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SINGULAR VECTOR DISTRIBUTION
OF SAMPLE COVARIANCE MATRICES

XIUCAI DING,* University of Toronto

Abstract

We consider a class of sample covariance matrices of the form Q = TXX*T*, where
X =(xj) is an M x N rectangular matrix consisting of independent and identically
distributed entries, and 7 is a deterministic matrix such that 7*T is diagonal. Assuming
that M is comparable to N, we prove that the distribution of the components of the right
singular vectors close to the edge singular values agrees with that of Gaussian ensembles
provided the first two moments of x;; coincide with the Gaussian random variables. For
the right singular vectors associated with the bulk singular values, the same conclusion
holds if the first four moments of x;; match those of the Gaussian random variables.
Similar results hold for the left singular vectors if we further assume that 7 is diagonal.
Keywords: Random matrix theory; singular vector distribution; deformed Marcenko—
Pastur law
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1. Introduction

In the analysis of multivariate data, a large collection of statistical methods, including
principal component analysis, regression analysis, and clustering analysis, require the knowl-
edge of covariance matrices [11]. The advance of data acquisition and storage has led to
datasets for which the sample size N and the number of variables M are both large. This high
dimensionality cannot be handled using the classical statistical theory.

For applications involving large-dimensional covariance matrices, it is important to under-
stand the local behavior of the the singular values and vectors. Assuming that M is comparable
to N, the spectral analysis of the singular values has attracted considerable interest since the
seminal work of Marcenko and Pastur [30]. Since then, numerous researchers have contributed
to weakening the conditions on matrix entries as well as extending the class of matrices for
which the empirical spectral distributions (ESDs) have nonrandom limits. For a detailed review,
we refer the reader to the monograph [2]. Besides the ESDs of the singular values, the limiting
distributions of the extreme singular values were analysed in a collection of celebrated papers.
The results were first proved for the Wishart matrix (i.e. sample covariance matrices obtained
from a data matrix consisting of independent and identically distributed (i.i.d.) centered real
or complex Gaussian entries) in [23] and [38]; they were later proved for matrices with entries

Received 28 September 2017; revision received 17 September 2018.

The supplementary material for this article can be found at http://doi.org/10.1017/apr.2019.10.

* Postal address: Department of Statistical Sciences, University of Toronto, Sidney Smith Hall, 100 St. George Street,
Toronto, ON M5S 3G3, Canada.

Email address: xiucai.ding@mail.utoronto.ca

236

https://doi.org/10.1017/apr.2019.10 Published online by Cambridge University Press


https://doi.org/10.1017/apr.2019.10
http://www.appliedprobability.org
http://doi.org/10.1017/apr.2019.10
mailto:xiucai.ding@mail.utoronto.ca
https://doi.org/10.1017/apr.2019.10

Singular vector distribution 237

satisfying arbitrary subexponential distributions in [5], [32], and [33]. More recently, the
weakest moment condition was given in [16].

Less is known however for the singular vectors. Therefore, recent research on the limiting
behavior of singular vectors has attracted considerable interest among mathematicians and
statisticians. Silverstein first derived limit theorems for the eigenvectors of covariance matrices
[34]; later, the results were proved for a general class of covariance matrices [3]. The
delocalization property for the eigenvectors were shown in [8] and [33]. The universal
properties of the eigenvectors of covariance matrices were analysed in [8], [9], [27], and [37].
For a recent survey of the results, we refer the reader to [31]. In this paper we prove the
universality for the distribution of the singular vectors for a general class of covariance matrices
of the form Q = TXX*T*, where T is a deterministic matrix such that 7*T is diagonal.

The covariance matrix Q contains a general class of covariance structures and random
matrix models [8, Section 1.2]. The singular values analysis of Q has attracted considerable
attention; see, for example, the limiting spectral distribution and Stieltjes transform derived in
[35], the Tracy—Widom asymptotics of the extreme eigenvalues proved in [5], [17], [26], and
[28], and the anisotropic local law proposed in [26]. It is notable that, in general, Q contains the
spiked covariance matrices [4], [6], [7], [8], [23]. In such models, the ESD of Q still satisfies
the Marcenko—Pastur (MP) law and some of the eigenvalues of Q will detach from the bulk
and become outliers. However, in this paper, we adapt the regularity Assumption 1.2 to rule
out the outliers for the purpose of universality discussion. Actually, it was shown in [12] and
[25] that the distributions of the outliers are not universal.

In this paper we study the singular vector distribution of Q. We prove the universality for the
components of the edge singular vectors by assuming the matching of the first two moments
of the matrix entries. We also prove similar results in the bulk, under the stronger assumption
that the first four moments of the two ensembles match. Similar results have been proved for
Wigner matrices in [24].

1.1. Sample covariance matrices with a general class of populations
We first introduce some notation. Throughout the paper, we will use

= li = lim —. 1.1
! NLmOOrN NLmoo ( )

Let X = (x;;) be an M x N data matrix with centered entries x;; =N - 2qu, 1<i<M and
1 <j <N, where g;; are i.i.d. random variables with unit variance and for all p € N, there exists
a constant C), such that g satisfies the condition

Elgnl” < Cp. (1.2)

We consider the sample covariance matrix Q = TXX*T*, where T is a deterministic matrix
such that T7*T is a positive diagonal matrix. Using the QR factorization [22, Theorem 5.2.1],
we find that T = UX!/?, where U is an orthogonal matrix and ¥ is a positive diagonal matrix.
Define ¥ = £ !/2X and the singular value decomposition of ¥ as ¥ = ZszAlM Jk_kékglj‘ , where
A, k=1,2,..., N AM, are the nontrivial eigenvalues of Q, and {ék}z’lzl and {g“k}ivzl are
orthonormal bases of RM and RV, respectively. First, we observe that

X*T*TX =Y*Y =ZANZ",

where the columns of Z are ¢1, ..., {y and Ay is a diagonal matrix with entries Ay, ..., Ayn.
As a consequence, U will not influence the right singular vectors of Y. For the left singular
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vectors, we need to further assume that 7' is diagonal. Hence, we can make the following
assumption on 7

T=x"2=diag{0|?,...,0)/’}), withoy>02>...> 0y >0. (1.3)

We denote the empirical spectral distribution of ¥ by

1 M
NZZMZ:‘(SUI-. (14)
=

Suppose that there exists some small positive constant t such that

r<aM501§r71, rgrirfl, ([0, ) <1-—r. (1.5)
For definiteness, in this paper we focus on the real case, i.e. all the entries x;; are real.
However, it is clear that our results and proofs can be applied to the complex case after minor
modifications if we assume in addition that Re x;; and Im x;; are independent centered random
variables with the same variance. To avoid repetition, we summarize the basic assumptions for
future reference.

Assumption 1.1. We assume that X is an M x N matrix with centered i.i.d. entries satis-
fying (1.1) and (1.2). We also assume that T is a deterministic M x M matrix satisfying
(1.3) and (1.5).

From now on, we let ¥ = £ !/2X and its singular value decomposition ¥ = ZszAlM NAERS
where Ay > Ay >...> AyaN.

1.2. Deformed Marcenko-Pastur law

In this subsection we discuss the empirical spectral distribution of X*T*TX, where we
basically follow the discussion of [26, Section 2.2]. It is well known that if 7 is a compactly
supported probability measure on R, letting ry > 0, then, for any z € C,., there is a unique
m=my(z) € C; satisfying

1 1

X
—=— — dx). 1.6
m Z-’_rN 1+mxn( ) (1.6)

We refer the reader to [26, Lemma 2.2] and [36, Section 5] for more details. In this paper
we define the deterministic function m = m(z) as the unique solution of (1.6) with 7 defined
in (1.4). We define by p the probability measure associated with m (i.e. m is the Stieltjes
transform of p) and call it the asymptotic density of X*7*TX. Our assumption (1.5) implies
that the spectrum of ¥ cannot be concentrated at O; thus, it ensures 7 is a compactly supported
probability measure. Therefore, m and p are well defined.

Let z € C. Then m = m(z) can be characterized as the unique solution of the equation

(I % 7({oi})

7= f(m), Imm>0, wheref(x):=—-+ — - (1.7)
* i—1 Xt 0;

'N

The behavior of p can be entirely understood by the analysis of f. We summarize the
elementary properties of p in the following lemma. It can be found in [26, Lemmas 2.4, 2.5,
and 2.6].
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Lemma 1.1. Define R=RU{occ}. Then f defined in (1.7) is smooth on the M+ 1 open
intervals of R defined through

Lii=(-0;"0), ILi=(-07' =07}, i=2,....M, Ip:= K

1

UL, Ti

We also introduce a multiset C C R containing the critical points of f, using the conventions
that a nondegenerate critical point is counted once and a degenerate critical point will be
counted twice. In the ry = 1 case, 0o is a nondegenerate critical point. With the above notation,
the following statememts hold.

e We have [CNIy|=|CNIj|=1and |CNI;| €{0,2} fori=2,..., M. Therefore, |C| =
2p, where, for convenience, we denote by x| > xp > ... > xpp—1 the 2p — 1 critical points
inly U...Uly and by x3), the unique critical point in I.

o Defining ay := f(xy) we have ay > . .. > azp. Moreover, we have x; = m(ay) by assuming
that m(0) := oo for ry = 1. Furthermore, for k=1, ..., 2p, there exists a constant C
such that 0 < a; < C.

e We have supp p N (0, 00) = (|J}_, [azk, az—11) N (0, 00).

With the above definitions and properties, we now introduce the key regularity assumption
on X.

Assumption 1.2. Fix t > 0. We say that
1. the edges ax, k=1, ..., 2p, are regular if

ax >, 1};2]1(1|ak—al|275, min |xk+0i_1|21'§ (1.8)

1
2. the bulk components k=1, ..., p are regular if, for any fixed T’ > 0, there exists a
constant ¢ = ¢ such that the density of p in [ax + T/, ax—1 — t'] is bounded from

below by c.

Remark 1.1. The second condition in (1.8) states that the gap in the spectrum of p adjacent
to ai can be well separated when N is sufficiently large. The third condition ensures a square
root behavior of p in a small neighborhood of ay. To be specific, consider the right edge of the
kth bulk component; by Equation (A.12) of [26], there exists some small constant ¢ > 0 such
that p has the following square root behavior:

p(x) ~ /axy—1 —x, x € lag—1 —c, az—1l. (1.9)

As a consequence, it will rule out the outliers. The bulk regularity imposes a lower bound on
the density of eigenvalues away from the edges. For examples of matrices ¥ verifying the
regularity conditions, we refer the reader to [26, Examples 2.8 and 2.9].

1.3. Main results

In this subsection we provide the main results of this paper. We first introduce some
notation. Recall that the nontrivial classical eigenvalue locations y; > y» >...> yyan of
Q are defined as f;o do=(—- %)/N . By Lemma 1.1, there are p bulk components in the
spectrum of p. Fork=1, ..., p, we define the classical number of eigenvalues of the kth bulk
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component through Ny := N faazzk"" dp. When p > 1, we relabel A; and y; separately for each
bulk component k=1, ..., p by introducing

Mei ' =Aity,_ Nps Yhi = Yit Y, Ny € @2k, a2i—1). (1.10)
Equivalently, we can characterize y; ; through

@h—1 i—1/2
/ dp:l / .
" N

ki

In this paper we will use the following assumption for the technical application of the
anisotropic local law.

Assumption 1.3. Fork=1,2,...,pandi=1,2, ..., Nk, yk.i > T for some constant T > 0.

We define the index sets Z;:={1,...,M} and Zr:={M+1,...,M+ N}, with Z:=
71 UZ,. We will consistently use Latin letters i, j € 7y, Greek letters u, v € Zp, and s, t € Z.
Then we label the indices of the matrix according to X = (X;,: i € Iy, u € Zp). We similarly
label the entries of & € R and Ly € RZ2. In the kth, k=1,2, ..., p, bulk component, we
rewrite the index of A, as

o/::l+ZN, wheno/—ZN,<ZNt—o/, (1.11)

t<k t<k <k

a’::—l—i—l—i—ZN, wheno/—ZNt>ZN,—o/. (1.12)

1<k t<k 1<k

In this paper we say that [ is associated with o’. Note that o’ is the index of Ax; before the
relabeling of (1.10), and the two cases correspond to the right and left edges, respectively.
Our main result on the distribution of the components of the singular vectors near the edge
is the following theorem. For any positive integers m, k, some function 6: R” — R, and x =
(x1, ..., %) € R" we define

%0 (x)

0M0(x) = ——————.
Bxlf' 8x§2 .. Oxkm

m
Zkl:kv klka""5km209
i=1

and ||x]||2 to be its I norm. Define Qg := EI/ZXGxEEVZ, where X is GOE (i.e. a random
matrix with entries being i.i.d. real standard Gaussian random variables) and X satisfies (1.3)
and (1.5).

Theorem 1.1. Suppose that Qy = El/szXﬁzl/z satisfies Assumption 1.1. Let E¢ and EV
denote the expectations with respect to Xg and Xy. Consider the kth, k=1,2, ..., p, bulk
component, with | defined in (1.11) or (1.12). Under Assumption 1.2 and 1.3 for any choices
of indices i, j € I and i, v € Iy, there exists a § € (0, 1) such that, when [ < N? . we have

Jim (B — ECJ0WN&a (D (), New ()22 (1)) =0,

where 0 is a smooth function in R? that satisfies

10®6x)| < + |Ix]2)C, k=1, 2, 3, with some constant C > 0.
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Theorem 1.2. Suppose that Qy =X/ 2XVXQ‘,ZI/ 2 satisfies Assumption 1.1. Consider the
kith, ... knth, ki, ..., k,e{1,2,...,p}, n<p, bulk components for Iy, defined in (1.11) or

(1.12) associated with the kith, i=1,2, ..., n, bulk component. Under Assumptions 1.2 and
1.3 for any choices of indices i, j € | and ., v € Iy, there exists a § € (0, 1) such that, when
Iy < N,‘zi, where Iy, is associated with Ol,/q, i=1,2,...,n, we have

Jim [BY—EC10(N&y; (Do) (1) Newy (108a; () -, Néo (g (1) Negy (12; (1)
=0,
where 0 is a smooth function in R*" that satisfies
|3(k)9(x)| < C(1 4+ ||x]2)C, k=1, 2, 3, with some constant C > 0.

Remark 1.2. The results in Theorems 1.1 and 1.2 can be easily extended to a general
form containing more entries of the singular vectors using a general form of the Green
function comparison argument. For example, to extend Theorem 1.1, we consider the kth bulk
component and choose any positive integer s. Under Assumptions 1.2 and 1.3 for any choices
of indices iy, j1, ..., js€Zy and wuy, vy, ..., U, Vs € Ip for the corresponding [;, i =
1,2,...,s, defined in (1.11) or (1.12), there exists some 0 < § < 1 with 0 < maxj<;<¢{/;} <
N,‘z, such that

Jim [ ETJ0NE, (1)) (). Ny (118 01 -+ Ny (i5)6g () N (15)6e ()
=0, (1.13)

where § € R% is a smooth function satisfying 10R6((x)| < C(1 + ||x]]2)€, k=1, 2, 3, with
some constant C > 0. Similarly, we can extend Theorem 1.2 to contain more entries of singular
vectors.

Recall (1.10), and define @y := (|f"(x)|/2)"/3, k=1,2, ..., 2p. Then, for any positive
integer h, we define

N2/3 N2/3

Qo1 = (Ak,n — a2k—1), Qo p = ——— Mg N—h+1 — A2k)-
%1 )8

Consider a smooth function # € R whose third derivative 6 satisfies |03 (x)| < C(1 + |x|)€
for some constant C > 0. Then, by [26, Theorem 3.18], we have

lim [EY —E%0(q; ,) =0. (1.14)
N—o0 ’

Together with Theorem 1.1, we have the following corollary, which is an analogy of [24,
Theorem 1.6]. Let t =2k — 1 if o’ is as given in (1.11) and 2k if o’ is as given in (1.12).

Corollary 1.1. Under the assumptions of Theorem 1.1, for some positive integer h, we have
Jim BV — B0 (g, Now D () N (1) () =0,

where 6 € R? satisfies

1006 < (1 + [1x]]2)€, k=1, 2, 3, with some constant C > 0. (1.15)
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Corollary 1.1 can be extended to a general form for several bulk components. Let #; =
2k; — 1if oa,’(l_ is as given in (1.11) and 2k; if oe,’(l_ is as given in (1.12).

Corollary 1.2. Under the assumptions of Theorem 1.2, for some positive integer h, we have
lim [E” —E10(q, » Néo (e (1) Nea (G (), - Gy, 1 N, (DEg (),

N— 00
X Nty (1) (1))
=0,
where 0 € R is a smooth function that satisfies
10%6(x)| < + |1x]]2)C, k=1, 2,3, with some arbitrary C > 0.

Remark 1.3. (i) Similarly to (1.13), the results in Corollaries 1.1 and 1.2 can be easily
extended to a general form containing more entries of the singular vectors. For example, to
extend Corollary 1.1, we choose any positive integers s and A1, ..., h;. Under Assumptions
1.2 and 1.3 for any choices of indices iy, ji, - - ., I, js € Zy and puy, vy, ..., W, Vs € o, for the
corresponding /;, i=1,2, ..., s, defined in (1.11) or (1.12), there exists some 0 < é < 1 with
maxj<j<s{li} < N3, such that

lim [EY — EG]Q(qtl,hl,Néa; (D€, (J1)» Sa (1)Eq (V1) - ooy @y pgs NEa) (i5)E; (s)

N—oo
N&y (Ms)§a§ (Vs))
=0.

where the smooth function 6 € R satisfies |00 (x)| < C(1 + ||x||2)€, k=1, 2, 3, for some
constant C.

(i1) Theorems 1.1 and 1.2, and Corollaries 1.1 and 1.2 still hold for the complex case, where

the moment matching condition is replaced by
IEG)_clexg = Evfcl-vjxg, O<v+u<?2.

(iii) All the above theorems and corollaries are stronger than their counterparts from [24]
because they hold much further into the bulk components. For instance, in the counterpart
of Theorem 1.1, which is [24, Theorem 1.6], the universality was established under the
assumption that / < (log N)€loglogN,

In the bulks, similar results hold under the stronger assumption that the first four moments
of the matrix entries match those of Gaussian ensembles.

Theorem 1.3. Suppose that Qy = £/ 2XVXQ",Z 112 satisfies Assumption 1.1. Assume that the
third and fourth moments of Xy agree with those of Xg and consider the kth, k=1,2,...,p
bulk component, with [ defined in (1.11) or (1.12). Under Assumptions 1.2 and 1.3 for any
choices of indices i, j € T and |, v € Iy, there exists a small § € (0, 1) such that, when SN <
[ < (1 — 8)Ng, we have

Jim (Y — ECI0 (V&0 (D (). N (1) (v)) =0,

where 0 is a smooth function in R? that satisfies

18000 < C(1 + |1x]12), k=1,2,3,4,5, with some constant C > 0.
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Theorem 1.4. Suppose that Qy = =1/ 2XVXQ‘,ZI/ 2 satisfies Assumption 1.1. Assume that the
third and fourth moments of Xy agree with those of X, and consider the kith, . .., kyth,
ki,....koe{1,2,...,p}, n<p, bulks for I, defined in (1.11) or (1.12) associated with the
kith, i=1,2,...,n, bulk component. Under Assumptions 1.2 and 1.3 for any choices of
indices i, j €1y and [, v € I, there exists a § € (0, 1) such that, when SNy, < Iy, < (1 — §)Ny,,
i=1,2,...,n, we have

Jim (B — B9 (Neyy (Do () Neay (W8y ) Nigg, Dy (1) Negg, (10, ()
=0,

where 6 is a smooth function in R*" that satisfies
1006 (x| < A + |1x]12)C, k=1,2,3,4,5, with some constant C > 0.

Remark 1.4. (i) Similarly to Corollaries 1.1 and 1.2 and Remark 1.3(i), we can extend the
results to the joint distribution containing singular values. We take the extension of Theorem
1.3 as an example. By Assumption 1.2(ii), in the bulk, we have f{“/' dp=1/N+oN"".
Using a similar Dyson Brownian motion argument as in [33], combiﬁing with Theorem 1.3,
we have

Jim (B —E10(Pqr, Néw (Dar (), Near (1) (1) =0,
where p,, is defined as
Po = PYu' INCoos — Yar)s
and 0 € R? satisfies
1006 (x| < c + |Ix]]2)C, k=1,2,3,4,5, with some constant C > 0.

(ii) Theorems 1.3 and 1.4 still hold for the complex case, where the moment matching
condition is replaced by

EO%x =B xx,  0<v+u<4.

1.4. Remarks on applications to statistics

In this subsection we give a few remarks on possible applications to statistics and machine
learning. First, our results show that, under Assumptions 1.1, 1.2, and 1.3, the distributions of
the right singular vectors, i.e. entries of principal components, are independent of the laws
of x;;. Hence, we can extend the statistical analysis relying on Gaussian or sub-Gaussian
assumptions to general distributions. For instance, in the problem of classification, assuming
that ¥ = (y;) and each y; has the same covariance structure but may have different means, i.e.
Eyi=ur, i=1,2,...,N,k=1,2,..., K, where K is a fixed constant. We are interested in
classifying the samples y; into K clusters. In the classical framework, researchers use the matrix
AV to classify the samples y;, where A =diag{A1, ..., Ag}and V=(¢y, ..., {k) (recall that
A; and ¢; are the singular values and right singular vectors of Y). Existing statistical analysis
needs the sub-Gaussian assumption [29]. In this sense, our result, especially Remark 1.4, can
be used to generalize such results.
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Next, our results can be used to do statistical inference. It is notable that, in general, the
distribution of the singular vectors of the sample covariance matrix Q = TXX*T™ is unknown,
even for the Gaussian case. However, when T is a scalar matrix (i.e. T = cI, ¢ > 0), Bourgade
and Yau [10, Appendix C] showed that the entries of the singular vectors are asymptotically
normally distributed. Hence, our universality results imply that, under Assumptions 1.1, 1.2,
and 1.3, when T is conformal (i.e. T*T = cI, ¢ > 0), the entries of the right singular vectors are
asymptotically normally distributed. Therefore, this can be used to test the null hypothesis:

(Hp) T is a conformal matrix.

The statistical testing problem (Hp) contains a rich class of hypothesis tests. For instance,
when T =1, it reduces to the sphericity test and when ¢ = 1, it reduces to testing whether the
covariance matrix of X is orthogonal [40].

To illustrate how our results can be used to test (Hp), we assume that ¢ = 1 in the following
discussion. Under (Hp), denote the QR factorization of 7 to be T = Ul, the right singular
vector of 7X is the same as X, ¢, k=1,2, ..., N. Using [10, Corollary 1.3], we find that, for
i,k=1,2,...,N,

VNG(i) = N, (1.16)

where N is a standard Gaussian random variable. In detail, we can take the following steps to
test whether (Hp) holds.

1. Randomly choose two index sets Ry, Ry C {1, 2, ..., N} with |[R;| =0(1), i=1, 2.

2. Use the bootstrapping method to sample the columns of Q and obtain a sequence of
M x N matrices Q;, j=1,2,...,K.

3. Select C,ﬁ(i), keRy,ie Ry, from Q;, j=1,2,..., K. Use the classic normality test, for
instance, the Shapiro—Wilk test, to check whether (1.16) holds for the above samples.
Let A be the number of samples which cannot be rejected by the classic normality test.

4. Given some pre-chosen significant level «, reject Hy if A/|R1||R2]| < 1 — «.

Another important piece of information from our result is that the singular vectors are
completely delocalized. This property can be applied to the problem of low rank matrix
denoising [13], i.e.

S=TX+S5,

where S is a deterministic low rank matrix. Consider that S is of rank one, and assume that the
left singular vector u of Sise; =(1,0,...,0) e RM, Using the completely delocalized result,
it can be shown that i, the first left singular vector of S has the same sparse structure as that
of u, i.e.

m(h=0),  ui=0M""?), i#l,

hold with high probability. Thus, to estimate the singular vectors of S, we need only carry out
singular value decomposition on a block matrix of S. For more details, we refer the reader to
[13, Section 2.1].

Furthermore, delocalization of singular vectors is important in machine learning, especially
the perturbation analysis of a singular subspace [1], [15], [21], [20], [41]. In these problems,
researchers are interested in bounding the difference between the sample singular vectors
and those of 7. The Davis—Kahan sin 6 theorem is often used to bound the [, distance.
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However, in many applications, for instance, the wireless sensor network localization [21]
and multidimesional scaling [15], people are usually interested in bounding the [, distance.
Denote the right singular vectors of T by v; and recall that the ¢; are the right singular vectors
of Y. We aim to bound

[Vi = Gilloo-

To obtain such a bound, an important step is to show the delocalization (i.e. incoherence) of
the singular vectors [1], [15], [41]. Hence, our results in this paper can provide the crucial
ingredients for such applications.

This paper is organized as follows. In Section 2 we introduce some notation and tools that
will be used in the proofs. In Section 3 we prove the singular vector distribution near the
edge. In Section 4 we prove the distribution within the bulks. The Green function comparison
arguments are mainly discussed in Section 3.2 and Lemma 4.5. The proof of Lemma 3.4 is
given in the supplementary material [14] to this paper.

Conventions. We always use C to denote a generic large positive constant, whose value
may change from one line to the next. Similarly, we use ¢ to denote a generic small positive
constant. For two quantities ay and by depending on N, the notation ay = O(by) means that
lan| < C|by| for some positive constant C > 0, and ay = o(by) means that |ay| < cy|by| for
some positive constants cy — 0 as N — co. We also use the notation ay ~ by if ay = O(by)
and by = O(ay). We write the identity matrix I,,», as 1 or / when there is no confusion about
the dimension.

2. Notation and tools

In this section we introduce some notation and tools which will be used in this paper.
Throughout the paper, we always use € to denote a small constant and D to denote a large
constant. Recall that the ESD of an N x N symmetric matrix H is defined as

N
ng)(?») = jlv Z Lpu=<ays
i=1
and its Stieltjes transform is defined as
mH:/ x%zngv)(x), z=E+ineC,.
For some small constant T > 0, we define the typical domain for z = E + i as

Dt)={zeCi: |E|<t ", N <p<t7l}. 2.1

It was shown in [13], [16], [26], and [39] that the linearizing block matrix is quite useful in
dealing with rectangular matrices.

Definition 2.1. For z € C, we define the (N + M) x (N + M) self-adjoint matrix

_ L —d 2y
H=H(X9 E) - (ZI/ZY* —zl ’ (22)
and
G=GX,z):=H". (2.3)
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By Schur’s complement, it is easy to check that
B g1(2) 712Gy
27 Gi(r) WYrGI)Y — 7
TIYG@Y* -7 Y Gy(2)
= _1n , (2.4)
26 G2(2)

where
Gl =Y =27, G@)=Y-27 !, z=E+ineC,.

Thus, a control of G directly yields controls of (YY* — 2~V and (Y*Y — 2)~!. Moreover, we
have

1 1
m@=-3 G m@=y Y Gu (2.5)
ieT; ey

Recall that ¥ = Y MV /hgs, & e RD, & e R2. By (2.4), we have

) MX“:V 1 ( ExEl z‘l/zﬁk$k§;f> 26)
7)= . .
o M2\ VA agr 9299
Define
_ [Imm@) 1 _ (= 0 _('PEY2 0
V@)= ;0._<0 1), g._( o ) en
Definition 2.2. For z € C,, we define the Z x Z matrix
-1 -1
(T 4+ m)X) 0
I(z) := < 0 m(z))" 2.8)
We will see later from Lemma 2.1 that G(z) converges to [1(z) in probability.
Remark 2.1. In [26, Definition 3.2], the linearizing block matrix is defined as
-x- X
H,:.= < x* —ZI)' 2.9)
It is easy to check the following relation between (2.2) and (2.9):
1250172 12590172
[z z
H= ( 0 I) H, ( 0 I)' (2.10)
In [26, Definition 3.3], the deterministic convergent limit of Ho_l is
(=0 +m@T)" 0
[y(2) = ( 0 m@)) (2.11)
Therefore, by (2.10), we can get a similar relation between (2.8) and (2.11):
—1/25-1/2 -1/25-1/2
[z z
no=(T5 0 Dna(T ) @12)
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Definition 2.3. We introduce the notation X(™ to represent the M x (N — |T|) minor of X by
deleting the ith, i € T, columns of X. For convenience, ({i}) will be abbreviated to (7). We will

continue to use the matrix indices of X for XD, that is, XEJ-T) =1(j ¢ T)X;;. Let

yD — 21/2X(T), gg’ﬂ‘) _ (Y(’]l') y@* _ ZI)_lﬂ ggﬂ‘) _ (Y('JT)* yM _ ZI)_I.
Consequently, m(lT)(z) =M'Trg gT)(z) and m(zT) @)=N"'Tr Qgr)(z).
Our key ingredient is the anisotropic local law derived by Knowles and Yin [26].

Lemma 2.1. Fix t > 0. Assume that (1.1), (1.2), and (1.5) hold. Moreover, suppose that every
edge k=1, ..., 2p satisfies ar > © and that every bulk component k=1, ..., p is regular in
the sense of Assumption 1.2. Then, for all z € D(t) and any unit vectors u, ve RMTN there
exist some small constant €1 > 0 and large constant D1 > O such that, when N is large enough,
with probability 1 — N~P1, we have

| <w, 27'(G@ - ME@Z'v> [ <N (2.13)
and
Ima(z) — m(z)| < N W(2). (2.14)
Proof. Equation (2.14) was proved in [26, Equation (3.11)]. We need only prove (2.13). By
(2.10), we have
Golz) = (11/202 2 ?) G(2) (ZI/ZOE v ?) : (2.15)
By [26, Theorem 3.6], with probability 1 — N —D1 we have
| <u, 271(Go(@) ~ M@, v > | < NI (). (2.16)
Therefore, by (2.12), (2.15), and (2.16), we conclude our proof. O

It is easy to derive the following corollary from Lemma 2.1.
Corollary 2.1. Under the assumptions of Lemma 2.1, with probability 1 — N~P1, we have

[(v, (G2(2) — m(2))v)| < N°'W(2), l(u, (G1(2) + 2711+ m@) ) Hu)| < NT1W(2),
(2.17)

where v and u are unit vectors in RN and RM | respectively.

We use the following lemma to characterize the rigidity of the eigenvalues within each bulk
component, which can be found in [26, Theorem 3.12].

Lemma 2.2. Fix t > 0. Assume that (1.1), (1.2), and (1.5) hold. Moreover, suppose that every
edge k=1, ..., 2p satisfies ar > © and that every bulk component k=1, ..., p is regular in
the sense of Assumption 1.2. Recall that Ny is the number of eigenvalues within each bulk.
Then, for i=1, ..., Ny satisfying yr;>7v and k=1, ..., p, with probability 1 — NP1 we
have

Aki = Vil < AN+ 1= i) V3NT23F (2.18)
Within the bulk, we have a stronger result. For small t’ > 0, define
D}:={zeD(): Eclan+7 an-1—71}, k=1,2,....p, (2.19)
as the bulk spectral domain. Then [26, Theorem 3.15] gives the following result.
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Lemma 2.3. Fixt, v’ > 0. Assume that (1.1), (1.2), and (1.5) hold and that the bulk component
k=1,...,2p is regular in the sense of Assumption 1.2(ii). Then, for all i=1, ..., Ny
satisfying yx.; € lax + T/, aosg—1 — t'], (2.13) and (2.14) hold uniformly for all 7 eD,l(7 and,
with probability 1 — N~P1,

|Aki — Viil < NTITet

As discussed in [26, Remark 3.13], Lemmas 2.1 and 2.2 imply complete delocalization of
the singular vectors.

Lemma 2.4. Fix 7 > 0. Under the assumptions of Lemma 2.1, for any i and | such that
Vi, Yu = T, with probability 1 — NP1 we have

max |&;(s1)|? 4+ max |, (s2)|* < N1 (2.20)
i,8] 1,82

Proof. By (2.17), with probability 1 — N=P1, we have max{Im G;;(z), Im Guu(@)}=0().
Choosing zg = E + ino with no = N~!41 and using the spectral decomposition (2.6) yields

NAM

1o 12
— M |&®I = Im Gizo) = O(D), (221)
;(E—mzw% o v
NAM
Y (0 =1m Gp(zo) = O(1), (2.22)
— E— P+

with probability 1 — N~P1. Choosing E = A; in (2.21) and (2.22) completes the proof. (]

3. Singular vectors near the edges

In this section we prove universality for the distributions of the edge singular vectors of
Theorems 1.1 and 1.2, as well as the joint distribution between the singular values and singular
vectors of Corollaries 1.1 and 1.2. The main identities on which we will rely are

_ MAN n ~ MAN 1
Gij = ,32_1 Erp e Gw= ; EE Wi, GD

where G,J and G;w are defined as

~ 1 _ = 1 _

Gij = Z(Gij(z) - Gjj(2)), Guv = Z(G’“(Z) = Gu().
Owing to similarity, we focus our proofs on the right singular vectors. The proofs rely on three
main steps.

1. Writing N¢g(u)¢p(v) as an integral of G,w over a random interval with size O(N®n),
where & > 0 is a small constant and n = N —2/3-e0 go > 0, will be chosen later.

2. Replacing the sharp characteristic function from step (i) with a smooth cutoff function ¢
in terms of the Green function.

3. Using the Green function comparison argument to compare the distribution of the
singular vectors between the ensembles X and Xy .
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We will follow the proof strategy of [24, Section 3] and slightly modify the details.
Specifically, the choices of random interval in step (i) and the smooth function ¢ in step (ii)
are different due to the fact that we have more than one bulk component. The Green function
comparison argument is also slightly different as we use the linearization matrix (2.6).

We mainly focus on a single bulk component, first proving the singular vector distribution
and then extending the results to singular values. The results containing several bulk compo-
nents will follow after minor modification. We first prove the following result for the right
singular vector.

Lemma 3.1. Suppose that Qy = EI/ZXVX;‘,Z 112 satisfies Assumption 1.1. Let E¢ | EY denote
the expectations with respect to X and Xy. Consider the kth, k=1, 2, . . ., p, bulk component,
with [ defined in (1.11) or (1.12), under Assumptions 1.2 and 1.3 for any choices of indices
i, v €1y, there exists a 6 € (0, 1) such that, when | < N,‘f, we have

lim [E" —E°0(WN o (15w (v) =0,
N—o0
where 6 is a smooth function in R that satisfies
|9(3)(x)| <Ci(1+ |x|)cI , x € R, with some constant C; > 0. 3.2)
Near the edges, by (2.18) and (2.20), with probability 1 — NP1, we have

At — Yo | < N3 max g, (s)|? < N1 (3.3)
.52

Hence, throughout the proofs of this section, we always use the scale parameter

n= N*2/3*50, go > €1 is a small constant. 3.4

3.1. Proof of Lemma 3.1

In a first step, we express the singular vector entries as an integral of Green functions over
a random interval, which is recorded as the following lemma.

Lemma 3.2. Under the assumptions of Lemma 3.1, there exist some small constants €, 5 > 0
satisfying

> 2e¢, e > Cey, § < C_lso, 3.5)
for some large constant C > Cy (recall (3.2) for C1) such that

N -
EY 6Ny (1) ()~ EV6 (= / G (DX(E) dE)| =0,
T Ji

lim max max
N—oo lSNIf L,V

where I is defined as
I:=[an—1 — N"2*%, agy_y + N723H] (3.6)
when (1.11) holds
J— [azk _ N3 o +N—2/3+a]
when (1.12) holds. We define
X(E) =1hy11 <E™ <Xy), (3.7)
where E* := E 4+ N¢1. The conclusion holds if we replace Xy with Xg.

https://doi.org/10.1017/apr.2019.10 Published online by Cambridge University Press


https://doi.org/10.1017/apr.2019.10

250 XIUCAI DING

Proof. We first observe that

_n ;a’(“);a’(v)
Cor (W) (V) = ; 0 m

Choose a and b such that
a:=minf{Ay — N°n, Agra1 +N°n}, b:=Mx\y +N°n. (3.8)

We also observe the elementary inequality (see the equation above Equation (6.10) of [18]),
for some constant C > 0,

oo
c
/ T _dy<——, x>0 (3.9)
v TR+ X+

By (3.3), (3.8), and (3.9), with probability 1 — NP1, we have

n (Y ()l (v)

/ ’ = — _— —l—ete
Gt )= | s dE OV, (3.10)

By (3.2), (3.3), (3.5), (3.10), and mean value theorem, we have

v v (N0 [P G (W)Ee (v)
EYOWG e =EY0(T [ 2R aE) vo). G

Define )»,i =AM E£Nn, t=0a', &’ + 1, and by (3.8), we have

b )‘:/ )‘:’H
/ dE:/ dE+1(2,, >A;,)/ dE.
a )x+ )\;/

o +1

By (3.2), (3.3), (3.11), and the mean value theorem, we have

o L (W) (V)

% =E ﬂ/ = v
E*O(NGy ()¢ar(v)) =E 9( 7 Jit, (E—da)? +0?

dE) +o(1),

where we used (2.18) and (3.5). Next we can, without loss of generality, consider the case
when (1.11) holds. By (3.3) and (3.5), we observe that, with probability 1 — N~?!, we have
A Sag 1+ N3 and A7, > ag 1 — N7*3F. By (2.18) and the choice of 1 in (3.6),
we have

v v (N [t )
BV (02 (D =EYO( L | s X dE) 4o,

Recall (3.1). We can split the summation as

léuv(2)=z Ep()gp(v) n Cor (W) (V)

. 3.12
(E—xp)>+n> (E—iy)*+n? G-12)

o’
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Define A:={Bf#a’: Ag isnotin the kth bulk component}. By (3.3), with probability
1 —N~P1, we have

’Z an ~gp(wgp(v) dE’
1 (E—Ap)*+n?

pta
_ N
(Z/n T E A )sz+ > /n T )\,3)2dE) (3.13)

BeAC

By Assumption 1.2, with probability 1 — NP1, we have

Nét Z/ . dESNel ZN74/3*80+€. (314)
n +(E Ag) oy
Define
(B):=B—Y N
t<k

By (3.3) with probability 1 — N~P1, for some small constant 0 < § < 1, we have
1 Nétn
Z /(E P SAE<NSP 4+ — ) / P s dE. (3.15)
T
peAc ! f 7 BeAC, I(B)=N} 1 p
By Assumption 1.2, (1.9), (2.18), and the assumption that § > 2¢, it is easy to check that (see
[24, Equation (3.12)])

(E — Aﬂ)z > ¢ > 0 is some constant. (3.16)

(l(ﬂ))“/ 3

A\ — >
N

By (3.16), with probability 1 — NP1, we have
N

1 3 / N ——————— dE < NI TF0tE / x%/a dx < N~¥/3+e1—eote,
b T} =+ (E )\ﬂ) - NS—1
BeAC [(B)=N}

Recall (3.5). We can restrict &; — &9 + & < 0, so that, with probability 1 — N~P1, this yields
Nty
Z f CE—Tp dE < N9/, (3.17)
BEAC, [(B)=N} v g
By (3.13), (3.14), (3.15), and (3.17), with probability 1 — N~P1, we have

< No+2e1, (3.18)

Z Nn ¢p()gp(v) _dE

1 (E—2p)* +n?

B#a!
By (3.2), (3.3), (3.12), (3.18), and the mean value theorem, we have

‘m( 0 [ ) o dE)_Eve(%V / Gu(E + i X(E) dE )|
1

1 (E—xe)? +1?
2 N [ 18G)Es (W)
Ci(0+2e) RV
NOCRORY y Eoie o E)E, (3.19)
pral g
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where Cj is defined in (3.2). To complete the proof, it suffices to estimate the right-hand side
of (3.19). Similarly to (3.14), we have

Z / dE < N~1/3-¢0te, (3.20)
n? + (E )\5)2
Choose a small constant 0 < §; < 1 and repeat the estimation in (3.17) to obtain

3 T dE <N, (3.21)
P E=p
BeAe, I(p)=N""

Recall (1.11), (3.3), and (3.9). Using a discussion similar to that above Equation (3.14) of [24],
we conclude that

s Mgy [ w0

X(E)dE
T 1 (E—xp)?+n? &

BeAc, I<I(B)=N,!

00 NEI
SIEV/ L dE
ho/p1+NED (E—Ag'41)"+1

<N &ter, (3.22)

where we have used the fact that 8 € A°and [ < I(B) < N,f‘ imply that Ag < A4y 1. Itis notable
that the above bound is independent of §. It remains to estimate the summation of the terms
when B € A and I(B) < L. For a given constant, &’ satisfies

§>2¢, ¢ > Cey, § < C . (3.23)
We partition I =11 U I, with I} NI, = &, where
={E eI there exists B, p € A°, I(B) <I, |E— Ag| §N5/n}. (3.24)

By (3.3) and (3.24), using a similar discussion to that used for (3.22), we have

N ,
>y gy / —gﬁ(g)gzﬁ(‘mz)ﬁ(@dESN_Zg+51.
pedip<r T T BT AT

It is easy to check that on /; when A1 < Ay < Ag, we have (see (3.15) of [24])
1 NZS
—  WE <Ay < .
(E—hp)? + 17 T Gt = AP

By Lemma 2.2, the above equation holds with probability 1 — N —Dr, By (3.3), (3.25), and a
discussion similar to that used in [24, Equation (3.16)], we have

N
Z —n]EV/ |§ﬁ(ﬂ)§§(V)I2X(E)dE§EV/ —
pedoipyt T n (E—2p)+n n a'41 —Ag)*+1

(3.25)

N81+28 n2

SEVI(MM-H _)\'a’| SN—1/3n1/2)+N—D1+81+38

< N—50/2+3s ) (3.26)
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By (3.20), (3.21), (3.22), (3.23), and (3.26), we conclude the proof of (3.19). It is clear that our

proof still applies when we replace Xy with X¢.

O

In a second step, we write the sharp indicator function of (3.7) as a some smooth function ¢
of Gy,». To be consistent with the proof of Lemma 3.2, we consider the bulk edge ap—1. Define

n 1 1

0 = =—1 .
1) a(x24+n?) =« ey in

We define a smooth cutoff function g = ¢, : R — R as
1 iflx—1I<1
0 iflx—1I>3,

where [ is defined in (1.11). We also let O = Y*Y.

Lemma 3.3. For ¢ given in (3.5), define

Xe(x) :=1(E~ <x=<Eyp),

(3.27)

(3.28)

where Ey := are—1 + 2N~2/3%¢ and define j == N=2/3790  where g is defined in (3.4). Then

lim max max
N%oolEle TRy

where I is defined in (3.6) and “x’ is the convolution operator.

Proof. For any E| < E», denote the number of eigenvalues of Q; in [E, E>] by
N(E, Ey):=#{j: E| <) < Ey}.

Recall (3.6) and (3.7). It is easy to check that, with probability 1 — N~P1, we have

N / G(DX(E)AE=N / G DIN(E™, Ey) = ) dE
1 1

_N /1 Gy (2)qITr X5(01)] dE.

B0 (New 06 ) ~ B0 [ GuutoralTr (i 9300 )| =

(3.29)

(3.30)

where, for the second equality, we used (2.18) and Assumption 1.2. We use the following
lemma to estimate (3.29) by its delta approximation smoothed on the scale 7. The proof is

given in the supplementary material [14].

Lemma 3.4. Fort=N"2/373%0_ there exists some constant C, and with probability 1 — N

for any E satisfying
— 3 —2/3+e
IE” —ag—1|= 5N ,

we have

| Tr Xp(Q1) — Tr (Xg % 95)(01)] < C(N™20 + N(E™ —1, E~ +1)).
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By Equation (A.7) of [26], for any z € D(7) defined in (2.1), we have

n
9 E 9
Imm(z) ~ { VK +1 F supp () (3.32)

Jk+mn,  Ee€supp(p),
where k := |E — a;_1|. When 1 = v, with probability 1 — N~P1, we have
sup IGMM(E +in)| =sup | Im G, (2)]
Eel Eel
<sup (Im |G, (z) — m(2)| + | Im m(2)|)

Eel
< N_1/3+80+28,

where we have used (2.17) and (3.32). When u # v, we use the identity

M+N

G;w=77 Z Gukauk-
k=M+1

By (2.17) and (3.32), with probability 1 — N~P1, we have supg; |G, (z)] < N~!/3+e0+2e,
Therefore, for E € I, with probability 1 — N D1 we have

sup |G (E +in)| < N~1/3+3¢0/2, (3.33)
Eel

Recall (3.27). By (3.30), (3.31), (3.33), and the smoothness of ¢, with probability 1 — N—D1,
we have

I /1 Guv (X (E)dE =N /1 Guv (@l Tr (X * 05(Q1)] dE

<oV Y [18u@IE gl <0 dE+ N
1p<n? "
< CN'|t] sup |G ., (2)| + N~50/4, (3.34)
zel

By (3.33) and (3.34), we have
’N/GMV(Z)X(E) dE — N/le(z)q[Tr (X * ﬁﬁ(Ql))] dE‘ < CN—60/2+8 +N—so/4_
I I

Using a discussion similar to that used for (3.13), by (3.2) and (3.5), we complete the proof. [

In the final step, we use the Green function comparison argument to prove the following
lemma, whose proof is given in Section 3.2.

Lemma 3.5. Under the assumptions of Lemma 3.3, we have

lim max (EV — IEG)G(%V /1 G(2)q[Tr (Xg * 97)(01)] dE) =0.

N—oo W,v

The proof of Lemma 3.1 follows from the proof of Lemma 3.3.
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3.2. The Green function comparsion argument

In this section we prove Lemma 3.5 using the Green function comparison argument. At the
end of this section we discuss how we can extend Lemma 3.1 to Theorem 1.1 and Theorem
1.2. By the orthonormal properties of £ and ¢, and (2.6), we have

M M+N
Gij=n Z GiGi., Guw=n Z GurGok- (3:35)
k=1 k=M+1

By (2.17), with probability 1 — N~P1, we have

Gl = O(), |Gyy| < NTI3FZ0 oy, (3.36)
We first drop the all diagonal terms in (3.35).
Lemma 3.6. Recall that Ey = ani—1 + 2N 23 and fj = N=2/3790_ We have

N -
EVo[~ /I G Tr (X 93)( QD] dE| ~EV6)| /1 ME)OE) AE] =o(D),  (3.37)

where
Ny ' . i [E .
WEi=t Y XasErin =2 [0S Xy dE.
k=M1, k#u,v TIET T pk
(3.38)
and X,y k1= Gukavk. The conclusion holds if we replace Xy with Xg.
Proof. We first observe that, by (3.36), with probability 1 — N~°1, we have
IX(E)| < N?/3+3, (3.39)
which implies that
/ IX(E)| dE < N*. (3.40)
!
By (3.35) and (3.36), with probability 1 — NP1 we have
N - . Nn — _
’;Guv(E + 177) _x(E)) = ?|Guqup, + G;wGuu|
<Nn(l(=v) + N30 (u £ v)). (3.41)
By Equations (5.11) and (6.42) of [16], we have
N [Eu o . N Im mo(w + i7])
Tr (X * 95(Q0) = — / mmy(w+if) dw, Y |G (w i) = Tﬁ
-
Hv
(3.42)
Therefore, we have
i Ey M+N
Tr (Xg * 05(01)) — y(E) = — / Z |Gppl* dw. (3.43)
TIET oM
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By (3.43), the mean value theorem, and the fact that g is smooth enough, we have

|q[ Tr (X * 97)(QD)] — gy (E)| < N~1/377%0, (3.44)
Therefore, by the mean value theorem, (3.2), (3.5), (3.39), (3.40), (3.41), and (3.44), we
complete the proof. (]

To prove Lemma 3.5, by (3.37), it suffices to prove that
[EY — EG]9< / X(E)g(E)) dE) —o(1). (3.45)
I

We use the Green function comparison argument to prove (3.45), where we follow the basic
approach of [16, Section 6] and [24, Section 3.1]. Define a bijective ordering map & on the
index set, where

S: i u): 1<i<M, M+ 1< <M+N}—{1,.... Ymax =MN}.

Recall that we relabel XV = ((Xy)iy,, i € T1, pt1 € Ip), and similarly for X©. For any 1 <y <

) such that xl};” =Xi(li1 if ®(i, 1) >y and xz-:“ =Xl-‘;1

= X". With the above definitions, we have

VYmax» We define the matrix X, = (xi);l1
otherwise. Note that Xy = X¢ and X.

Ymax

Ymax

(B9 —E"Jo( [1 MEOE)E) = B~ — 716 ( /1 XE)((E)) dE).
y=I

For simplicity, we rewrite the above equation as

E[e( /1 549 dE) — 9( /1 6Y) dE)]

Ymax

=);]E[0(/Ixqu(yaxl)dE) _Q(ﬁqu(yV)dE)]'

The key step of the Green function comparison argument is to use the Lindeberg replacement
strategy. We focus on the indices s, t € Z; the special case u, v € Z, follows. Define Y, :=

Zl/sz and
) 0 ZI/ZYV y —zl zl/zYy !
HY e o= _ (3.46)
ZI/ZY; 0 zl/zY;ﬁ —zl

As ¥ is diagonal, for each fixed y, H” and H v=1 differ only at the (i, 1) and (11, i) elements,
where ®(i, ;11) = y. Then we define the (N + M) x (N + M) matrices V and W by

1/2 G
Vab =22 (Naby=ti. ) + Licaby=ur.0)) v/0iXi5

1/2 \%
Wap = 2"% (a.0)=(i. ) + Vab)=u1.01) ~/0iXi,

so that H” and H” ~! can be written as

H'=0+V, H =0+ W,
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for some (N + M) x (N + M) matrix O satisfying O, = Oy,; =0, with O independent of V
and W. Define

S:=H""1 -7, R:=(0—-27", T:=H" —2)~ L. (3.47)
With the above definitions, we can write

E[G ( /1 x99 dE) —0 ( /] (") dE)]

Ymax

p3 Blo( [ Havhar) —o( [ 5"q0 ar)] (3.48)

The comparison argument is based on the resolvent expansion
S=R—RVR+ (RV)’R — (RV)’R + (RV)*S. (3.49)

For any integer m > 0, by Equation (6.11) of [16], we have

(RVI"R)ap = > @)™ (X{ )" Raay Rbyas - - - Ro,pr  (3.50)
(ai,bi)e{(i,p1), (1,0}, 1<i<m
([RVY"S)ap = > @™ (0" (X5, )" Raay Royay - - - Sopp- (3.51)

(ai,bi)e{i,pk1), (1,0}, 1<i<m

Define
AXpyv k7= SurSvk — RukRuk. (3.52)

In [24], the discussion relied on a crucial parameter (see [24, Equation (3.32)]), which counts
the maximum number of diagonal resolvent elements in AX,,,, . We will follow this strategy
using a different counting parameter, and, furthermore, use (3.50) and (3.51) as our key
ingredients. Our discussion is slightly easier due to the loss of a free index (i.e. i # u1).

Inserting (3.49) into (3.52), by (3.50) and (3.51), we find that there exists a random variable
A1, which depends on the randomness only through O and the first two moments of Xff“.
Taking the partial expectation with respect to the (i, i¢1)th entry of X% (recall they are i.i.d.), by
(1.2), we have the following result.

Lemma 3.7. Recall (2.7), and let K, be the partial expectation with respect to Xg“. Then
there exists some constant C > 0, and with probability 1 — N~P1, we have

|E, AXuv i — Al S NT/2TC0w@3 0 M4 1<k#up,v<M+N,

where s counts the maximum number of resolvent elements in AX,, x involving the index 1\
and is defined as

si=1(({p v 0 (i} # 2) U (k= ). (353)

Proof. Inserting (3.49) into (3.52), the terms in the expansion containing Xﬁl and (Xl-clil)2

will be included in A;; we consider only the terms containing (Xi(lf“)m, m > 3. We consider
m = 3 and discuss the terms

Ruk[(RV)*R] [RVR],k[(RV)?R] 1.
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By (3.50), we have

Ru[(RV)*R], = Rﬂk( > @ 2X5 Y (@32 Ryay Rbyay Rbyas R )

In the worst scenario, Rp, 4, and Ry,4; are assumed to be the diagonal entries of R. Similarly,
we have

1/2 - B B
(RVRY,l(RV)?Rlye = ( 32720, *XG, Rya Roi) ( D 01(X{,, ¥ 2Roa R R )

and the worst scenario is the case when Ry, 4, is a diagonal term. As u, v # i always holds and
there are only a finite number of terms in the summation, by (1.2) and (3.36), for some constant
C, we have

E, [Rk[(RVR,| < N™/2HC0w(2)3,
Similarly, we have
E, [[RVRYul(RV?R] x| < N7/ C0w (),
The cases in which 4 <m < 8 can be handled similarly. This completes the proof. (]
Lemma 3.5 follows from the following lemma. Recall (3.38), and define
AXE) =) = xRE). AyE) =y (E) — Y (E).

Lemma 3.8. For any fixed i, v, and y, there exists a random variable A, which depends on
the randomness only through O and the first two moments of X©, such that

Ee( f Sq05) dE) - E@( / Ry dE) — A+ o(N"2H, (3.54)
1 1

where t:= |, v N 1.

The proof of Lemma 3.8 given in the supplementary material [14]. We now show how
Lemma 3.8 implies Lemma 3.5.

Proof of Lemma 3.5. 1tis easy to check that Lemma 3.8 still holds when we replace S with
T. Note that in (3.48) there are O(N) terms when ¢ = 1 and O(N?) terms when ¢ = 0. By (3.54),

we have
E[@ ( /Iqu(yG) dE) _ 9( /vaq(yv) dE)] =o(1),

where we have used the assumption that the first two moments of X" are the same as those of
XY. Combine with (3.37) to complete the proof. U

It is clear that our proof can be extended to the left singular vectors. For the proof of
Theorem 1.1, the only difference is that we use the mean value theorem in R? whenever it
is needed. Moreover, for the proof of Theorem 1.2, we need to use » intervals defined by

1= [aok—1 — N723F agp_y + N723F¢], i=1,2,...,n
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3.3. Extension to singular values

In this section we discuss how the arguments of Section 3.2 can be applied to the general
function 6 defined in (1.15) containing singular values. We mainly focus on discussing the
proof of Corollary 1.1.

On the one hand, similarly to Lemma 3.3, we can write the singular values in terms of an
integral of smooth functions of Green functions. Using the comparison argument with 6 € R3
and the mean value theorem in R? completes our proof. Similar discussions and results have
been derived in [18, Corollary 6.2 and Theorem 6.3]. For completeness, we basically follow
the strategy in [24, Section 4] to prove Corollary 1.1. The basic idea is to write the function 6
in terms of Green functions by using integration by parts. We mainly look at the right edge of
the kth bulk component.

Proof of Corollary 1.1. Let FV be the law of A,, and consider a smooth function
6: R — R. For § defined in Lemma 3.2, when [ < N,‘f, by (1.14) and (2.18), it is easy to check
that

N2/3 N2/3
EV9<—()W _ agk_1)> - / 9(—(15 _ azk_1)> dFV(E)+ ON~P1), (3.55)
w 1 w

where @ := w1 and [ is defined in (3.6). Using integration by parts on (3.55), we have

N2/3
[EY — EO9( (o — 1))

N3 N3
— _[EY —ES] / ?9/(?(15 _ aZk_l))l(Aa, <E)ME+ON),  (3.56)
1

where we have used (1.14) and (2.18). Similarly to (3.27), recalling (1.11), choose a smooth
nonincreasing function f; that vanishes on the interval [/ + %, oo) and is equal to 1 on the

interval ( — oo, [+ %]. Recall that Eyy = a1 + 2N~2/3+¢ and N(E, Ey) denotes the number
of eigenvalues of Q located in the interval [E, Ey]. By (3.56), we have

N2/3
[EY — B9 (~—— (o — 1))

N23 N2/
=B~ EO) [ %0/ (B ~ ) AN B E)E -+ O,
] 0 w

Recall that ij = N~2/37%0_ Similarly to the discussion of (3.31), with probability 1 — N~P1,
we have

N2/3 /1 | Tr (L£, 501 * 95(01))) — Tr (£, £,1(Q1))| dE < N~*0.

This yields

N2/3
[EY ~E%10( =~ — ax-))
w

N2/3 N2
=B~ B0 [ 20/ (8 = ) (T (. * 95(01)) dE + OV
] O w
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Integration by parts yields

N2/3
[EY — E)6 (—— (s — ax1))

N N?/3
= YEv g9 / 0(" G —an)
T 1 w
x f1 (Tr (Mg, g1 * 95(01))) Im my(E + i) dE + o(1),

where we have used (3.42). Now we extend 6 to the general case defined in (1.15). By Theorem
1.1, it is easy to check that

v G N2/3

[EY — E10 (——Char = a2t1). N (D (). N (05 ()

1 N3
= 18" <% [0(% G — ) b )
T I w
xf/(Tr (Mg By * ﬂﬁ(Ql)))N Im my(E + i) dE 4+ o(1), (3.57)

where
N [~ - . 7
b= / Gy(E+ ima1 [Tr (- g, 1 % 97(Q1)] dE,
I

N [~ = i
Po' = /,le(E + img2[Tr (A= g, * O5(QU)]JdE.

and g; and g are the functions defined in (3.27). Therefore, the randomness on the right-hand
side of (3.57) is expressed in terms of Green functions. Hence, we can apply the Green function
comparison argument to (3.57) as in Section 3.2. The complications are notational and we will
not reproduce the details here. 0

Finally, the proof of Corollary 1.2 is very similar to that of Corollary 1.1 except that we use
n different intervals and a multidimensional integral. We will not reproduce the details here.

4. Singular vectors in the bulks

In this section we prove the bulk universality Theorems 1.3 and 1.4. Our key ingredients,
Lemmas 2.1 and 2.4 and Corollary 2.1, are proved for N7 < n < 771 (recall (2.1)). In the
bulks, recalling Lemma 2.3, the eigenvalue spacing is of order N~!. The following lemma
extends the above controls for a small spectral scale all the way down to the real axis. The
proof relies on Corollary 2.1 and the details can be found in [24, Lemma 5.1].

Lemma 4.1. Recall (2.19). For zeDZ with 0 <n <t~', when N is large enough, with
probability 1 — N~P, we have

nl}avx |G v — 8um(z)] < N W (2). “4.1)

Once Lemma 4.1 is established, Lemmas 2.3 and 2.4 will follow. Next we follow the basic
proof strategy for Theorem 1.1, but use a different spectral window size. Again, we provide
only the proof of Lemma 4.2 below, which establishes the universality for the distribution of
Lo ()& (v) in detail. Throughout this section, we use the scale parameter

n= N~1=¢0, go > €1 is a small constant. 4.2)
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Therefore, the following bounds hold with probability 1 — N~11.

max |G, ()] <N*°,  max|Guu(2)] <N*0,  max |, (s)]> < N~ITeo, (4.3)
n n#EY s

The following lemma states the bulk universality for ¢y ()¢q (V).

Lemma 4.2. Suppose that Qy = £/ 2XVX§*,EI/ 2 satisfies Assumption 1.1. Assume that the
third and fourth moments of Xy agree with those of Xg, and consider the kth, k=1,2,...,p
bulk component, with [ defined in (1.11) or (1.12). Under Assumptions 1.2 and 1.3, for any
choices of indices ., v € Lo, there exists a small § € (0, 1) such that, when SNy, <1< (1 — §)Ng,
we have

lim [EY — E90(Nw (W () =0,
N—o0
where 6 is a smooth function in R that satisfies

109@)| < Ci(1 + [xDE with some constant Cy > 0. 4.4)

4.1. Proof of Lemma 4.2
The proof strategy is very similar to that of Lemma 3.1. Our first step is an analogue of

Lemma 3.2. The proof is quite similar (actually easier as the window size is much smaller).
We omit further details.

Lemma 4.3. Under the assumptions of Lemma 4.2, there exists a 0 < & < 1 such that
N ~
lim  max  max ‘EVQ(NQ'Q/(/L)Q'U/(U)) _ ]EVG[— / v (DX (E) dE]‘ =0, (45)
N—00 SNy <I<(1—8)Np 1,V T J;

where X (E) is defined in (3.7) and, for € satisfying (3.5),
I'=[yw =N,y + N1 (4.6)

Next we express the indicator function in (4.5) using Green functions. Recall (3.28), a key
observation is that the size of [E~, Ey/] is of order N~2/3 due to (3.4). As we now use (4.2) and
(4.6) in the bulks, the size here is of order 1. So we cannot use the delta approximation function
to estimate X'(E). Instead, we use Helffer—Sjostrand functional calculus. This has been used
many times when the window size n takes the form of (4.2), for example, in the proofs of
rigidity of eigenvalues in [16], [18], and [33].

For any 0 < Ey, E; <t~ !, let f(A) =&, E,.n,(A) be the characteristic function of [E}, E]
smoothed on the scale

nd = N~1-deo d>?2,
where f = 1 when A € [E], E>] and f =0 when L € R\ [E] — ng4, E2 4+ n4], and
Fl=cng'. 1= O 4.7)
for some constant C > 0. By Equation (B.12) of [19], with fg = f¢- g, ,,» We have

Feh) = i/ io [{(6)){(0)+ifE(€)X’§6)—0fé(6)x’(G) de do, 4.8)
27 JRr2 A—e—1io

where y(y) is a smooth cutoff function with support [—1, 1] and x(y) =1 for |y| < % with
bounded derivatives. Using a similar argument to that used for Lemma 3.3, we have the
following result, whose proof is given in the supplementary material [14].
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Lemma 4.4. Recall the smooth cutoff function q defined in (3.27). Under the assumptions of
Lemma 4.3, there exists a 0 < 8 < 1 such that

lim max max
N—>00 8N <I<(1—8)Ny M,V

E 9( f Gn(@X(E)) dE

B0 [ GuaTese0n) de|

—0. 4.9)

Finally, we apply the Green function comparison argument, where we will follow the
basic approach of Section 3.2 and [24, Section 5]. The key difference is that we will use
(4.2) and (4.3).

Lemma 4.5. Under the assumptions of Lemma 4.4, there exists a 0 < § < 1 such that
N ~
I EV—EGQ[—/G E +in)g(T dE]:O. 4.10
Jim 5Nk§{[§l?1x—5)Nk max [ ] <), w(E +1n)q(Tr fe(Q1)) (4.10)

Proof. Recall (4.8). By (2.5), we have
N . . .
Trfe(Q1) = T /Rz (iofp(e)x(0) +ife(e)x (0)—afp(e)x (o)) ma(e +io)dedo.  (4.11)
Define 74 :=N —1=(d+Deo We can decompose the right-hand side of (4.11) as

TrfQD = 5 / / (if5(@)x(0)— o f4(e)x (@ Ymae + o) de do

+ — ox(o) /fg(e)mz(e+ia)da de
2

lo|>17q
iN [7d . )
+ — ox(o) | fple)ma(e+io)do de.
27 i,
By (4.3) and (4.7), for some constant C > 0, with probability 1 — N D1 we have

‘2 f ox(a)/f (e)myr(e +1i0) do de <N~ Ce, 4.12)

Recall (3.35) and (3.38). Similarly to Lemma 3.6, we first drop the diagonal terms. By (4.1),
with probability 1 — N ~D1 we have (recall (3.41))

N -~
f \—GME +in) — x(E)] dE < N~'*C%
T
for some constant C > 0. Hence, by the mean value theorem, we need only prove that

. \% G _
Jim - max max[E' ~E 16 ( /1 XE)(Tr [5(Q1) dE) = o(1).

Furthermore, by Taylor’s expansion, (4.12), and the definition of y, it suffices to prove that

. \% G 5 _
Jim - max max[E' ~E 16 ( /I XENO(E) +5(E) dE) = o(1), (4.13)
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where
Y(E):= l / io Ig(e)x(o)mz(e +i0)1(lo| > 74) de do, 4.14)
27‘[ R2
N
W(E) = T / (ife(e)x'(0)—afgle)x'(o))ma(e +io) dedo. (4.15)
T JR2

Next we will use the Green function comparison argument to prove (4.13). In the proof of
Lemma 3.5, we used the resolvent expansion until an order of four. However, due to the larger
bounds in (4.3), we will use the expansion

S=R—RVR+ (RV)’R — (RV)’R + (RV)*R — (RV)’S. (4.16)

Recall (3.47) and (3.48). We have

(B =59 [ s +5(6) d)

_ :i:‘: E (9((/Ix5q(ys +§S))) - 9(( /Iqu(yT +§T)))). (4.17)

We still use the same notation Ax(E) := x3(E) — xR(E). We basically follow the approach of
Section 3.2, where the control (3.36) is replaced by (4.3). We first deal with x(E). Let AxB(E)
denote the summations of the terms in Ax(E) containing k numbers of Xiﬁl. Similarly to the

discussion of Lemma 3.7, recalling (3.52), by (1.2) and (4.3), with probability 1 — N~P1, we

have
IAXOE) < N3P0 M4l <k#u,v<M+N.
This yields
4
AX(E) = Z AXPV(E) + O(N~3/2+Ce0y, (4.18)
p=1
Let
1 M+N
AVE)=FE) =T E),  Ampi=mi—mi=— 3 (Sup = Rup).
u=M+1

We first deal with (4.15). By the definition of x, we need to restrict % <|o| <1; hence, by
(2.17), with probability 1 — N~"1, we have

max |G, | < N°1, max |G, | < N~V/2Fer, (4.19)
W WFEY

By (3.50), (3.51), (4.16), and (4.19), with probability 1 — N~?1, we have | AmS| < N=7/2+%1,
This yields the decomposition

4
AF(E) = AFPU(E) + O(N~/+C0), (4.20)
p=1
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Next we will control (4.14). Define Ay(E) := yS(E) — yR(E). By (3.50), (3.51) and (4.1), using
a similar discussion to that used for Equation (5.22) of [24], with probability 1 — N=P1 for
o > 14, we have

|Am| < NT/2HCoo v 4 A2), 4.21)

where A, 1= SUP|p| <71 MaAXp Ly |G (e +i0)|, recalling that (1, v € Z;. In order to estimate
Ay(E), we integrate (4.14) by parts, first in e then in o. By Equation (5.24) of [24], with
probability 1 — N~P1, we have

N[ . ®) - ~
iofg(e)x (o)A my(e +io)1(|o| > 1) de do
27'[ R2

00 )
SCN‘ / Th@)iiaAmS (e + ifiq) de‘ —l—CN‘ / fhe) de / %' (@)o AmS T do
Nd

—i—CN‘ / fh(e) de / X(G)Am(zs)(e—l—io)da‘. (4.22)
Nd

By (4.21), with probability 1 — N~P1, the first two items of (4.22) can be easily bounded by
N—3/2+Ce0_ For the last item, by (4.21), (4.1), and a similar discussion to the equation below
[24, Equation (5.24)], it can be bounded by

1
CN (L + b + l)N—5/2+C£0 < N—3/24Ceo_
No  (No)? N -

Hence, with probability 1 — N~P1 we have the decomposition

4
AY(E) =" AyPU(E) + O(N~/+C0), (4.23)
p=1

Similarly to the discussion of (4.18), (4.20), and (4.23), it is easy to check that, with probability
1 — NP1, we have

f IAx(”)(E)| dE < N—p/2+C8()’ |A)~)(p)(E)| < N—p/2+Cs()’
! (4.24)

|AYPNE)| < N~P/2HCe0,

where p=1,2,3,4 and C >0 is some constant. Furthermore, by (4.1), with probability
1 — NP1, we have

/ Ix(E)| dE < N©*0. (4.25)
1

Due to the similarity of (4.20) and (4.23), letting y =y + y, we have

4
Ay=>" AJP(E) + ON~/FHCe0), (4.26)
p=1
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By (4.24), (4.26), and Taylor’s expansion, we have

4 3 2
1
q°) = q(®) + q’@’*)( > A&W(E)) + Eq”(&R)( > A&“’)(E))
p=1

p=1
1 2 3 1 4
+ 5%”@’5({2 AW(E)) + ﬁq“‘)@’?)(Ay“)(E)) +o(N73).  (427)
By (4.4), we have

9(/Ixsq@s)dE) —9(/I)d?q(yR)dE)

4
=3 509 ( [ asaE)| [ o) aE - [RaGaE] oD @2s)
=1 1 1 1

Inserting x5 = xF + Z;Zl Ax) and (4.27) into (4.28), using the partial expectation argument
as in Section 3.2, by (4.4), (4.24), and (4.25), we find that there exists a random variable B that
depends on the randomness only through O and the first four moments of Xi;G“ such that

Ee(/lxsq(y+y)s dE) - Ee(/[qu(ery)R dE) —B+o(N7).

Hence, together with (4.17), this proves (4.13), which implies (4.10). This completes
our proof. O
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