Rational normal octavic surfaces with a double line, in space of five dimensions: Addition. By Mr D. W. BABBAGE, Magdalene College.

[Received 16 May, read 30 October 1933.]

In a recent paper * in these Proceedings on the rational normal octavic surfaces with a double line in [5] I found four such surfaces, $F_{(1)}^8$, $F_{(2)}^8$, $F_{(3)}^8$, and $F_{(4)}^8$, representable on a plane respectively by the systems of curves $C^{5}(2^{2}, 1^{9})$, $C^{6}(4, 1^{12})$, $C^{6}(2^{6}, 1^{4})$, and $C^{7}(3, 2^{8})$, with the base points in each case lying on an elliptic cubic. Inadvertently I overlooked a solution of certain indeterminate equations which leads to a fifth type $F_{(a)}^{s}$ represented by the plane

system $C^{9}(3^{8}, 1)$.

The surface $F_{(5)}^{s}$ is the projection from a general point of itself of the surface F^9 , normal in [6] and represented by $C^9(3^8)$, which is mentioned by L. Roth+ in his recent paper on non-singular surfaces of sectional genus four. Fo contains a pencil of elliptic cubic curves passing through a point O, and it projects from O into a double rational normal quartic scroll with a line directrix. F^9 is in fact the residual intersection of a point-cone V_3^4 in [6], whose cross-section is a quartic scroll of this type, with a cubic primal through three of its planes. The projected surface $F_{(5)}^{8}$ contains a pencil of elliptic cubics of which one member degenerates into a double line and a simple line. $F_{(5)}^{8}$ cannot be obtained as the intersection of quadrics, since any quadric through it will necessarily contain the rational point-cone V_3 generated by its cubics.

We can also obtain a normal surface F^{\bullet} in [6] of sectional genus four from the general rational plane-scroll V_3^4 by cutting this with a cubic primal through three of its planes. If we represent the prime sections of V_3^4 by quadric surfaces through a line in [3], F^9 will be represented by a cubic surface ϕ and its prime sections by quadric sections of ϕ through three collinear points; hence F^9 can be represented in a plane by the system $C^{6}(2^{6}, 1^{8})$, where the nine base points form an associated set. If we project F^9 from a general point of itself we obtain a normal surface $F'^{s}_{(3)}$ in [5] with a double line. $F'_{(3)}^{8}$ may be regarded as a special case of our surface $F_{(3)}^{8}$ in that, like $F_{(3)}^{8}$, it is representable by the plane system C^{6} (26, 14), though with the restriction that three of the simple base points form an associated set with the six double base points; but since

† Roth, "On surfaces of sectional genus four", Proc. Camb. Phil. Soc., 29 (1933), 184-194.

^{*} Babbage, "Rational normal octavic surfaces with a double line, in space of five dimensions", Proc. Camb. Phil. Soc., 29 (1933), 95-102.

it lies on a V_3 it cannot, as $F_{(3)}^s$ can, be obtained as the complete

intersection of quadrics.

If we take the third type of V_3^4 in [6], which is a point-cone whose cross-section is a quartic scroll with ∞^1 conic directrices, and cut it by a cubic primal Φ through three of its planes, we obtain another surface F^9 of sectional genus four. Since the three planes are not coprimal, Φ will necessarily have a node at the vertex O of V_3^4 ; hence F^9 will have O as a quintuple point and will contain a pencil of plane cubics each with a node at O. This F^9 is not normal.