. Studies using the well-established model of a moderate
reduction in dietary protein during pregnancy in the rat
suggest that disruption of 1-carbon metabolism may contribute
to one or both of these processes. Supply of methyl groups
from donors such as glycine via 5-methyltetrahydrofolate
(mTHF) is required for a number of critical pathways (for a
review, see Muskiet, 2005). Supplementation of the maternal
protein-restricted (PR) diet with glycine prevented hyperten-
sion in the adult offspring (Jackson et al. 2002; Brawley
et al. 2004). This suggests that phenotypic induction in
response to a maternal PR diet is closely associated with
altered 1-carbon metabolism.

Cellular differentiation during the development of the
embryo involves stable suppression of transcriptionally
silent genes by methylation of CpG dinucleotides in gene
promoters (Bird, 2002). Such epigenetic regulation of gene
expression requires the supply of methyl groups from
mTHF via conversion of S-adenosylmethionine to S-adeno-
sylhomocysteine (Muskiet, 2005). Lillycrop et al. (2005)
showed that feeding a PR diet during pregnancy results in
hypomethylation and increased expression of specific tran-
scription factors, namely the glucocorticoid receptor (GR)
and PPARa, which regulate energy homeostasis in the
liver of the offspring. This suggests altered methylation of
specific genes may be important in the induction in the
offspring of a modified metabolic phenotype by maternal
dietary constraint. Moreover, hypomethylation of GR and

PPARa promoters was prevented by supplementation of
the PR diet with folic acid. This suggests a causal link
between 1-carbon metabolism, altered epigenetic regulation
of gene expression and phenotypic induction.

In this issue, Langley-Evans et al. (2006) point out
that Bogdarina et al. (2004) did not find differences in the
methylation of the glucokinase (GK) promoter in the liver
of the offspring of dams fed a PR diet during pregnancy,
although GK expression was increased, which questions
the role of DNA methylation in phenotypic induction. One
explanation of this apparent discrepancy may lie in the
specificity of the control of gene expression by DNA meth-
ylation. Most genes are associated with CpG clusters known
as islands, but in the majority of genes these CpG are
always unmethylated and the level of expression is deter-
mined by the activities of various regulatory proteins such
as transcription factors (Bird, 2002). Thus it may not be sur-
prising that the expression of GK differed between offspring
without a difference in methylation. Since GK is positively
regulated by GR, increased GR activity in the liver of the
offspring of rats fed a PR diet (Bertram et al. 2001; Lilly-
crop et al. 2005) alone may account for increased GK
expression without a difference in the methylation status
of the GK gene. If so, there would not be a discrepancy
between the findings of Bogdarina et al. (2004) and Lilly-
crop et al. (2005). The important point is that in the liver
of the offspring of the PR dams, transcription factors with
numerous targets that are normally under stable suppression
by DNA methylation are activated, presumably in a specific
subset of cells as implied by Burns et al. (1997), thus chan-
ging the overall metabolic activity of the tissue.

If disruption of 1-carbon metabolism is important for phe-
notypic induction by the PR diet, it might be hypothesised
that this diet would be associated with increased homocys-
teine (Hcyst) concentration since folate is required for the
remethylation of Hcyst to methionine (Muskiet, 2005).
Exposure of the developing embryo to increased Hcyst con-
centration may contribute to induction of an altered pheno-
type by the PR diet as Hcyst directly modifies the activities
of several important signal-transduction pathways and tran-
scription factors (Malinow et al. 1993; Tsai et al. 1994;
Dalton et al. 1997; Brown et al. 1998; Southern et al.
1998; Mujumdar et al. 2000; Woo et al. 2000; Nishimoto
et al. 2003; Robert et al. 2005) and so may change the
response of specific tissues to developmental cues. Two
studies have reported measurements of maternal Hcyst con-
centration in pregnant rodents fed a PR diet. Petrie et al.
(2002) found increased Hcyst concentration in serum from
pregnant rats and mice fed a PR diet in early, but not
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mid, gestation. Brawley et al. (2004) show a trend towards a
higher Hcyst concentration at gestational age day 20 in rats
fed a PR diet. These findings suggest disruption of maternal
1-carbon metabolism during the early development of the
embryo, but not mid and late gestation. Since induction of
an altered phenotype in this model is established by
embryonic day 4·25 (Kwong et al. 2000), exposure of the
embryo to increased Hcyst concentration during the early
stages of development alone may be sufficient for induction
of an altered phenotype. The study reported in this issue by
Langley-Evans et al. (2006) did not show a difference in
maternal Hcyst concentration at gestational day 4, although
there is a trend towards higher Hcyst concentration in the
PR group, or at later time points. Thus there is a possible
disagreement between these findings and those of Petrie
et al. (2002) in early gestation. It is notable that Hcyst con-
centration in the study by Langley-Evans et al. (2006) is
about 30% higher in the control group than reported by
Petrie et al. (2002), while the Hcyst concentration in the
PR groups is similar. Such discrepancy can only be resolved
by further studies. The absence of a difference in Hcyst con-
centration between the offspring of the control and PR
groups at day 20 is consistent with the maternal data. How-
ever, if increased Hcyst exposure is involved in phenotypic
induction, it would be important to measure Hcyst concen-
tration in the early embryo.
DNA methyltransferases are responsible for establishing

and maintaining patterns of DNA methylation (Bird,
2002). Langley-Evans et al. (2006) report trends in DNA
methyltransferase 1 expression in fetal liver associated
with maternal protein intake during pregnancy and the sex
of the offspring, although the mechanistic link to Hcyst is
not clear. Unfortunately, these experiments appear under-
powered and so it is difficult to interpret the conflicting
trends in DNA methyltransferase 1 expression.
Altered 1-carbon metabolism is strongly implicated in the

mechanism by which different phenotypes are induced in the
offspring in response to variations in maternal nutrition. How-
ever, until further investigations have been carried out it may
be wise to reserve judgement on the precise role of Hcyst in
fetal programming.
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