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Linear Koszul duality

Ivan Mirković and Simon Riche

Abstract

In this paper we construct, for F1 and F2 subbundles of a vector bundle E, a
‘Koszul duality’ equivalence between derived categories of Gm-equivariant coherent
(dg-)sheaves on the derived intersection F1

R∩EF2, and the corresponding derived
intersection F⊥1

R∩E∗F⊥2 . We also propose applications to Hecke algebras.

Introduction

0.1 Koszul duality is an algebraic formalism of Fourier transform which is often deep
and mysterious in applications. For instance, Bezrukavnikov has noticed that it exchanges
monodromy and the Chern class, the same as mirror duality, while the work of Beilinson
et al. [BGS96] has made Koszul duality an essential ingredient of representation theory.

The case of linear Koszul duality studied here has a simple geometric content which
appears in a number of applications. For two vector subbundles F1, F2 of a vector bundle E
(over a noetherian, integral, separated, regular base scheme), linear Koszul duality provides a
(contravariant) equivalence of derived categories of Gm-equivariant coherent sheaves on the
differential graded scheme

F1
R∩E F2

obtained as the derived intersection of subbundles inside a vector bundle, and the corresponding
object

F⊥1
R∩E∗ F⊥2

inside the dual vector bundle.
The origin of the linear duality observation is Kashiwara’s isomorphism of Borel–Moore

homology groups
H∗(F1 ∩E F2)∼=H∗(F⊥1 ∩E∗ F⊥2 )

given by a Fourier transform for constructible sheaves. The Iwahori–Matsumoto involution for
graded affine Hecke algebras has been realized as Kashiwara’s Fourier isomorphism in equivariant
Borel–Moore homology [EM97]. The standard affine Hecke algebras have an analogous realization
in K-theory (the K-homology) and this suggests that Kashiwara’s isomorphism lifts to
K-homology, but natural isomorphisms of K-homology groups should come from equivalences
of triangulated categories of coherent sheaves.

0.2 Let us describe the content of this paper. We start in § 1 with generalities on sheaves on dg-
schemes. In § 2 we construct the relevant Koszul type complexes, in § 3 we prove the equivalence
of categories, and in § 4 we give the geometric interpretation of this duality.
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I. Mirković and S. Riche

The idea is that the statement is a particular case of the standard Koszul duality in the
generality of dg-vector bundles. However, because of convergence problems for spectral sequences,
we are able to make sense of this duality only for the dg-vector bundles with at most two non-
zero terms. More precisely, our Koszul duality functors are defined in a way similar to those
of [GKM93], except for two important differences. First, as explained above, we replace the
vector space by a complex of vector bundles. We obtain two ‘Koszul dual’ (Gm-equivariant)
sheaves of dg-algebras S and T (which are essentially symmetric algebras of dual complexes of
vector bundles). Then, we modify the functors so that they become contravariant and symmetric.
Indeed, the direct generalization of the constructions of [GKM93] would lead us to consider
covariant functors of the form{

S-dg-modules → T -dg-modules
M 7→ T ∨ ⊗OX

M and
{
T -dg-modules → S-dg-modules

N 7→ S ⊗OX
N .

(Here there are some differentials involved, and we have to work with derived functors and
derived categories; we do not consider these details in this introduction.) These functors are not
well-behaved in general, however, and they are obviously not symmetric for the exchange of S
and T . Instead, we consider contravariant functors of the form{

S-dg-modules → T -dg-modules
M 7→ T ⊗OX

M∨ and
{
T -dg-modules → S-dg-modules

N 7→ S ⊗OX
N∨.

The precise definition of these functors is given in § 2.4. We use them in §§ 2.5 and 2.6 to construct
some ‘generalized Koszul complexes’.

In § 3, we prove that these functors descend to some derived categories, and that they induce
equivalences (see § 3.4). Although the proof is a little technical, its basic idea is very simple:
we check (using several spectral sequences) that the composition of these two functors (in any
order) is the tensor product with a (generalized) Koszul complex, whose cohomology is trivial.
In § 3.7 we check that these equivalences respect some finiteness conditions.

Finally, in § 4 we explain the geometric content of these equivalences, i.e. we prove that they
induce equivalences of categories between Gm-equivariant coherent dg-sheaves on the dg-schemes
F1

R∩EF2 and F⊥1
R∩E∗F⊥2 , for subbundles F1 and F2 of a vector bundle E.

0.3 If we were only interested in characteristic zero, we could have identified the dual of the
exterior algebra of a vector bundle with the exterior algebra of the dual vector bundle. Then,
for example, the Koszul resolution of the trivial module of the symmetric algebra of a vector
space V becomes the symmetric algebra of the acyclic complex V

Id−→ V (where the first term
is in degree −1, and the second one in degree 0). This could have simplified some parts of our
constructions. However, in positive characteristic, such an identification is not obvious. Hence we
have to pay attention to duals of exterior algebras. In particular, following [BGS96], we rather
consider the Koszul resolution above as the tensor product (Λ(V ∗))∗ ⊗ S(V ), endowed with a
certain differential induced by the natural element in V ∗ ⊗ V ∼= End(V ) (see § 2.3 for details).

0.4 As explained above, our study involves some derived algebraic geometry. There is a
well-developed theory of derived schemes, due to Lurie [Lur09] and Toën [Toë09], in which
derived intersections (and, more generally, derived fibered products) are defined. We have
chosen, however, to use the theory of dg-schemes due to Ciocan-Fontanine and Kapranov
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(see [CK01]), which is much more elementary and concrete, and sufficient for our purposes (see
also [Ric08, MR09] for other applications of this theory, in representation theoretic contexts).
For this purpose, we generalize in § 1 a few well-known facts from the theory of dg-algebras and
dg-modules (see [BL94]).

0.5 A similar geometric interpretation of Koszul duality has been applied by the second author
in [Ric08], in a particular case, to study representations of the Lie algebra of a connected, simply-
connected, semi-simple algebraic group in positive characteristic. Let us mention, however, that
the categories and functors considered here are different from the ones considered in [Ric08]. In
particular, the equivalence of [Ric08] is covariant, whereas the equivalence constructed here is
contravariant.

0.6 In a following paper we will show that the linear Koszul duality in K-homology is
indeed a quantization of Kashiwara’s Fourier isomorphism; the two are related by the Chern
character. We will also verify that the linear Koszul duality in equivariant K-homology gives a
geometric realization of the Iwahori–Matsumoto involution on (extended) affine Hecke algebras
(see [MR09]). This concerns one typical use of linear Koszul duality. Consider a partial flag variety
P of a group G (either a reductive algebraic group in very good characteristic or a loop group1),
and a subgroup K that acts on P with countably many orbits. Let g, k be the Lie algebras,
choose E to be the trivial bundle P × g∗, F1 the cotangent subbundle T ∗P and F2 = P × k⊥.
Now F1

R∩E F2 is a differential graded version of the Lagrangian ΛK ⊂ T ∗P, the union of all
conormals to K-orbits in P, and F⊥1

R∩E∗ F⊥2 is the stabilizer dg-scheme for the action of the Lie
algebra k on P. If K is the Borel subgroup then F⊥1

R∩E∗ F⊥2 is homotopic to F1
R∩E F2 and linear

Koszul duality provides an involution on the K-group of equivariant coherent sheaves on ΛK .
Let us conclude by proposing some further applications of linear Koszul duality. The above

application to Iwahori–Matsumoto involutions should extend to their generalization, the Aubert
involution on irreducible representations of p-adic groups [Aub95]. Linear Koszul duality should
be an ingredient in a geometric realization (proposed in [BFM05]) of the Cherednik Fourier
transform (essentially an involution on the Cherednik Hecke algebra), in the Grojnowski–Garland
realization of Cherednik Hecke algebras as equivariant K-groups of Steinberg varieties for affine
flag varieties (see [GG95, Vas05]). The appearence of linear Koszul duality for conormals to
Bruhat cells should also be a classical limit of the Beilinson–Ginzburg–Soergel Koszul duality
for the mixed category O [BGS96], as mixed Hodge modules come with a deformation (by Hodge
filtration) to a coherent sheaf on the characteristic variety.

1. Generalities on sheaves of dg-algebras and dg-schemes

In this section X is any noetherian scheme satisfying the following assumption:2

For any coherent sheaf F on X, there exists a locally free
sheaf of finite rank E and a surjection E � F . (∗)

We introduce basic definitions concerning dg-schemes and quasi-coherent dg-sheaves, mainly
following [CK01, Ric08].

1 Let us point out that the application to loop groups would require an extension of our constructions to the case
of infinite-dimensional varieties, or ind-schemes, which is not proved here.
2 See, for example, the remarks before [CK01, Lemma 2.3.4] for comments on this assumption.
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1.1 Definitions

Recall the definitions of sheaves of OX -dg-algebras and dg-modules given in [Ric08, § 1.1].

Definition 1.1.1. A dg-scheme is a pair X = (X,A) where X is a noetherian scheme satisfying
(∗), and A is a non-positively graded, graded-commutative OX -dg-algebra such that Ai is a
quasi-coherent OX -module for any i ∈ Z60.

Definition 1.1.2. Let X = (X,A) be a dg-scheme.

(i) A quasi-coherent dg-sheaf F on X is an A-dg-module such that F i is a quasi-coherent
OX -module for any i ∈ Z.

(ii) A coherent dg-sheaf F on X is a quasi-coherent dg-sheaf whose cohomology H(F) is a
locally finitely generated sheaf of H(A)-modules.

We denote by C(X), or C(X,A), the category of quasi-coherent dg-sheaves on the dg-
scheme X, and by D(X), or D(X,A), the associated derived category (i.e. the localization of the
homotopy category of C(X) with respect to quasi-isomorphisms).

Similarly, we denote by Cc(X) or Cc(X,A), Dc(X) or Dc(X,A), the full subcategories whose
objects are the coherent dg-sheaves.

If X is an ordinary scheme, i.e. if A=OX , then we have equivalences

D(X)∼=DQCoh(X), Dc(X)∼=DbCoh(X).

Let us stress that these definitions and notation are different from the ones used in [Ric08]
(in loc. cit., we only require the cohomology of F to be quasi-coherent). This definition will
be more suited to our purposes here. Moreover, these two definitions coincide under reasonable
assumptions. For the categories of coherent dg-sheaves in all the cases we consider here, this can
be deduced from [Ric08, Proposition 3.3.4].

1.2 K-flat resolutions

Let us fix a dg-scheme X = (X,A). If F and G are A-dg-modules, we define as usual the tensor
product F ⊗A G (see [Ric08, § 1.2]). It has a natural structure of an A-dg-module (here A is
graded-commutative, hence we do not have to distinguish between left and right dg-modules).

Recall the definition of a K-flat dg-module (see [Spa88]).

Definition 1.2.1. An A-dg-module F is said to be K-flat if for every A-dg-module G such that
H(G) = 0, we have H(G ⊗A F) = 0.

Using [Spa88, Theorem 3.4, Proposition 5.4(c)] and assumption (∗), one easily proves the
following lemma.

Lemma 1.2.2. Let F be a quasi-coherent OX -dg-module. There exist a quasi-coherent, K-flat

OX -dg-module P and a surjective quasi-isomorphism P qis−→F .

Then, using the induction functor F 7→ A⊗OX
F , the following proposition can be proved

exactly as in [Ric08, Theorem 1.3.4].

Proposition 1.2.3. Let F be a quasi-coherent dg-sheaf on X. There exist a quasi-coherent

dg-sheaf P on X, K-flat as an A-dg-module, and a quasi-isomorphism P qis−→F .
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1.3 Invariance under quasi-isomorphisms
In this subsection we prove that the categories D(X), Dc(X) depend on A only up to quasi-
isomorphism.

Let X be a noetherian scheme satisfying (∗), and let X = (X,A) and X′ = (X, B) be two
dg-schemes with base scheme X. Let φ :A→B be a morphism of sheaves of OX -dg-algebras.
There is a natural functor

φ∗ : C(X′)→C(X)
(restriction of scalars), which induces a functor

Rφ∗ :D(X′)→D(X).

Similarly, there is a natural functor

φ∗ :
{
C(X) → C(X′)
F 7→ B ⊗A F .

We refer to [Del73] or [Kel96] for generalities on localization of triangulated categories
and derived functors (in the sense of Deligne). The following lemma is borrowed from [Spa88,
Proposition 5.7] (see also [Ric08, 1.3.6]), and implies that K-flat A-dg-modules are split on the
left for the functor φ∗. Using Proposition 1.2.3, it follows that φ∗ admits a left derived functor

Lφ∗ :D(X)→D(X′).

Lemma 1.3.1. Let F be an object of C(X,A) which is acyclic (i.e. H(F) = 0) and K-flat as an
A-dg-module. Then B ⊗A F is acyclic.

The following result is an immediate extension of [BL94, Theorem 10.12.5.1].

Proposition 1.3.2.

(i) Assume that φ :A→B is a quasi-isomorphism. Then the functors Lφ∗, Rφ
∗ are quasi-

inverse equivalences of categories

D(X)∼=D(X′).
(ii) These equivalences restrict to equivalences

Dc(X)∼=Dc(X′).

Proof. Statement (i) can be proved as in [BL94, Theorem 10.12.5.1]. Then, clearly, for G in D(X′)
we have G ∈ Dc(X′) if and only if Rφ∗G ∈ Dc(X). Point (ii) follows. 2

1.4 Derived intersection
Using Proposition 1.3.2, one can consider dg-schemes ‘up to quasi-isomorphism’, i.e. we can
identify the dg-schemes (X,A) and (X, B) whenever A and B are quasi-isomorphic.

As a typical example, we define the derived intersection of two closed subschemes. Consider
a scheme X, and two closed subschemes Y and Z. Let us denote by i : Y ↪→X and j : Z ↪→X

the closed embeddings. Consider the sheaf of dg-algebras i∗OY
L

⊗OX
j∗OZ on X. It is well-defined

up to quasi-isomorphism: if AY → i∗OY , AZ → j∗OZ are quasi-isomorphisms of non-positively
graded, graded-commutative sheaves of OX -dg-algebras,3 with AY and AZ quasi-coherent and
K-flat over OX , then i∗OY

L

⊗OX
j∗OZ is quasi-isomorphic to AY ⊗OX

j∗OZ , or to i∗OY ⊗OX
AZ ,

or to AY ⊗OX
AZ .

3 See e.g. [CK01, Theorem 2.6.1] for a proof of the existence of such resolutions.
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Definition 1.4.1. The right derived intersection of Y and Z in X is the dg-scheme

Y
R∩X Z := (X, i∗OY

L

⊗OX
j∗OZ),

defined up to quasi-isomorphism.

To be really precise, only the derived categories D(Y
R∩XZ), Dc(Y

R∩X Z) are well-defined (up
to equivalence). This is all we will use here.

2. Generalized Koszul complexes

In this section we introduce the dg-algebras we are interested in, and define our Koszul complexes.

2.1 Notation and definitions
From now on X is a noetherian, integral, separated, regular scheme of dimension d. Observe
that X satisfies condition (∗) by [Har77, III.Ex.6.8]. We will consider Gm-equivariant dg-algebras
on X, i.e. sheaves of OX -algebras A, endowed with a Z2-grading

A=
⊕
i,j∈Z

Aij

and an OX -linear differential dA :A→A, of bi-degree (1, 0), i.e. such that dA(Aij)⊆A
i+1
j , and

satisfying

dA(a · b) = dA(a) · b+ (−1)ia · dA(b)

for a ∈ Aij , b ∈ A. The basic example is OX , endowed with the trivial grading (i.e. it is
concentrated in bi-degree (0, 0)) and the trivial differential.

A Gm-equivariant dg-module over A is a sheaf M of Z2-graded A-modules endowed with a
differential dM of bi-degree (1, 0) satisfying

dM(a ·m) = dA(a) ·m+ (−1)ia · dM(m)

for a ∈ Aij , m ∈M.
We will only consider quasi-coherent (Gm-equivariant) OX -dg-algebras. If A is such a dg-

algebra, we denote by Cgr(A) the category of quasi-coherent Gm-equivariant A-dg-modules, i.e.
Gm-equivariant A-dg-modules M such that Mi

j is OX -quasi-coherent for any indices i, j.

If M is a Gm-equivariant A-dg-module, and m is a local section of Mi
j , we write |m|= i.

This integer is called the cohomological degree of m, while j is called its internal degree. We can
define two shifts in Cgr(A): [n], shifting the cohomological degree, and 〈m〉, shifting the internal
degree. More precisely we set

(M[n]〈m〉)ij =Mi+n
j−m.

Beware that in our conventions 〈1〉 is a ‘homological’ shift, i.e. it shifts the internal degrees to
the right. Also, we use the same conventions as in [BL94, § 10] concerning the shift [1], i.e. the
differential of M[1] is opposite to the differential of M.

If M and N are two Gm-equivariant OX -dg-modules, there is a natural structure of
Gm-equivariant OX -dg-module on the tensor product M⊗OX

N , with differential defined on
homogeneous local sections by

dM⊗N (m⊗ n) = dM(m)⊗ n+ (−1)|m|m⊗ dN (n).
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If M is a Gm-equivariant OX -dg-module, we define the Gm-equivariant OX -dg-module M∨
as the graded dual of M, i.e. the dg-module with (i, j)-component

(M∨)ij :=HomOX
(M−i−j ,OX),

and with differential defined by dM∨(f) =−(−1)|f |f ◦ dM for f ∈M∨ homogeneous. IfM andN
are two Gm-equivariant OX -dg-modules, there is a natural morphism defined (on homogeneous
local sections) by {

M∨ ⊗OX
N∨ → (M⊗OX

N )∨

f ⊗ g 7→ (m⊗ n 7→ (−1)|m|·|g|f(m) · g(n)),
(2.1.1)

which is an isomorphism, for example, if the homogeneous components ofM, N andM⊗OX
N

are locally free of finite rank. If M is a Gm-equivariant OX -dg-module such that Mi
j is locally-

free of finite rank for any i, j, then there is an isomorphism{
M ∼−→ (M∨)∨

m 7→ (f 7→ (−1)|f |·|m|f(m)).
(2.1.2)

Let us recall the definition of the truncation functors. If M is a Gm-equivariant OX -dg-
module and if n ∈ Z, we define the Gm-equivariant OX -dg-module τ>n(M) by

τ>n(M)ij :=


0 if i < n,

Mn
j /dM(Mn−1

j ) if i= n,

Mi
j if i > n,

with the differential induced by dM. There is a natural morphism M→ τ>n(M). Similarly, we
define the Gm-equivariant OX -dg-module τ6n(M) by

τ6n(M) := Ker(M→ τ>n+1(M)).

Observe that if A is a Gm-equivariant dg-algebra with Aij = 0 for i > 0, and if M is a Gm-
equivariant A-dg-module, then τ>n(M) and τ6n(M) are again Gm-equivariant A-dg-modules.

If M is a Gm-equivariant OX -dg-module, we denote by Sym(M) the graded-symmetric
algebra of M over OX (i.e. the quotient of the tensor algebra of M by the relations m⊗ n=
(−1)|m|·|n|n⊗m), considered as a Gm-equivariant dg-algebra with differential induced by dM.
Similarly, if F is any OX -module, we denote by SOX

(F), respectively ΛOX
(F), the symmetric

algebra of F , respectively the exterior algebra of F , i.e. the quotient of the tensor algebra of F by
the relations m⊗ n= n⊗m, respectively m⊗ n=−n⊗m. Neglecting the gradings, SOX

(F),
respectively ΛOX

(F), is the algebra Sym(F), where F is concentrated in even cohomological
degrees, respectively in odd cohomological degrees. For simplicity, sometimes we drop the
subscript ‘OX ’. If i > 0, we denote by Si(F), respectively Λi(F), the image of F⊗i in S(F),
respectively Λ(F).

Let us consider two locally free sheaves of finite rank V and W on X, and a morphism
of sheaves f : V →W. Let V∨ :=HomOX

(V,OX) and W∨ :=HomOX
(W,OX) be the dual

locally free sheaves, and f∨ :W∨→V∨ be the morphism induced by f . Let us consider the
Gm-equivariant OX -dg-modules (or complexes of graded OX -modules)

X := (· · · → 0→V f−→W → 0→ · · · ),
where V is in bi-degree (−1, 2) and W is in bi-degree (0, 2), and

Y := (· · · → 0→W∨ −f
∨

−−−→V∨→ 0→ · · · ),

where W∨ is in bi-degree (−1,−2) and V∨ is in bi-degree (0,−2).
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In §§ 2 and 3 we will consider the following Gm-equivariant dg-algebras:

T := Sym(X ),
R := Sym(Y),
S := Sym(Y[−2]).

For example, the generators of T are in bi-degrees (−1, 2) and (0, 2), and the generators of S
are in bi-degrees (1,−2) and (2,−2).

If M is a Gm-equivariant S-dg-module, the dual M∨ has a natural structure of a S-dg-
module, constructed as follows. The grading and the differential are defined as above, and the
S-action is defined by

(s · f)(m) = (−1)|s|·|f |f(s ·m),

for homogeneous local sections s of S and f of M∨.
If N is a T -dg-module, respectively a R-dg-module, the same formulas define on N∨ a

structure of a T -dg-module, respectively a R-dg-module.

2.2 Reminder of the spectral sequence of a double complex
Let us recall a few facts concerning the spectral sequence of a double complex. Let (Cp,q)p,q∈Z
be a double complex (in any abelian category), with differentials d′ (of bi-degree (1, 0)) and d′′

(of bi-degree (0, 1)). Let Tot(C) be the total complex of C, i.e. the complex with n-term

Tot(C)n =
⊕
p+q=n

Cp,q,

and with differential d′ + d′′. The following result is proved in, for example, [God64, § I.4].

Proposition 2.2.1. Assume one of the following conditions is satisfied.

(i) There exists N ∈ Z such that Cp,q = 0 for p > N .

(ii) There exists N ∈ Z such that Cp,q = 0 for q < N .

Then there is a converging spectral sequence

Ep,q1 =Hq(Cp,∗, d′′)⇒Hp+q(Tot(C)).

2.3 Reminder of Koszul complexes
Let A be a commutative ring, and V be a free A-module of finite rank. Let V ∨ = HomA(V, A)
be the dual A-module, and consider the natural morphism

i :A→HomA(V, V )∼= V ∨ ⊗A V,

sending 1A to IdV . Let us first consider the bi-graded algebras Λ(V [−1]〈−2〉), the exterior algebra
of V placed in bi-degree (1,−2), and S(V ∨〈2〉), the symmetric algebra of V ∨ placed in bi-degree
(0, 2). The algebra Λ(V [−1]〈−2〉) acts on the dual (Λ(V [−1]〈−2〉))∨ via

(t · f)(s) = (−1)|t|·|f |f(ts),

where t, s are homogeneous elements of Λ(V [−1]〈−2〉), and f is an homogeneous element of the
dual (Λ(V [−1]〈−2〉))∨.

Consider the usual Koszul complex

Koszul1(V ) := S(V ∨〈2〉)⊗A (Λ(V [−1]〈−2〉))∨, (2.3.1)
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where the differential is the composition of the morphism{
S(V ∨)⊗A (Λ(V ))∨ → S(V ∨)⊗A (Λ(V ))∨

s⊗ t 7→ (−1)|s|s⊗ t

followed by the morphism induced by i

S(V ∨)⊗A (Λ(V ))∨→ S(V ∨)⊗A V ∨ ⊗A V ⊗A (Λ(V ))∨

and finally followed by the morphism

S(V ∨)⊗A V ∨ ⊗A V ⊗A (Λ(V ))∨→ S(V ∨)⊗A (Λ(V ))∨

induced by the action of V ∨ ⊂ S(V ∨) on S(V ∨) by right multiplication and the action of V ⊂ Λ(V )
on (Λ(V ))∨ described above. It is well-known (see, for example, [BGG78, BGS96]) that this
complex has cohomology only in degree 0, and more precisely that

H(Koszul1(V )) =A.

The complex Koszul1(V ) is a bounded complex of projective graded A-modules (here we
consider A as a graded ring concentrated in degree 0). We can take its dual

Koszul2(V ) := (Koszul1(V ))∨ ∼= Λ(V [−1]〈−2〉)⊗A (S(V ∨〈2〉))∨. (2.3.2)

Again we have

H(Koszul2(V )) =A.

Now, let us consider the bi-graded algebras Λ(V [1]〈−2〉), with generators in bi-degree
(−1,−2), and S(V [−2]〈2〉), with generators in bi-degree (2, 2). We have a third Koszul complex

Koszul3(V ) := S(V ∨[−2]〈2〉)⊗A (Λ(V [1]〈−2〉))∨, (2.3.3)

which may be defined as the bi-graded module whose component of bi-degree (i, j) is
(Koszul3(V ))ij := (Koszul1(V ))i−jj , and with differential induced by that of Koszul1(V ). As above
we have

H(Koszul3(V )) =A.

We can finally play the same game with the complex Koszul2(V ) and obtain the complex

Koszul4(V )∼= Λ(V [1]〈−2〉)⊗A (S(V ∨[−2]〈2〉))∨ (2.3.4)

defined by (Koszul4(V ))ij = (Koszul2(V ))i−jj . Again we have

H(Koszul4(V )) =A.

2.4 Two functors

For any quasi-coherent Gm-equivariant dg-algebra A we define the category C↘gr (A) of
Gm-equivariant A-dg-modules M such that Mi

j is a coherent OX -module for any indices i, j,
and such that there exist integers N1, N2 such that Mi

j = 0 for i 6N1 or i+ j >N2. Here the
symbol ‘↘’ indicates the region in the plane with coordinates (i, j) where the components Mi

j

can be non-zero, as shown in Figure 1.
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Figure 1. Wedge conditions on dg-modules.

Similarly, we define the categories C↙gr (A), C↗gr (A), C↖gr (A) of Gm-equivariant A-dg-modules
M such that the components Mi

j are coherent and satisfy the following conditions:

C↙gr (A) :Mi
j = 0 if i� 0 or i− j� 0,

C↗gr (A) :Mi
j = 0 if i� 0 or i− j� 0,

C↖gr (A) :Mi
j = 0 if i� 0 or i+ j� 0.

In this subsection we define two contravariant functors

A : C↘gr (S)→C↖gr (T ), B : C↖gr (T )→C↘gr (S).

First, let us construct A . IfM is a S-dg-module, we have defined in § 2.1 the S-dg-moduleM∨.
Let M∈ C↘gr (S). As a bi-graded OX -module we set

A (M) = T ⊗OX
M∨,

endowed with a T -action by left multiplication on the first factor. The differential on A (M) is
the sum of four terms. The first one is d1 := dT ⊗ IdM∨ , and the second one is d2 := IdT ⊗ dM∨ .
Here the tensor product is taken in the graded sense, i.e. for homogeneous local sections t and f of
T andM∨, respectively, we have d2(t⊗ f) = (−1)|t|t⊗ dM∨(f). The third and fourth terms are
‘Koszul-type’ differentials. Consider first the natural morphism i :OX →EndOX

(V)∼= V ⊗OX
V∨.

Then d3 is the composition of {
T ⊗OX

M∨ → T ⊗OX
M∨

t⊗ f 7→ (−1)|t|t⊗ f
followed by the morphism induced by i

T ⊗OX
M∨→T ⊗OX

V ⊗OX
V∨ ⊗OX

M∨

and finally followed by the morphism

T ⊗OX
V ⊗OX

V∨ ⊗OX
M∨→T ⊗OX

M∨

induced by the right multiplication of V ⊂ T on T , and the left action of V∨ ⊂ S on M∨. The
differential d4 is defined entirely similarly, replacing V by W.
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Let us choose a point x ∈X. Then Vx, Wx are free OX,x-modules of finite rank. Let {vα} be
a basis of Vx, and let {wβ} be a basis of Wx. Let {v∗α}, {w∗β} be the dual bases of (V∨)x and
(W∨)x, respectively. Then the morphism induced by d3 + d4 on Tx ⊗OX,x

(M∨)x can be written
as

(d3 + d4)(t⊗ f) = (−1)|t|
(∑

α

tvα ⊗ v∗α · f +
∑
β

twβ ⊗ w∗β · f
)

(2.4.1)

for homogeneous local sections t of T and f of M∨.
Using formula (2.4.1), one can easily check the relations

(d1 + d2)2 = 0, (d3 + d4)2 = 0. (2.4.2)

Further calculations prove the following formula:

(d1 + d2) ◦ (d3 + d4) + (d3 + d4) ◦ (d1 + d2) = 0. (2.4.3)

It follows from formulas (2.4.2) and (2.4.3) that dA (M) := d1 + d2 + d3 + d4 is indeed a
differential. Finally, one can easily check that A (M) is a T -dg-module, and that it is an object
of the category C↖gr (T ). Hence the (contravariant) functor

A : C↘gr (S)→C↖gr (T )

is well-defined.
Now we define a functor B in the reverse direction, using similar formulas. Namely, if N

is a T -dg-module, we have defined above the T -dg-module N∨. If N ∈ C↖gr (T ), as a bi-graded
OX -module, we set

B(N ) = S ⊗OX
N∨,

and we endow it with the S-action by left multiplication on the first factor. The differential is
again a sum of four terms. The first two are d1 := dS ⊗ IdN∨ and d2 := IdS ⊗ dN∨ . The third
one, denoted d3, is defined as above as the composition of{

S ⊗OX
N∨ → S ⊗OX

N∨
s⊗ g 7→ (−1)|s|s⊗ g

followed by the morphism induced by i′ :OX →V∨ ⊗OX
V

S ⊗OX
N∨→S ⊗OX

V∨ ⊗OX
V ⊗OX

N∨

and finally followed by the morphism

S ⊗OX
V∨ ⊗OX

V ⊗OX
N∨→S ⊗OX

N∨

induced by the right multiplication of V∨ ⊂ S on S, and the left action of V ⊂ T on N∨.
The differential d4 is defined similarly, replacing V by W. As above, one checks that dB(N ) :=
d1 + d2 + d3 + d4 is a differential, which turns B(N ) into a S-dg-module, and even an object of
C↘gr (S). For this final claim we use the fact that if Skl 6= 0, then k + l 6 0. As above, this proves
that the (contravariant) functor

B : C↖gr (T )→C↘gr (S)
is well-defined.

2.5 First generalized Koszul complex
Consider the object

K(1) := B(T ) ∈ C↘gr (S).
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It is concentrated in non-negative cohomological degrees, and in non-positive internal degrees.

Lemma 2.5.1. The natural morphism K(1)→OX (projection on the (0, 0)-component) is a
quasi-isomorphism of Gm-equivariant S-dg-modules.

Proof. It is sufficient to prove that the localization of this morphism at any x ∈X is a quasi-
isomorphism. We have isomorphisms

(K(1))x ∼= (Sx)⊗OX,x
T ∨x

∼=
⊕
i,j,k,l

Λi(W∨x )⊗OX,x
Sj(V∨x )⊗OX,x

(Λk(Vx))∨ ⊗OX,x
(Sl(Wx))∨,

where the symbol ‘∨’ denotes the dual OX,x-module, and the term Λi(W∨x )⊗OX,x
Sj(V∨x )⊗OX,x

(Λk(Vx))∨ ⊗OX,x
(Sl(Wx))∨ is in cohomological degree i+ 2j + k. The differential on (K(1))x is

the sum of four terms: d1, induced by the differential of Sx; d2, induced by the differential of T ∨x ;
and d3 and d4, the Koszul differentials. The effect of these terms on the indices i, j, k, l may be
described as follows:

d1 :
{
i 7→ i− 1
j 7→ j + 1,

d2 :
{
k 7→ k + 1
l 7→ l − 1,

d3 :
{
j 7→ j + 1
k 7→ k − 1,

d4

{
i 7→ i+ 1
l 7→ l − 1.

Disregarding the internal grading, (K(1))x is the total complex of the double complex
(Cp,q)p,q∈Z whose (p, q)-term is

Cp,q :=
⊕

p=j+k,
q=i+j

Λi(W∨x )⊗OX,x
Sj(V∨x )⊗OX,x

(Λk(Vx))∨ ⊗OX,x
(Sl(Wx))∨,

and whose differentials are d′ = d1 + d2, d′′ = d3 + d4. We have Cp,q = 0 if q < 0, and hence by
Proposition 2.2.1 there is a converging spectral sequence

Ep,q1 =Hq(Cp,∗, d′′)⇒Hp+q((K(1))x).

It follows that, to prove the lemma, we only have to prove that the cohomology of Sx ⊗OX,x
T ∨x

with respect to the differential d3 + d4 is OX,x in degree 0, and 0 in other degrees. However, this
complex is the tensor product of the Koszul complexes Koszul3(Vx) (with the internal grading
opposite to that in (2.3.3)) and Koszul2(W∨x ) of (2.3.2), both living in non-negative degrees.
We have seen that these complexes have cohomology OX,x, and their components are free (and
hence flat). The result follows, using the Künneth formula. 2

2.6 Second generalized Koszul complex

Consider now the object

K(2) := A (S) ∈ C↖gr (T ).

It is concentrated in non-positive cohomological degrees, and in non-negative internal degrees.
As in § 2.5, we are going to prove the following.

Lemma 2.6.1. The natural morphism K(2)→OX (projection on the (0, 0)-component) is a
quasi-isomorphism of Gm-equivariant T -dg-modules.
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Proof. The arguments for this proof are completely similar to those of Lemma 2.5.1. Here the
double complex to consider has (p, q)-term

Cp,q :=
⊕

p=−i−l,
q=−k−l

Λi(Vx)⊗OX,x
Sj(Wx)⊗OX,x

(Λk(W∨x ))∨ ⊗OX,x
(Sl(V∨x ))∨

and differentials d′ = d1 + d2, d′′ = d3 + d4. We have Cp,q = 0 for p > 0. 2

3. Algebraic duality

In this section we prove our Koszul duality between S- and T -dg-modules.

3.1 Resolutions

First we need to prove the existence of some resolutions.

Proposition 3.1.1.

(i) Let M be an object of C↘gr (S). There exist an object P of C↘gr (S) such that, for all indices
i and j, P ij is OX -locally free of finite rank, and a quasi-isomorphism of S-dg-modules

P qis−→M.

(ii) Let N be an object of C↖gr (T ). There exist an object Q of C↖gr (T ) such that, for all indices
i and j, Qij is OX -locally free of finite rank, and a quasi-isomorphism of T -dg-modules

Q qis−→N .

Proof. We give a proof only for point (i). The proof of point (ii) is similar.4 LetM be an object of
C↘gr (S). Let N1 and N2 be integers such thatMi

j = 0 for i < N1 or i+ j > N2. First, we consider
M as a Gm-equivariant OX -dg-module. Then, for each j 6N2 −N1,Mj is a complex of coherent
OX -modules, with non-zero terms only in the interval [N1, N2 − j] (and Mj = 0 otherwise).
Using a standard procedure (see, for example, [Har66, I.4.6] and [Har77, III.Ex.6.9]), there exists
a complex Lj of locally free OX -modules of finite rank, with non-zero terms only in the interval
[N1, N2 − j], and a surjective morphism of OX -dg-modules Lj �Mj . Then L :=

⊕
j Lj is an

object of C↘gr (OX), and there is a surjective morphism of Gm-equivariantOX -dg-modules L�M.
Then P(1) := S ⊗OX

L, endowed with the natural differential and the natural action of S, is an
object of C↘gr (S), and there is a surjective morphism of Gm-equivariant S-dg-modules

P(1)�M.

Taking the kernel of this morphism, and repeating the procedure, we obtain objects P(i)

(i= 1, . . . , d) of C↘gr (S) (recall that d= dim(X)) whose homogeneous components are locally
free of finite rank over OX , and an exact sequence of S-dg-modules

P(d)→P(d−1)→ · · · → P(1)→M→ 0.

We define P(d+1) := ker(P(d)→P(d−1)). Then, for any indices i, j, the exact sequence

0→ (P(d+1))ij → · · · → (P(1))ij →Mi
j → 0

4 One could also use the ‘regrading trick’ of § 3.5 below to show that these two statements are equivalent.
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is a resolution of the OX -coherent sheafMi
j , the terms (P(k))ij being locally free of finite rank for

k = 1, . . . , d. It follows that (P(d+1))ij is also locally free of finite rank over OX (see again [Har77,
III.Ex.6.9]).

Finally, we take

P := Tot(0→P(d+1)→P(d)→ · · · → P(1)→ 0).

It is naturally an object of C↘gr (S), and an easy spectral sequence argument shows that the
natural morphism P →M is a quasi-isomorphism of S-dg-modules. 2

3.2 Derived functors
Let us introduce some notation. If A is any quasi-coherent Gm-equivariant dg-algebra, we denote
by H∗gr(A) the homotopy category of the category C∗gr(A), where ∗=↗,↖,↙,↘. The objects
of H∗gr(A) are the same as those of C∗gr(A), and the morphisms in H∗gr(A) are the quotient of the
morphisms in C∗gr(A) by the homotopy relation. These categories are naturally triangulated. We
denote by D∗gr(A) the localization of H∗gr(A) with respect to quasi-isomorphisms.

As a corollary of Proposition 3.1.1, we obtain the following result.

Corollary 3.2.1. The functors A and B admit derived functors (in the sense of Deligne)

A :D↘gr (S)→D↖gr (T ), B :D↖gr (T )→D↘gr (S).

Remark 3.2.2. The functor A is the left derived functor of A if we consider it as a
covariant functor C↘gr (S)→C↖gr (T )opp, or the right derived functor of A if we consider it as
a covariant functor C↘gr (S)opp→C↖gr (T ).

Proof. Case of the functor A . To fix the notation, in this proof we consider A as a covariant
functor C↘gr (S)→C↖gr (T )opp. To prove that A admits a left derived functor, it is enough to
prove that there are enough objects split on the left5 for A in the category C↘gr (S) (see [Del73]
or [Kel96]). To prove the latter fact, using Proposition 3.1.1(i), it is enough to prove that if
f : P →Q is a quasi-isomorphism between two objects of C↘gr (S) whose homogeneous components
are OX -locally free of finite rank, then the induced morphism

A (f) : A (P)→A (Q)

is again a quasi-isomorphism. Taking cones, this amounts to proving that if P is an acyclic object
of C↘gr (S) whose homogeneous components are OX -locally free of finite rank, then A (P) is again
acyclic.

So, let P be such a Gm-equivariant S-dg-module. For each index j, the complex of
OX -modules Pj is acyclic, bounded, and all its components are locally free of finite rank. It
follows that P∨ is also acyclic. Let x be a point of X, and let us prove that A (P)x is acyclic.
We use the same notation as in § 2.4. In particular, dA (P) is the sum of four terms d1, d2, d3,
and d4. We have an isomorphism

A (P)x ∼=
⊕
i,j,k,l

Λi(Vx)⊗OX,x
Sj(Wx)⊗OX,x

(P∨x )kl ,

5 Recall that an objectM of C↘gr (S) is said to be split on the left for A if, for any quasi-isomorphismM′ qis−−→M,

there exists an object M′′ of C↘gr (S) and a quasi-isomorphism M′′ qis−−→M′ such that the induced morphism
A (M′′)→A (M) is again a quasi-isomorphism.
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where the term Λi(Vx)⊗OX,x
Sj(Wx)⊗OX,x

(P∨x )kl is in cohomological degree k − i. The effect of
the differentials on the indices i, j, k, l may be described as

d1 :
{
i 7→ i− 1
j 7→ j + 1,

d2 : k 7→ k + 1, d3 :


i 7→ i+ 1
k 7→ k + 2
l 7→ l − 2,

d4 :


j 7→ j + 1
k 7→ k + 1
l 7→ l − 2.

Hence, disregarding the internal grading, A (P)x is the total complex of the double complex
with (p, q)-term

Cp,q :=
⊕

p=−i−j−l,
q=k+l+j

Λi(Vx)⊗OX,x
Sj(Wx)⊗OX,x

(P∨x )kl ,

with differentials d′ = d3 + d4 and d′′ = d1 + d2. By definition, P is in C↘gr (S), and hence (P∨)kl = 0
for k + l� 0. Therefore, Cp,q = 0 for q� 0. By Proposition 2.2.1, it follows that there is a
converging spectral sequence

Ep,q1 =Hq(Cp,∗, d′′)⇒Hp+q(A (P)x).

Hence we can forget about the differentials d3 and d4, i.e. it is sufficient to prove that the tensor
product of OX,x-dg-modules

Tx ⊗OX,x
P∨x

is acyclic. We have seen above that P∨x is acyclic, and Tx is a bounded complex of flat OX,x-
modules. Hence Tx ⊗OX,x

P∨x is indeed acyclic, which finishes the proof of the existence of the
derived functor

A :D↘gr (S)→D↖gr (T ).

Case of the functor B. The proof for the functor B is very similar. If Q is a Gm-equivariant
T -dg-module as in Proposition 3.1.1(ii) which is acyclic, and x ∈X, then we have

B(Q)x =
⊕
i,j,k,l

Λi(W∨x )⊗OX,x
Sj(V∨x )⊗OX,x

(Q∨x )kl ,

where the term Λi(W∨x )⊗OX,x
Sj(V∨x )⊗OX,x

(Q∨x )kl is in cohomological degree i+ 2j + k. Again
Q∨ is acyclic, and dB(N ) is the sum of four terms d1, d2, d3, and d4, whose effect on the indices
i, j, k, l may be described as

d1 :
{
i 7→ i− 1
j 7→ j + 1,

d2 : k 7→ k + 1, d3 :


j 7→ j + 1
k 7→ k − 1
l 7→ l + 2,

d4 :
{
i 7→ i+ 1
l 7→ l + 2.

Hence, disregarding the internal grading, B(Q)x is the total complex of the double complex
with (p, q)-term

Dp,q :=
⊕
p=i+j,
q=k+j

Λi(W∨x )⊗OX,x
Sj(V∨x )⊗OX,x

(Q∨x )kl ,

and with differentials d′ = d3 + d4, d′′ = d1 + d2. We know that (Q∨x )kl = 0 if k� 0, and hence
Dp,q = 0 for p� 0. By Proposition 2.2.1, it follows that there is a converging spectral sequence

Ep,q1 =Hq(Dp,∗, d′′)⇒Hp+q(B(Q)x).
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Hence it is sufficient to prove that the tensor product of OX,x-dg-modules

Sx ⊗OX,x
Q∨x

is acyclic.

The (Gm-equivariant) OX,x-dg-module Sx has a finite filtration with subquotients finite
numbers of copies of S(V∨x ). Hence it is enough to prove that S(V∨x )⊗OX,x

Q∨x is acyclic. However,
S(V∨x ), as a (Gm-equivariant) OX,x-dg-module, is a direct sum of flat OX,x-modules (placed in
different degrees), and hence the latter fact is clear. 2

3.3 Morphisms of functors

In this subsection we construct some morphisms of functors. We will prove in the next subsection
that they are isomorphisms, which implies that A and B are equivalences of categories.

Proposition 3.3.1. There exist natural morphisms of functors

B ◦A → IdD↘gr (S)
, A ◦B→ IdD↖gr (T )

.

Proof. Let us give the details for the first morphism. The construction of the second one is similar.
It is sufficient to construct this morphism for any A-dg-module P as in Proposition 3.1.1(i). In
this case A (P) is isomorphic to the image of A (P) in the derived category. As A (P) has also
OX -locally free homogeneous components, B ◦A (P) is isomorphic to the image of B ◦A (P)
in the derived category. We will define a morphism in C↘gr (S)

B ◦A (P)→P. (3.3.2)

First, we begin with the following lemma, which can be checked by direct computation, using
the isomorphisms (2.1.1) and (2.1.2).

Lemma 3.3.3. As a bi-graded OX -module, (A (P))∨ is naturally isomorphic to T ∨ ⊗OX
P.

Under this isomorphism, locally around a point x ∈X, with the notation of (2.4.1), the differential
becomes

d(A (P))∨(f ⊗ p)

= d(f)⊗ p+ (−1)|f |f ⊗ d(p)− (−1)|f |
(∑

α

f · vα ⊗ v∗α · p+
∑
β

f · wβ ⊗ w∗β · p
)
,

where we set (f · t)(t′) = f(t · t′) for f ∈ T ∨ and t, t′ ∈ T .

Under the isomorphism of Lemma 3.3.3, we have as bi-graded OX -modules

B ◦A (P)∼= S ⊗OX
T ∨ ⊗OX

P.

We define the morphism of bi-graded OX -modules{
S ⊗OX

T ∨ ⊗OX
P → P

s⊗ f ⊗ p 7→ f(1T ) · s · p.

This morphism clearly commutes with the S-actions. Moreover, using Lemma 3.3.3, one can
easily check that it also commutes with the differentials, and hence defines the desired morphism
(3.3.2). 2
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3.4 Equivalences
Theorem 3.4.1. The functors A ,B are equivalences of categories, quasi-inverse to each other.

Proof. First step: isomorphism B ◦A
∼−→ Id. In Proposition 3.3.1, we have constructed a

morphism of functors B ◦A → Id. In this first step we prove that it is an isomorphism. Let P be
an object of C↘gr (S) as in Proposition 3.1.1(i). We have seen in § 3.3 that B ◦A (P) is isomorphic
to the image of B ◦A (P) in the derived category. By Proposition 3.1.1(i), it is thus enough to
prove that the induced morphism

φ : B ◦A (P)→P
is a quasi-isomorphism. Let us construct a section (over OX) for this morphism. As a bi-
graded OX -module we have B ◦A (P)∼= S ⊗OX

T ∨ ⊗OX
P. Let εT ∈ T ∨ be the unit section

in (T ∨)00 =OX . Now consider the morphism

ψ :
{
P → B ◦A (P)
p 7→ 1S ⊗ εT ⊗ p.

One can easily check that it is a morphism of Gm-equivariant OX -dg-modules (but of course not
of S-dg-modules), and that

φ ◦ ψ = IdP .
Hence it is enough to prove that ψ is a quasi-isomorphism.

As a bi-graded OX -module, we have, with the notation of § 2.5,

B ◦A (P)∼=K(1) ⊗OX
P ∼=

⊕
i,j,k,l

(K(1))ik ⊗OX
Pjl ,

where the term (K(1))ik ⊗OX
Pjl is in cohomological degree i+ j. Note that here the non-zero

terms occur only when k is even. By Lemma 3.3.3, the differential on B ◦A (P) is the sum of
four terms. The first one is d1 := dK(1) ⊗ IdP . The second one is d2 := IdK(1) ⊗ dP . The third one
is the ‘Koszul type’ differential coming from the left action of V∨ ⊂ S on P and the right action
of V ⊂ T on K(1). Finally, d4 is the similar ‘Koszul-type’ differential coming from the actions of
W∨ and W. The effect of these differentials on the indices i, j, k, l can be described as follows:

d1 : i→ i+ 1, d2 : j 7→ j + 1, d3 :


i 7→ i− 1
j 7→ j + 2
k 7→ k + 2
l 7→ l − 2,

d4 :


j 7→ j + 1
k 7→ k + 2
l 7→ l − 2.

Moreover, one can easily check the following relations:

(d1 + d4)2 = 0, (d2 + d3)2 = 0.

Hence, disregarding the internal grading, B ◦A (P) is the total complex of the double complex
with (p, q)-term

Cp,q :=
⊕

p=j+l+k/2,
q=i−l−k/2

(K(1))ik ⊗OX
Pjl ,

and with differentials d′ = d2 + d3 and d′′ = d1 + d4. We know that Pjl = 0 for j + l� 0, and that
(K(1))ik = 0 if k > 0. Hence Cp,q = 0 for p� 0. It follows, by Proposition 2.2.1, that there is a
converging spectral sequence

Ep,q1 =Hq(Cp,∗, d′′)⇒Hp+q(B ◦A (P)).
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Disregarding the internal grading, P is also the total complex of a double complex, defined by

(C ′)p,q := Pp+q−q
and the differentials d′ = dP , d′′ = 0. Here also (C ′)p,q = 0 for p� 0, and hence the corresponding
spectral sequence converges. Moreover, ψ is induced by a morphism of double complexes C ′→ C.
It follows that it is enough to prove that the morphism induced by ψ from P, endowed with the
zero differential, to K(1) ⊗OX

P, endowed with the differential d1 + d4, is a quasi-isomorphism.
The latter dg-module is again the total complex of the double complex with (p, q)-term

Dp,q :=
⊕
k,l

(K(1))qk ⊗OX
Ppl ,

and differentials d′ = d4, d′′ = d1. Moreover, P (with the trivial differential) is also the total
complex of the double complex defined by

(D′)p,q =

{⊕
l P

p
l if q = 0,

0 otherwise,

and with two trivial differentials. Again ψ is induced by a morphism of double complexes, and we
have Dp,q = (D′)p,q = 0 for q < 0. We conclude that the associated spectral sequences converge.
As H(K1) =OX (see Lemma 2.5.1) and P is a bounded above complex of flat OX -modules, we
finally conclude that ψ is a quasi-isomorphism.

Second step: isomorphism A ◦B
∼−→ Id. The proofs in this second step are very similar to

those of the first step. By Proposition 3.3.1 there is a natural morphism A ◦B→ Id, and we
prove that it is an isomorphism. As above, it is enough to prove that, for Q an object of C↖gr (T )
as in Proposition 3.1.1(ii), the induced morphism of T -dg-modules

φ : A ◦B(Q)→Q

is a quasi-isomorphism. Also, as above, one can construct a section

ψ :Q→A ◦B(Q)

of φ as a morphism of Gm-equivariant OX -dg-modules, and it is enough to prove that ψ is a
quasi-isomorphism.

Here we have as bi-graded OX -modules, with the notation of § 2.6,

A ◦B(Q)∼=K(2) ⊗OX
Q∼=

⊕
i,j,k,l

(K(2))ik ⊗OX
Qjl ,

where (K(2))ik ⊗OX
Qjl is in cohomological degree i+ j (and k is even if the term is non-zero).

Again the differential is the sum of four terms d1 := dK(2) ⊗ IdQ, d2 = IdK(2) ⊗ dQ, d3 the Koszul
differential induced by the action of V and V∨, and d4 the Koszul differential induced by the
action of W and W∨. The effect of these differentials on the indices i, j, k, l can be described as
follows:

d1 : i→ i+ 1, d2 : j 7→ j + 1, d3 :


i 7→ i+ 2
j 7→ j − 1
k 7→ k − 2
l 7→ l + 2,

d4 :


i 7→ i+ 1
k 7→ k − 2
l 7→ l + 2.

One has

(d1 + d2)2 = 0, (d3 + d4)2 = 0.
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Hence, disregarding the internal grading, A ◦B(Q) is the total complex of the double complex
with (p, q)-term

Cp,q :=
⊕

p=−l−3k/2,
q=i+j+l+3k/2

(K(2))ik ⊗OX
Qjl ,

and with differentials d′ = d3 + d4, d′′ = d1 + d2. We know that Qjl = 0 if j + l� 0. Moreover,
one can easily check that (K(2))ik = 0 if i+ 3k/2� 0. Hence Cp,q = 0 if q� 0. It follows, by
Proposition 2.2.1, that there is a converging spectral sequence

Ep,q1 =Hq(Cp,∗, d′′)⇒Hp+q(A ◦B(Q)).

Similarly, disregarding the internal grading, Q is the total complex of a double complex C ′,
and ψ is induced by a morphism of double complexes C ′→ C. Hence it is enough to prove that
the morphism induced by ψ from Q to K(2) ⊗OX

Q, endowed with the differential d1 + d2, is a
quasi-isomorphism.

Once more, this follows from a spectral sequence argument, using the property that H(K(2)) =
OX (see Lemma 2.6.1). 2

3.5 Regrading
The ‘regrading’ functor introduced in this subsection will play a technical role in § 3.6, and a
more crucial role later in the geometric interpretation of the equivalence.

Consider the functor
ξ : Cgr(S)→Cgr(R)

which sends the S-dg-moduleM to the R-dg-module with (i, j)-component ξ(M)ij :=Mi−j
j , the

differential and the R-action on ξ(M) being induced by the differential and the S-action onM.
This functor is clearly an equivalence of categories, and it induces equivalences, still denoted ξ,

C↘gr (S) ∼−→ C↙gr (R), D↘gr (S) ∼−→D↙gr (R).

3.6 Categories with finiteness conditions
In the rest of this section we prove that the equivalences A and B restrict to equivalences
between subcategories of dg-modules whose cohomology is locally finitely generated. This will
eventually allow us to get rid of the technical conditions ‘↖’ and ‘↘’.

Let us introduce some more notation. If A is a quasi-coherent Gm-equivariant dg-algebra, and
if ∗=↖,↙,↘,↗, we denote by C∗,fggr (A), respectively D∗,fggr (A), the full subcategory of C∗gr(A),
respectively D∗gr(A), whose objects are the dg-modules M such that H(M) is a locally finitely
generated H(A)-module.

We also denote by CFGgr(A) the full subcategory of Cgr(A) whose objects are the locally
finitely generated Gm-equivariant A-dg-modules, and by DFGgr(A) the localization of the
homotopy category of CFGgr(A) with respect to quasi-isomorphisms. Finally, we denote by
Dfg

gr(A) the full subcategory of Dgr(A) whose objects are the Gm-equivariant dg-modules M
such that H(M) is locally finitely generated over H(A).

We are going to prove that, in the cases we are interested in, several of these categories
coincide. Observe in particular that there are inclusions

CFGgr(R) ↪→C↙,fggr (R), CFGgr(S) ↪→C↘,fggr (S), CFGgr(T ) ↪→C↖,fggr (T ),

which induce functors between the corresponding derived categories.
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Lemma 3.6.1.

(i) The induced functors

DFGgr(R)→D↙,fggr (R), DFGgr(S)→D↘,fggr (S), DFGgr(T )→D↖,fggr (T )

are equivalences of categories.

(ii) Similarly, the natural functors

DFGgr(R)→Dfg
gr(R), DFGgr(S)→Dfg

gr(S), DFGgr(T )→Dfg
gr(T )

are equivalences of categories.

Proof. Our proof of this lemma is very similar to that of [Bor87, Proposition VI.2.11] (see
also [Ric08, Proposition 3.3.4]). We give the details of the proof of statement (ii). Statement
(i) can be treated similarly.

Using the ‘regrading trick’ of § 3.5, the cases of S and R are equivalent. Similarly, using
the change of the internal grading to the opposite one, we see that the cases of R and T are
equivalent. Hence it is sufficient to consider the Gm-equivariant dg-algebra T .

Note that the algebra T , as well as its cohomology H(T ), is finitely generated as a
S(W)-module. Hence a T -dg-module N is locally finitely generated, respectively has locally
finitely generated cohomology, if and only if N , respectively H(N ), is locally finitely generated
over S(W).

Lemma 3.6.2. Let N be an object of Cgr(T ), with locally finitely generated cohomology, whose
cohomological grading is bounded. Then N is the inductive limit of quasi-coherent sub-T -
dg-modules which are locally finitely generated, and which are quasi-isomorphic to N under
inclusion.

Proof of Lemma 3.6.2. The internal grading has no importance in this statement, and hence
we will forget about it in the proof. The dg-module N is clearly an inductive limit of locally
finitely generated quasi-coherent sub-T -dg-modules. Hence it is sufficient to show that, given a
locally finitely generated quasi-coherent sub-dg-module F of N , there exists a locally finitely
generated quasi-coherent sub-dg-module G of N containing F and quasi-isomorphic to N under
the inclusion map.

This is proved by a simple (descending) induction. Let j ∈ Z. Assume that we have found
a subcomplex G(j) of

⊕
i>j N i, quasi-coherent over OX , locally finitely generated over S(W),

containing
⊕

i>j F i, stable under T (i.e. if g ∈ Gi(j) and t ∈ T k, and if i+ k > j, then t · g ∈ Gi+k(j) ),
such that G(j) ↪→N is a quasi-isomorphism in cohomological degrees greater than j and that
Gj(j) ∩ ker(djN )→Hj(N ) is surjective. Then we choose a locally finitely generated sub-S(W)-

module Hj−1 of N j−1 containing F j−1, quasi-coherent over OX , whose image under dj−1
N is

Gj(j) ∩ Im(dj−1
N ). Without altering these conditions, we can add a sub-module of cocycles so that

the new sub-module Hj−1 contains representatives of all the elements of Hj−1(N ). We can
also assume that N j−1 contains all the sections of the form t · g for t ∈ T i and g ∈ Gk(j) with
i+ k = j − 1. Then we define G(j−1) by

Gk(j−1) =

{
Gk(j) if k > j,

Hj−1 if k = j − 1.

For j small enough, G(j) is the sought-for sub-dg-module. 2
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Let us denote by

ι :DFGgr(T )→Dfg
gr(T )

the functor under consideration. Let N be an object of Dfg
gr(T ). Then the cohomology H(N )

is bounded for the cohomological grading (because it is locally finitely generated over H(T ),
which is bounded). Hence, using truncation functors (see § 2.1), N is isomorphic to a T -dg-
module whose cohomological grading is bounded. Using Lemma 3.6.2, it follows that N is in the
essential image of ι. Hence ι is essentially surjective.

Now, let us prove that it is full. Let N1 and N2 be objects of CFGgr(T ). In particular,
N1 and N2 have bounded cohomological grading. A morphism φ : ι(N1)→ ι(N2) in Dfg

gr(T ) is
represented by a diagram

ι(N1) α−→F β←− ι(N2)

where β is a quasi-isomorphism. Using truncation functors, one can assume that F has bounded
cohomological grading. By Lemma 3.6.2, there exists a locally finitely generated sub-T -dg-module
F ′ of F , containing α(N1) and β(N2), and quasi-isomorphic to F under the inclusion map. Then φ
is also represented by

ι(N1) α−→F ′ β←− ι(N2),

which is the image of a morphism in DFGgr(T ). Hence ι is full.
Finally, we prove that ι is faithful. If a morphism f :N1→N2 in CFGgr(T ) is such that

ι(f) = 0, then there exist an object F of Dfg
gr(T ), which can again be assumed to be bounded,

and a quasi-isomorphism of T -dg-modules g :N2→F such that g ◦ f is homotopic to zero.
This homotopy is given by a morphism h :N1→F [−1]. Again by Lemma 3.6.2, there exists a
locally finitely generated sub-T -dg-module F ′ of F containing g(N2) and h(N1)[1], and quasi-
isomorphic to F under inclusion. Replacing F by F ′, this proves that f = 0 in DFGgr(T ). The
proof of Lemma 3.6.1 is complete. 2

3.7 Restriction of the equivalences to locally finitely generated dg-modules

Proposition 3.7.1. The functors A , B restrict to equivalences of categories

D↘,fggr (S)∼=D↖,fggr (T ).

Proof. It is sufficient to prove that the functors A , B send dg-modules with locally finitely
generated cohomology to dg-modules with locally finitely generated cohomology.

First step: functor B. First, let us consider B. By Lemma 3.6.1, it suffices to prove that if N
is a locally finitely generated T -module, then B(N ) has locally finitely generated cohomology.
We begin with the following lemma.

Lemma 3.7.2. Let N be a locally finitely generated Gm-equivariant T -dg-module. There exist
an object Q of CFGgr(T ), which is locally free of finite rank over S(W)⊂ T , and a quasi-

isomorphism Q qis−→N .

Proof of Lemma 3.7.2. The arguments in this proof are very close to those in the proof of
Proposition 3.1.1. There exists a Gm-equivariant sub-OX -dg-module G ⊂N , which is coherent
as an OX -module, and which generates N as a S-dg-module. There exists also a Gm-equivariant
OX -dg-module F , which is locally free of finite rank as an OX -module, and a surjection F � G.
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We set

Q(1) := T ⊗OX
F ,

endowed with its natural structure of Gm-equivariant T -dg-module. Then we have a surjection
of T -dg-modules

Q(1)�N ,

and Q(1) is locally free over S(W).

Let n be the rank ofW over OX . Taking the kernel of our morphism Q(1)→N , and repeating
the argument, we obtain locally finitely generated T -dg-modules Q(j), j = 1, . . . , n+ d, which
are locally free of finite rank over S(W), and an exact sequence of T -dg-modules

Q(n+d)→Q(d+n−1)→ · · · →Q(1)→N → 0.

All these objects are complexes of coherent S(W)-modules, and hence we can consider them
as complexes of coherent sheaves on W ∗, the vector bundle on X with sheaf of sections W∨.
The scheme W ∗ is noetherian, integral, separated and regular of dimension d+ n. Hence
Q(n+d+1) := Ker(Q(n+d)→Q(n+d−1)) is also locally free over S(W). Then

Q := Tot(0→Q(n+d+1)→ · · · →Q(1)→ 0)

is a resolution of N as in the lemma. 2

Now let Q qis−→N be a resolution as in Lemma 3.7.2. In particular Q is locally free over OX ,
and hence B(N ) is isomorphic to the image of B(Q) in the derived category. Hence it is enough
to prove that B(Q) has locally finitely generated cohomology, and even to prove that this
cohomology is locally finitely generated over S(V∨). Let x ∈X. The object B(Q)x was described
in § 3.2. We use the same notation as in this subsection. Disregarding the internal grading, B(Q)x
is also the total complex of the double complex with (p, q)-term

Cp,q :=
⊕
p=j,

q=i+k+j

Λi(W∨x )⊗OX,x
Sj(V∨x )⊗OX,x

(Q∨x )kl ,

and with differentials d′ = d1 + d3, d′′ = d2 + d4. By hypothesis, (Q∨)kl = 0 for k� 0, and so
Cp,q = 0 for q� 0. Hence by Proposition 2.2.1 there is a converging spectral sequence

Ep,q1 =H(Cp,∗, d′′)⇒Hp+q(B(Q)x).

It follows that it is sufficient to prove that the cohomology of S ⊗OX
Q∨, endowed with the

differential d2 + d4, is locally finitely generated over S(V∨). This complex is again the total
complex of the double complex with (p, q)-term

Dp,q :=
⊕

p=2j+k,
q=i

Λi(W∨x )⊗OX,x
Sj(V∨x )⊗OX,x

(Q∨x )kl ,

and with differentials d′ = d2, d′′ = d3. The spectral sequence of this double complex again
converges, and hence we can forget about d2. Then S ⊗OX

Q∨, endowed with the differential
d3, is locally the tensor product of S(V∨) with a finite number of Koszul complexes Koszul2(W∨x )
of (2.3.2). The result follows.
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Second step: functor A . The proof for the functor A is entirely similar. In this case, with
the notation of § 3.2, we can consider the double complex with (p, q)-term

Cp,q :=
⊕

p=k−2i−j,
q=i+j

Λi(W∨x )⊗OX,x
Sj(V∨x )⊗OX,x

(P∨x )kl ,

and differentials d′ = d1 + d2, d′′ = d3 + d4. Here Cp,q = 0 for q < 0, and hence the corresponding
spectral sequence converges, and we can forget about d1 and d2. Then we can consider the double
complex

Dp,q :=
⊕

p=k−2i,
q=i

Λi(W∨x )⊗OX,x
Sj(V∨x )⊗OX,x

(P∨x )kl ,

with differentials d′ = d4 and d′′ = d3. We finish the proof as above. 2

Finally, combining Proposition 3.7.1, Lemma 3.6.1 and the ‘regrading trick’ of § 3.5 we obtain
the following theorem, which is the main result of this section.

Theorem 3.7.3. There exists a contravariant equivalence of triangulated categories

κ :Dfg
gr(T ) ∼−→Dfg

gr(R)

satisfying κ(M[n]〈m〉) = κ(M)[−n+m]〈m〉.

4. Linear Koszul duality

In this section we give a geometric interpretation of Theorem 3.7.3.

4.1 Intersections of vector bundles

Let us consider as above a noetherian, integral, separated, regular scheme X, and a vector
bundle E over X. Let F1, F2 ⊂ E be sub-vector bundles. Let E∗ be the vector bundle dual to E,
and let F⊥1 and F⊥2 ⊂ E∗ be the orthogonals to F1 and F2, respectively. We will be interested in
the dg-schemes

F1
R∩E F2 and F⊥1

R∩E∗ F⊥2 .

Let E , F1, F2 be the sheaves of local sections of E, F1, F2. Then the sheaves of local sections
of E∗, F⊥1 and F⊥2 are, respectively, E∨, F⊥1 and F⊥2 (here we consider the orthogonals inside
E∨). Let us denote by X the OX -dg-module

X := (0→F⊥1 →F∨2 → 0),

where F⊥1 is in degree −1, F∨2 is in degree 0, and the non-trivial differential is the composition
of the natural morphisms F⊥1 ↪→E∨� F∨2 , and by Y the OX -dg-module

Y := (0→F2→E/F1→ 0),

where F2 is in degree −1, E/F1 is in degree 0, and the non-trivial differential is the opposite of
the composition of the natural morphisms F2 ↪→E � E/F1.

Lemma 4.1.1. There exist equivalences of categories

D(F1
R∩E F2)∼=D(X, Sym(X )), D(F⊥1

R∩E∗ F⊥2 )∼=D(X, Sym(Y)).
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Proof. We need only prove the first equivalence (the second one is similar: replace E by E∗, F1

by F⊥2 , F2 by F⊥1 ). Let A be any graded-commutative, non-positively graded, quasi-coherent

dg-algebra on E, quasi-isomorphic to OF1

L

⊗OE
OF2 (see § 1.4). Let π : E→X be the natural

projection. Then it is well-known (see, for example, [Gro61, Proposition 1.4.3]) that the functor
π∗ induces equivalences of categories

C(E,A)∼= C(X, π∗A), D(E,A)∼=D(X, π∗A).

Moreover, the data of A is equivalent to the data of the π∗OE-dg-algebra π∗A, which is quasi-
isomorphic to π∗OF1

L

⊗π∗OE
π∗OF2 .

Now there are natural isomorphisms π∗OE ∼= SOX
(E∨), π∗OFi

∼= SOX
(F∨i ) (i= 1, 2). Consider

the Koszul resolution

Sym(0→F⊥1 →E∨→ 0)
qis−→ S(F∨1 )∼= S(E∨)/(F⊥1 · S(E∨)),

where F⊥1 is in degree −1, E∨ is in degree 0, and the differential is the natural inclusion. This is
a flat dg-algebra resolution of S(F∨1 ) over S(E∨). If we tensor this resolution with S(F∨2 ) (over

S(E∨)) we obtain that the dg-algebra Sym(X ) is quasi-isomorphic to π∗OF1

L

⊗π∗OE
π∗OF2 . Hence

we can take π∗A= Sym(X ). This finishes the proof of the lemma. 2

4.2 Linear Koszul duality
One can also consider X as a Gm-equivariant OX -dg-module, where F⊥1 and F∨2 are in
internal degree 2. Then, similarly, Y is Gm-equivariant (with generators in internal degree −2).
Geometrically, this corresponds to considering a Gm-action on E, where t ∈ k× acts by
multiplication by t−2 along the fibers. We will use the notation

Dc
Gm

(F1
R∩E F2) :=Dfg

gr(X, Sym(X )),

Dc
Gm

(F⊥1
R∩E∗ F⊥2 ) :=Dfg

gr(X, Sym(Y)).

Then Theorem 3.7.3 gives the following result in this situation.

Theorem 4.2.1. There exists a contravariant equivalence of triangulated categories, called
linear Koszul duality,

κ :Dc
Gm

(F1
R∩E F2) ∼−→Dc

Gm
(F⊥1

R∩E∗ F⊥2 )

satisfying κ(M[n]〈m〉) = κ(M)[−n+m]〈m〉.

4.3 Equivariant version of the duality
Finally, let us consider an algebraic group G acting on X (algebraically). Assume that E is a
G-equivariant vector bundle, and that F1 and F2 are G-equivariant subbundles. Then, with the
same notation as above, X is a complex of G-equivariant coherent sheaves on X. Let us denote
by

Dc
G×Gm

(F1
R∩E F2)

the derived category of G×Gm-equivariant quasi-coherent Sym(X )-dg-modules on X (i.e.
Gm-equivariant dg-modules as above, endowed with a structure of G-equivariant quasi-coherent
OX -module compatible with all other structures) with locally finitely generated cohomology, and
similarly for Dc

G×Gm
(F⊥1

R∩E∗ F⊥2 ). Then our constructions easily extend to give the following
result.
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Theorem 4.3.1. There exists a contravariant equivalence of categories

κ :Dc
G×Gm

(F1
R∩E F2) ∼−→ Dc

G×Gm
(F⊥1

R∩E∗ F⊥2 )

satisfying κ(M[n]〈m〉) = κ(M)[−n+m]〈m〉.
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