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A CORRECT POLYNOMIAL TRANSLATION OF S4 INTO
INTUITIONISTIC LOGIC

RAJEEV GORÉ AND JIMMY THOMSON

Abstract. We show that the polynomial translation of the classical propositional normal modal logic
S4 into the intuitionistic propositional logic Int from Fernández is incorrect. We give a modified translation
and prove its correctness, and provide implementations of both translations to allow others to test our
results.

§1. Introduction. It is well known that the validity and satisfiability problems
for the classical propositional normal modal logic S4 and the intuitionistic propo-
sitional logic Int are pspace-complete and thus there must exist a polynomial
translation from each into the other. The Gödel translation [2] provides a transla-
tion from Int into S4, but the only published polynomial translation from S4 into
Int we could find is by Fernández [1]. Here, we first show that the translation is
incorrect. By pinpointing the flaws, we give a correct polynomial translation from
S4 into Int.
The article is structured as follows. In Section 2 we define the syntax and Kripke
semantics of the propositional intuitionistic logic Int and of the propositional
normalmodal logicS4. In Section 3we show that the original translation is incorrect.
In Section 4, we give our solution and prove it correct.

§2. Semantic preliminaries. We define Int-formulae from an infinite set Prop of
propositional variables using the following BNF grammar where p ∈ Prop and ⊥
is the falsum constant:

ϕ = ⊥ | p | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ → ϕ.
We also define ¬ϕ = (ϕ → ⊥). We use rooted Kripke models of Int which are
structures M = (W,R,L, r) where: W is a nonempty set of possible worlds; R
is a reflexive, transitive and antisymmetric binary relation on W ; the valuation
L : Prop → 2W obeys persistence: if w ∈ L(p) and R(w, v) then v ∈ L(p); and
r ∈ W is a root world such that ∀w ∈ W.R(r, w) holds. Since Int enjoys the finite
model property, we can restrict ourselves to models whereW is finite.
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M, w �� ⊥,
M, w � p iff w ∈ L(p),
M, w � ϕ ∧ � iffM, w � ϕ andM, w � �,
M, w � ϕ ∨ � iffM, w � ϕ orM, w � �,
M, w � ϕ → � iff ∀v. if R(w, v) thenM, v �� ϕ orM, v � �,

Figure 1. Kripke semantics for Int.

The semantics of Int are given in Figure 1. An Int-formula ϕ is Int-satisfiable
if there exists some Int-modelM and some world w in that Int-model such that
M, w � ϕ. An Int-formula is Int-valid if ¬ϕ is not Int-satisfiable. That is, an
Int-formula is Int-valid if every world w in every Int-modelM obeysM, w � ϕ.
We define S4-formulae over an infinite set Prop of propositional variables using
the following BNF grammar where p ∈ Prop and ⊥ is the falsum constant:

ϕ = ⊥ | p | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ → ϕ | �ϕ.
Again we define ¬ϕ = (ϕ → ⊥). We can also define ♦ϕ = (¬�¬ϕ). For S4, Kripke
models are structuresM = (W,R,L, r) where: W is a nonempty set of possible
worlds; R is a reflexive and transitive binary relation on W ; L : Prop → 2W is a
valuation; and r ∈W is a root world obeying ∀w ∈W.R(r, w).
The semantics of S4 are given inFigure 2.AnS4-formulaϕ isS4-satisfiable if there
exists some S4-modelM and some world w in that S4-model such thatM, w � ϕ.
An S4-formula is S4-valid if ¬ϕ is not S4-satisfiable. That is, an S4-formula is
S4-valid if every world w in every S4-modelM obeysM, w � ϕ.
We can restrict this class further because S4 is complete with respect to the class
of binary, reflexive and transitive Kripke frames which are rooted finite trees of
finite clusters of worlds where, within a cluster, all worlds are related to each other.

§3. Translating S4-formulae into Int-formulae. IfN is the number of�-symbols
that appear in an S4 formula ϕ, then we can restrict ourselves to those frames with
at mostN +1 distinct clusters along any branch, and each cluster has at mostN +1
worlds. In such a frame, we say that the level of a world is the number of clusters
between the root and the cluster containing that world. If the world is in the root
cluster, then it has level 0.

M, w �� ⊥,
M, w � p iff w ∈ L(p),
M, w � ϕ ∧ � iffM, w � ϕ andM, w � �,
M, w � ϕ ∨ � iffM, w � ϕ orM, w � �,
M, w � ϕ → � iffM, w �� ϕ orM, w � �,
M, w � �ϕ iff ∀v. if R(w, v) thenM, v � ϕ,

Figure 2. Kripke semantics for S4.
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(p)nm = p
n
m,

(⊥)nm = ⊥,
(�1 · �2)nm = (�1)nm · (�2)nm,
(��)nm = bn�,

Figure 3. Translation from Fernández [1] of an S4-formula � at
the mth world in a cluster at level n in an S4-model to an Int-
formula (�)nm. The propositional variables b

n
� are disjoint from p

n
m

and “·” on the left/right hand side of the equal sign represents the
same binary connective of S4/Int, respectively.

To represent such S4-frames, the translation ofFernández [1] createsmultipleInt-
propositions pij for each S4-proposition p in the S4-formula, intended to represent
the valuation of the S4-proposition p in a world with level i , using j to distinguish
between worlds within a cluster in the given S4-model. Figure 3 gives the Int -
formula (�)nm which represents the valuation of the S4-formula � at the m

th world
in a cluster n clusters from the root in the S4-model. The branching of the Int-model
allows for multiple clusters with level n in the S4-model.
The translation also makes use of new Int-propositions l i intended to indicate
the level of an S4-cluster, and new Int-propositions bi� to indicate when the S4
-formula �� holds at a cluster of level i .
To determine S4-validity, Fernández [1] defines the translation ϕInto , written with
an extra subscript o for “original”, as shown in Figure 4. The claim is that ϕInto is
Int-valid iff ϕ is S4-valid.

Lev(ϕ) = l 0 ∧ ¬lN ∧
N−1∧
k=0

(l k+1 → l k),

Midn(ϕ) = l n →
⎛
⎝ ∧

��∈sub(ϕ)

(
bn� ∨ ¬bn�

) ∧ ∧
p∈sub(ϕ)

∧
0≤m≤N−1

(p)nm ∨ ¬(p)nm

⎞
⎠ ,

Ano,�(ϕ) =
∧

n≤k<N

(
l k → l k+1 ∨

N−1∧
m=0

(�)km

)
,

Boxno,�(ϕ) = l
n →

(
(bn� → l n+1 ∨ Ano,�(ϕ)) ∧ (Ano,�(ϕ) → l n+1 ∨ bn�)

)
,

P(ϕ) = Lev(ϕ) ∧
∧

0≤n≤N−1
Midn(ϕ) ∧

∧
0≤n≤N−1

∧
��∈sub(ϕ)

Boxno,�(ϕ),

ϕInto = P(ϕ)→ (ϕ)00.

Figure 4. S4 to Int translation ϕInto of Fernández [1].
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However, there are two errors in this encoding. First, consider a formula ϕ of S4
with no �-formulae. In this case, N = 0, and so Lev(ϕ) = (l 0 ∧ ¬l 0), leading to
ϕInto = ⊥ → ϕ00 , which is Int-valid regardless of ϕ. The obvious solution here is to
modify N to be one more than the number of � symbols in ϕ.
The second error is more subtle, and we demonstrate it via an example.

Example 3.1. Consider the S4-valid formula ϕ = (�p → p) which has only one
�-symbol and thus a modified N of 2. The translation given in Figure 4 requires
the following Int-formulae as new propositions: l 0, l 1, l 2 for level formulae, b0p, b

1
p

to represent the formula �p, and p00, p01 , p10 , p11 to represent the value of p in up to
two worlds and up to two levels.
Now consider the Int-modelM = ({w}, {(w,w)}, L,w) with a single reflexive
world w, and w ∈ L(�) for � ∈ {l 0, l 1, p10, p01 , p11 , b0p, b1p}, and w �∈ L(�) for
� ∈ {l 2, p00}.
Referring to Figure 5, where “underlines” indicate the parts that are “true” at w
and which directly affect the truth value of the larger formulae, we obviously have
M, w � Lev(ϕ).WehaveM, w �Midn(ϕ) because in a single-worldmodel,�∨¬�
is intuitionistically true for all �. Since M, w � l 1, we haveM, w � Box0o,p(ϕ),
because the inner implications are made true by the “escape hatch” provided by
l n+1 = l 1.We also haveM, w � p10∧p11, thusM, w � A1

o,p(ϕ), and sinceM, w � b1p,
we haveM, w � Box1o,p(ϕ). Thus we haveM, w � P(ϕ). However,M, w �� ϕ00 =
b0p → p00, and soM is an Int-countermodel to ϕInto , despite ϕ being S4-valid.

ϕ = (�p → p) modified N = 2 sub(ϕ) = {p,�p},

Lev(ϕ) = l 0 ∧ ¬lN ∧∧N−1
k=0 (l

k+1 → l k) = l 0 ∧ ¬l 2 ∧ (l 1 → l 0) ∧ (l 2 → l 1),

Midn(ϕ) = l n →
(∧

��∈sub(ϕ)
(
bn� ∨ ¬bn�

)
∧∧p∈sub(ϕ)∧0≤m≤N−1 (p)

n
m ∨ ¬(p)nm

)
,

Box0o,p(ϕ) = l
0 →

(
(b0� → l 1 ∨ A0

o,p(ϕ)) ∧ (A0o,p(ϕ) → l 1 ∨ b0�)
)
,

A1
o,p(ϕ) =

∧
1≤k<2

(
l k → l k+1 ∨∧2−1m=0(p)km) = l 1 → l 1+1 ∨ (p10 ∧ p11),

Box1o,p(ϕ) = l
1 →

(
(b1p → l 1+1 ∨ A1o,p(ϕ)) ∧ (A1o,p(ϕ) → l 1+1 ∨ b1p)

)
,

P(ϕ) = Lev(ϕ) ∧∧0≤n≤1 Midn(ϕ) ∧ Box0o,p(ϕ) ∧ Box1o,p(ϕ),
ϕInto = P(ϕ)→ (ϕ)00,

w � l 0, l 1, p10 , p
0
1 , p

1
1, b

0
p, b

1
p .

Figure 5. Computation of ϕInto using the Fernández translation
fromExample 3.1.Underlines indicate the formulae that are “true”
atw in the givenmodel andwhich directly influence the truth value
of the larger formula.
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The culprits are the “escape hatches” l n+1 in Boxno,�(ϕ) and l
k+1 inAno,�(ϕ), which

allow us to ignore constraints imposed by l 0 by jumping straight to l 1.
What happens if we keep the original definition of N and just drop the lN part
from Lev(ϕ)? Example 3.1 is no longer a counter-example, but using ϕ = (�p →
p) ∧ (�q → q) with exactly the same structure does give a counterexample.

§4. Solution. As mentioned before, the first step of the solution is to modify N
to be one more than the number of �-formulae in the given S4-formula ϕ. This
is probably what was intended, as no proofs need to change and there are no 0-
standard models, as defined by Fernández [1]. To avoid confusion, we will retainN
as the number of�-symbols, as used by Fernández [1], and useM = N +1 for the
modified value.
The second change is to modify the definition of Ano,� and Box

n
o,� as follows:

An�(ϕ) =
∧

n≤k<M

(
l k →

M−1∧
m=0

(�)km

)
,

Boxn�(ϕ) = l
n → (

(bn� → An�(ϕ)) ∧ (An�(ϕ)→ bn�)
)
.

This removes the “escape hatches” in the formula in the case where a higher
l proposition was true. All conditions imposed on formulae by some l i must be
met, regardless of whether other l j formulae are true. For example we no longer
haveM, w � P(ϕ) in Example 3.1 because M, w �� Box0p(ϕ): that is, we have
M, w � b0p andM, w � l 0, butM, w �� A0p(ϕ) becauseM, w �� p00.
We write ϕIntc for our “correct” translation (we cannot use n for “new” as it
clashes with the integers used as subscripts). Note that our translation ϕIntc is
actually smaller than the translation ϕInto of Fernández [1] since all we have done is
remove some disjunctions, and so the translation remains polynomial.

4.1. Converting Int-models to S4-models. We work with rooted and finite Int-
modelsM = (W,R,L, r). We intend to show that the modified ϕIntc has an Int-
countermodel iff ϕ has an S4-countermodel.
First, we prove some lemmas about small modifications to Int-models.

Definition 4.1. Given an Int-modelM = (W,R,L, r), a world u ∈ W , and a
finite set L of propositional variables such that ∀w ∈ W,∀p ∈ L, if R(w, u) and
w �= u then w �∈ L(p). Define insert(L, u,M) = (W ′, R′, L′, r′) as follows:

1. let v be a new world not inW ,
2. if r = u then r′ = v otherwise r′ = r,
3. W ′ =W ∪ {v},
4. R′ = R ∪ {(v, v)} ∪ {(v, x) | (u, x) ∈ R} ∪ {(y, v) | (y, u) ∈ R & y �= u},
5. for all p we have L′(p) ∩W = L(p),
6. for all p �∈ L we have v ∈ L′(p) iff u ∈ L′(p),
7. for all p ∈ L we have v �∈ L′(p).

That is, we insert a new world v as an immediate predecessor of u, where all
proper predecessors y of u are made proper predecessors of v and all successors x
of u including u itself are made successors of v.
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Lemma 4.2. If M = (W,R,L, r) is an Int-model with a world u, and L is a
set of propositional variables falsified at all y such that R(y, u) and y �= u, then
M′ = insert(L, u,M) is an Int-model and for all Int-formulae � which do not
include propositions from L and for all w ∈ W , we haveM′, w � � iffM, w � �,
and additionally we haveM′, v � � iffM, u � �.
Proof. We first prove thatM′ is still an Int -model. That is, we have to prove
thatM′ is transitive, reflexive, antisymmetric and persistent. Of these, we deal only
with the nontrivial cases.
Transitivity still holds: the only case that could possibly fail isR′(a, b) andR′(b, v)
but not R′(a, v) for some a �= v and b �= v. Since both a and b are in the original
model, the edge R′(a, b) is from the original model, hence R(a, b). Since R′(b, v),
we must have R(b, u) and b �= u by definition of R′. By the transitivity of R we
must have R(a, u), and thus by definition of R′ we must have R′(a, v) as required.
The valuation L′ obeys the persistence property: because the original model had
a persistent valuation, the only way forM′ to not have a persistent valuation is if
the introduction of v changed something. Suppose for a contradiction that for some
proposition p and some world w we haveR′(v,w), v ∈ L′(p) andw �∈ L′(p). Then
p �∈ L, and u ∈ L(p) by the definition of L′. Similarly, w �∈ L(p). Since R(u,w),
the originalM does not satisfy persistence, giving a contradiction. Suppose then
thatR′(w, v) andw ∈ L′(p) and v �∈ L′(p). Then wemust haveR(w, u) andw �= u
by the definition of R′. If p ∈ L then w ∈ W and w ∈ L′(p) implies w ∈ L(p),
contradicting the definition of L, hence p �∈ L. But then v �∈ L′(p) implies that
u �∈ L(p), and the persistence ofM implies that w �∈ L(p), and hence w �∈ L′(p):
contradiction. ThusM′ is an Int-model.
Now we prove by structural induction on � that we must haveM, u � � iff

M′, v � �, andM, w � � iffM′, w � �. First the base cases:
� = p: Since p appears in �, we must have p �∈ L and so by Definition 4.1.6
u ∈ L(p) iff v ∈ L′(p). Thus M, u � p iff M′, v � p. Additionally, by
Definition 4.1.5, we have w ∈ L′(p) iff w ∈ L(p), thusM, w � p iffM′, w � p.
� = ⊥: Trivially,M, u �� ⊥,M′, v �� ⊥,M, w �� ⊥ andM′, w �� ⊥.
Now the step cases, using the following inductive hypotheses:

IH1: for all subformulae φ of � we haveM, u � φ iffM′, v � φ,
IH2: for all subformulae φ of � and for all worlds w ∈ W we haveM, w � φ iff
M′, w � φ.
� = �1 ∧ �2: Suppose thatM, u � �1 ∧ �2. ThenM, u � �1 andM, u � �2, so
by IH1we haveM′, v � �1 andM′, v � �2, and thusM′, v � �1∧�2. Similarly,
ifM, u �� �1 ∧ �2 thenM, u �� �i for some i ∈ {1, 2}, and soM′, v �� �i and
thereforeM′, v �� �1 ∧�2.
SimilarlyM, w � �1 ∧ �2 iffM, w � �1 andM, w � �2, which by IH2 holds
iffM′, w � �1 andM′, w � �2 and thusM′, w � �1 ∧�2 as required.
� = �1 ∨ �2: Similar to the above.
� = �1 → �2: Suppose thatM, u � �1 → �2. Then for all w ∈W , ifR(u,w) and
M, w � �1 thenM, w � �2. For these w (which does not include v) by IH2, if
M′, w � �1 then we also haveM′, w � �2. Finally it follows from IH1 that if
M′, v � �1 thenM′, v � �2 because the same held for u.
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Suppose instead thatM, u �� �1 → �2. Then theremust exist a witnessw ∈W
such that R(u,w) andM, w � �1 andM, w �� �2. But this same witness will
also exist inM′ by IH2, thusM′, w � �1 andM′, w �� �2. Since w is reachable
from u, and v is a predecessor of u, we must also have w reachable from v, and
thusM′, v �� �1 → �2.
For any w ∈ W , suppose thatM, w � �1 → �2. Then for all successors x of
w, ifM, x � �1 thenM, x � �2. Thus by IH2, for all x �= v with R(w, x), if
M′, x � �1 thenM′, x � �2. If v is a successor of w inM′ then u must also be
a successor of w inM′, and so by IH1, ifM′, v � �1 thenM′, v � �2. Thus
M′, w � �1 → �2 as required.
If insteadM, w �� �1 → �2 then there is some successor x of w such that

M, x � �1 andM, x �� �2. By IH2, we haveM′, x � �1 andM′, x �� �2, and
thusM′, w �� �1 → �2. �

Effectively Lemma 4.2 states that we can insert “copies” of worlds with minor
changes to some atomic propositions L without changing the truth values of
formulae which do not refer to those atomic propositions.
Next we prove that if our amended ϕIntc has an Int-countermodel, then ϕ has an

S4-countermodel.

Definition 4.3. IfM = (W,R,L, r) is an Int-model such thatM, r � P(ϕ),
then for w ∈ W , let Lv(w) be defined as the index i such that w ∈ L(l i) and
w �∈ L(l i+1).
As long asM, w � Lev(ϕ) then Lv(w) has a unique definition because then we
must haveM, w � l 0 and thus Lv(w) ≥ 0, and we must haveM, w �� lM and
thus Lv(w) < M , and we must have that if M, w � l k thenM, w � l j for all
j < k.

Definition 4.4. A modelM = (W,R,L, r) which falsifies ϕIntc is stratified if:

1. Lv(r) = 0;
2. for any two worlds w, v ∈ W , if R(w, v) and Lv(v) > Lv(w) + 1 then there
is another (necessarily different) world u such that R(w, u) and R(u, v) with
Lv(u) = Lv(w) + 1; and

3. if for some w, u ∈W we have R(w, u) and Lv(w) = Lv(u) then w = u.
We now prove that there must be a stratified Int-countermodel to ϕIntc if there is
any Int-countermodel of ϕIntc .

Lemma 4.5. If a countermodel to ϕIntc exists, then one satisfying Condition 1 of
Definition 4.4 exists.

Proof. LetM = (W,R,L, r) be an Int-countermodel of ϕIntc . Without loss of
generality, assumeM, r � P(ϕ) andM, r �� (ϕ)00. If Lv(r) = 0 then the lemma
holds immediately. Otherwise Lv(r) ≥ 1 and so we haveM, r � l 1 andM, r � l 0.
Create a new Int-model M′ = insert(L, r,M) = (W ′, R′, L′, r′) according to
Lemma 4.2 using L = {l i | 0 < i ≤M}.
The new modelM′ still falsifies ϕ00 at the new root r

′ according to Lemma 4.2
because ϕ00 does not refer to any proposition in L. Note that Lv(r′) = 0 by the
definition of L′ as required. It remains to show thatM′, r′ � P(ϕ).
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We obviously haveM′, r′ � Lev(ϕ). The successors of r are also successors of r′,
so the only way for r′ to fail Midi(ϕ) would be to fail locally. SinceM′, r′ � l i only
for i = 0, we haveM′, r′ �Midi(ϕ) for i > 0. For i = 0,Mid0(ϕ) does not refer to
any propositions in L and thus by Lemma 4.2 we must also haveM′, r′ �Mid0(ϕ).
Finally,we show that r′ satisfiesBoxn�(ϕ). Forn > 0 it satisfiesBox

n
�(ϕ) vacuously

becauseM′, r′ �� l n, and all strict successors of r′ satisfy Boxn�(ϕ) because they
did inM. For n = 0, we haveM, r � b0� ↔ A0�(ϕ), and we want to show that
M′, r′ � b0� ↔ A0�(ϕ). Because b0� �∈ L, we haveM′, r′ � b0� iffM, r � b0�, so it
remains to show thatM, r � A0�(ϕ) iffM′, r′ � A0�(ϕ).
Suppose thatM, r �� A0�(ϕ). Then there must be some successor which satisfies
l k and falsifies �km for some k and m, and such a successor is also a successor of r

′

thusM′, r′ �� A0�(ϕ).
Suppose instead thatM, r � A0�(ϕ) and thus since M, r � l 0 we must have

M, r � (�)0m for all 0 ≤ m < M . The only way that r′ could fail to satisfy A0�(ϕ)
is to do so locally, and with k = 0. However, since (·)nm does not refer to any l i , we
must also haveM′, r′ � (�)km iffM, r � (�)km using Lemma 4.2, soM′, r′ � (�)0m
and thusM′, r′ � A0�(ϕ).
ThusM′, r′ � P(ϕ), andM′, r′ �� ϕ00 , henceM′ is a countermodel to ϕIntc with
Lv(r′) = 0 as required. �
Note that Lemma 4.5 does not hold for the original specification of ϕInto from
Fernández [1]: the counterexamplewe gave cannot be converted to onewithLv(r) =
0 while still satisfying the original P(ϕ). In particular Box0o,p(ϕ) will fail to hold if
l 1 is false at the root as required by Lv(r) = 0.

Lemma 4.6. If an Int-countermodel of ϕIntc exists, then one satisfying Conditions
1 and 2 of Definition 4.4 exists.
Proof. Let M = (W,R,L, r) be an Int-countermodel of ϕIntc after applying
Lemma 4.5, with w, v ∈ W such that Lv(w) = j, Lv(v) > j + 1, R(w, v). Thus
we haveM, w � l j andM, w �� l j+1, andM, v � l j+2. Suppose that there is no u
such thatR(w, u),R(u, v) and Lv(u) = j +1, and thus Condition 2 does not hold.
Let L = {l i | j + 1 < i ≤ Lv(v)}, and considerM′ = insert(L, v,M) where the
newly introduced world is u.
That is, u is a copy of v, added betweenw and v with the valuation only differing
on the level variables in L. Note that Lv(u) = j + 1 because l j+1 �∈ L and so
M′, u � l j+1, but l j+2 ∈ L soM′, u �� l j+2.
A similar argument to Lemma 4.5 applies, again using Lemma 4.2. The structure

M′ is an Int-model, the truth of formulae which do not refer to l k ∈ L does not
change betweenM andM′, and the truth of the formulae which do refer to l k ∈ L
is preserved because the l k are falsified on the left of an implication.
Let the “gap” between a world x and one of its immediate successors y be defined
as Lv(y) − Lv(x) − 1 if Lv(y) > Lv(x), and 0 if Lv(y) = Lv(x). The sum of
these gaps is unchanged betweenM andM′ except that for the gaps between v
and the immediate predecessors of v. The gap between w and u is 0, while the
gaps between u and the previous immediate successors of w is decreased by 1, so
the total sum of the gaps decreases through this process. Since our Int-models
are finite we repeat the process until Condition 2 holds. Note that because the
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original model satisfies Condition 1, and because we do not change the root (we
add a world in between two other existing worlds) the modelM′ must still satisfy
Condition 1. �
Note that this may break Condition 3, since the world v may already have a
predecessor x with level j + 1, but x is not a successor of w. When we introduce
the new world u we make u a successor of x, which causes Condition 3 to fail.

Lemma 4.7. If an Int-countermodel to ϕIntc exists, then one satisfying all three
conditions of Definition 4.4 exists.
Proof. LetM = (W,R,L, r) be an Int-countermodel of ϕIntc satisfying Con-
ditions 1 and 2 after applying Lemma 4.6, with worlds a, b ∈ W such that
Lv(a) = Lv(b), R(a, b) and a �= b, thus breaking Condition 3.
There must be a pair of “adjacent” worlds w and u such that Lv(w) = Lv(u),
R(w, u), w �= u and there is no distinct v such that R(w, v) and R(v, u). We show
that we get closer to satisfying Condition 3 by removing the edge R(w, u). Let
M′ = (W,R′, L, r) where R′ = R \ {(w, u)}.
The relation R′ is still transitive because R was, and there is no “intermediate”
world v that could require the removed edge. Reflexivity and antisymmetry are also
preserved.
Suppose thatM, r � P(ϕ), butM′, r �� P(ϕ). The only change is the removal of
R(w, u), so it is simple to see thatM′ � Lev(ϕ) andM′ �Midn(ϕ). Therefore we
must haveM′ �� Boxn�(ϕ). Thus there must be some world x such thatM′, x � l n
andM′, x �� bn� → An�(ϕ) orM′, x �� An�(ϕ) → bn�. We consider each case to
obtain a contradiction.
Suppose thatM′, x �� bn� → An�(ϕ). Expanding the semantics, there must there-
fore be some indices k and m and some world y such that R(x, y) andM′, y � bn�
andM′, y � l k andM′, y �� (�)km. All propositional variables referred to by (�)km
will have superscript k, and sinceM′, y � Midk(ϕ) we must haveM′, y � φk or
M′, y � φk → ⊥ for all propositional variables φk , thus the valuations are fixed in
all successors. The valuations are common betweenM andM′, thusM, y �� (�)km
as well, and soM �� Boxn�, a contradiction.
Suppose instead thatM′, x �� An�(ϕ) → bn�. There must therefore be a world y
such thatR(x, y) andM′, y � An�(ϕ) andM′, y �� bn�. BecauseM � Boxn�(ϕ) and
M, y � l n, we must haveM, y � An�(ϕ) → bn�, and becauseM, y �� bn� we must
haveM, y �� An�(ϕ). Thus the witness falsifying An�(ϕ) must be u, and y must be
w (otherwise the witness would still exist inM′); that isM, u � l k andM, u �� �km
for some k and m. However, this means that Lv(u) ≥ k, and thus Lv(w) ≥ k.
SinceM, w �Midk(ϕ) we haveM, w � φk orM, w � φk → ⊥, and sinceR(w, u)
we must haveM, w � φk iffM, u � φk . Thus we must haveM′, w �� An�(ϕ), a
contradiction.
ThusM′, r � P(ϕ), andM′, r �� ϕ00 , and soM′ is a countermodel with at least
one fewer instance of Condition 3 failing. Since Int has the finite model property
we can begin with a finite model (and a finite number of failures of Condition 3)
and repeat the process until Condition 3 holds. Since we only remove edges between
worlds with the same level, we do not break either Condition 1 or Condition 2 if
they hold initially. �
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Corollary 4.8. If there is some Int-countermodel to ϕIntc then there is a stratified
Int-countermodel to ϕIntc .

Proof. Given an arbitrary finite rooted Int-countermodel to ϕIntc , apply
Lemma 4.5 to obtain a model satisfying Condition 1, then Lemma 4.6 to intro-
duce worlds to satisfy Condition 2 without destroying Condition 1. Finally we use
Lemma 4.7 to combine worlds with the same level to satisfy Condition 3 without
breaking Condition 2 or Condition 1. �
We now show how Int-countermodels of ϕIntc correspond to S4-countermodels
of ϕ following Fernández [1] but being mindful of our modifications.

Definition 4.9. Let MInt = (W Int, RInt, LInt, rInt) be a stratified Int

countermodel for ϕIntc , such thatMInt, rInt �� (ϕ)00 andMInt, rInt � P(ϕ).
For each x ∈ W Int, let x = {x0, . . . , xM−1} be a set ofM distinct worlds, and
letW Int�→S4 be the disjoint union of all x. Let RInt �→S4 = {(xm, yn) | RInt(x, y)},
and xm ∈ LInt�→S4(p) iff x ∈ LInt(pLv(x)m ).
DefineMInt�→S4 = (W Int�→S4, RInt �→S4, LInt �→S4, rInt0 ).

Lemma 4.10. If � is a subformula of ϕ, thenMInt�→S4, xm � � iffMInt, x �
�Lv(x)m .

Proof. We proceed by induction on the structure of �. First the base cases:

� = ⊥: Trivially true.
� = p: By the definition of LInt �→S4 the lemma holds.

Now the step cases, using the inductive hypothesis that for all formulae smaller than
� the property already holds.

� = �1 ∧ �2: By definition, we haveMInt�→S4, xm � �1 ∧�2 iffMInt �→S4, xm � �i
for all i ∈ {1, 2}. By the induction hypothesis,MInt�→S4, xm � �i iffMInt, x �
(�i)

Lv(x)
m , and thusMInt, x � (�1 ∧ �2)Lv(x)m as required.

� = �1 ∨ �2: As above.
� = �1 → �2: IfMInt�→S4, xm � �1 → �2 then xm either satisfies �2 or falsifies
�1. By induction this translates toMInt, thusMInt, x �� (�1)Lv(x)m orMInt, x �
(�2)

Lv(x)
m . Both of these formulae refer to only propositional atoms indexed bym,

and so becauseMidLv(x)(ϕ) holds, all successors ofx will give the same valuation,
and thus either satisfy (�2)

Lv(x)
m or falsify (�1)

Lv(x)
m , and soMInt, x � (�1 →

�2)
Lv(x)
m .
If insteadMInt, x � (�1 → �2)Lv(x)m , then because RInt is reflexive we must

haveMInt, x �� (�1)Lv(x)m orMInt, x � (�2)Lv(x)m .Using the inductive hypothesis,
we thus haveMInt�→S4, xm � �1 → �2 as required.
� = ��1: Because BoxLv(x)�1 (ϕ) holds, we haveMInt, x � bLv(x)�1 iff ∀y.RInt(x, y)

implies ∀k.MInt, y � (�1)Lv(y)k . By induction, for each of these worlds y we have
MInt �→S4, yk � �1. By the definition of RInt�→S4, these yk are exactly the worlds
such that RInt �→S4(xm, yk), thus we have MInt, x � bLv(x)�1 iff ∀yk.R(xm, yk)
impliesMInt�→S4, yk � �1. This is exactly the definition ofMInt�→S4, xm � ��1.

�
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Corollary 4.11. If there is an Int-countermodel to ϕIntc then there is an S4-
countermodel to ϕ. Equivalently, if ϕ is S4-valid, then ϕIntc is Int-valid.

Proof. By Corollary 4.8 if there is an Int-countermodel to ϕIntc then there must
be a stratified Int-countermodelMInt as well. ConstructMInt�→S4 as described in
Definition 4.9. Applying Lemma 4.10 toMInt�→S4 and choosing� = ϕ, we find that
becauseMInt, rInt �� (ϕ)00 and Lv(rInt) = 0, we must haveMInt�→S4, rInt0 �� ϕ, as
required. �
4.2. Converting S4-models to Int-models. It remains to show that the converse
holds, that if there is an S4-countermodel to ϕ then there is an Int-countermodel
to ϕIntc .
We will use the same notion of N -standard frames as Fernández [1], though we
refer to it asM -standard to avoid confusion between the N used by Fernández [1]
and theM = N +1 that we use. IfK = (W,R) is an S4-frame, then let x denote the
R-equivalence class of worlds {y | (x, y) ∈ R and (y, x) ∈ R}. The quotientW/R
with induced relationR forms a partial order sinceR is transitive and reflexive, and
taking the quotient ensures that it is antisymmetric as well.

Definition 4.12. An S4Kripke frame K = (W,R) isM -standard if:

1. Any strictly ascending chain in R has length shorter thanM ;
2. For all x ∈W , x has exactlyM elements, {x0, . . . , xM−1};
3. (W/R,R) forms a tree.

Fernández [1] proves the following theorem:

Theorem 4.13 (Theorem 5.1 of [1]). IfM = (W,R,L, r) is an S4-model, and
ϕ is a formula of S4, then there is an M -standard model Mϕ , such that for all
subformulae � of ϕ, we haveMϕ, rϕ � � iffM, r � �.
Thus if there is a countermodel to ϕ, then there is anM -standard countermodel
to ϕ. LetMS4 = (W S4, RS4, LS4, rS4) be such a model. Let Lv(x) be the length of
the shortest chain R(rS4, w1), R(w1, w2), . . . , R(wn−1, x) where each wi is distinct,
and there is no intermediate such that R(wi , u) and R(u,wi+1). We now define an
Int-model which is a countermodel to ϕIntc .

Definition 4.14. Define MS4 �→Int = (W S4 �→Int, RS4 �→Int, LS4 �→Int, rS4 �→Int),
where

• W S4 �→Int =W S4/RS4,
• RS4 �→Int = RS4,
• rS4 �→Int = rS4,
• w ∈ LS4 �→Int(l i) iff Lv(w) ≥ i ,
• w ∈ LS4 �→Int(pim) iff Lv(w) = i and wm ∈ LS4(p), or Lv(w) > i and the
immediate predecessor of w in RS4�→Int is v with v ∈ LS4 �→Int(pim),

• w ∈ LS4�→Int(bi�) iff Lv(w) = i andMS4, w0 � ��, or Lv(w) > i and the
immediate predecessor of w in RS4�→Int is v with v ∈ LS4 �→Int(pim).

Now we prove thatMS4�→Int is in fact an Int-model,MS4�→Int, rS4 �→Int � P(ϕ),
andMS4 �→Int, rS4 �→Int �� ϕ00 .
Lemma 4.15. MS4�→Int is an Int-model.
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Proof. First, RS4 �→Int is transitive, reflexive, because RS4 was, and it is antisym-
metric because clusters have been collapsed to their equivalence class.Wemust show
that LS4 �→Int is persistent.
If RS4 �→Int(w, v), then Lv(w) ≤ v from the definition of Lv. Thus if w ∈
LS4 �→Int(l i), then Lv(v) ≥ i and so v ∈ LS4 �→Int(l i) as required.
For the other propositions, the truth is defined inductively based on the truth
at predecessors, so if w ∈ LS4 �→Int(pnm) then any successor v will also be in
LS4 �→Int(pnm), as required. �
Lemma 4.16. For all subformulae � of ϕ, MS4, wm � � iff MS4 �→Int, wm �
(�)Lv(wm )m .

Proof. Much of the proof is the same as for Lemma 4.10. The only difference is
for �-formulae.
By the definition of LS4 �→Int(bn�1) we have wm ∈ L(bLv(wm )�1 ) iffMS4, w0 � ��1,
and thusMS4, wm � ��1 since w0 and wm must have the same set of successors.
ThereforeMS4, wm � ��1 iffMS4 �→Int, wm � (��1)Lv(wm )m , as required. �
Lemma 4.17. We haveMS4 �→Int, rS4 �→Int � P(ϕ) in the constructed intuitionistic
model.

Proof. From the definition of LS4 �→Int we obviously haveMS4 �→Int, w � l i+1 →
l i . We also haveMS4 �→Int, w � l 0, since Lv(w) ≥ 0. Also, because the models
are M -standard, the maximum chain length is M − 1, thus Lv(w) < M and so
MS4 �→Int, w � ¬lM . ThusMS4 �→Int � Lev(ϕ).
Next, if Lv(w) = i then w ∈ LS4 �→Int(pim) iff wm ∈ LS4(p) for all atomic
propositions p. All successors v of w must have Lv(v) > i and thus if w �∈
LS4 �→Int(pim) thenMS4�→Int, w � ¬(pim). Thus we haveMS4�→Int � l n → pnm∨¬pnm
for all n,m and p. A similar argument applies to bi�. Thus we haveMS4�→Int �
Midn(ϕ) for all n.
The base case of the definition of w ∈ LS4 �→Int(bi�) requires that MS4, w0 �

�� which is exactly when all RS4 successors vm of w0 satisfy �. Any such vm
will correspond to a vm with Lv(vm) ≥ Lv(w), and it will satisfy �Lv(vm)m due to
Lemma 4.16. Thus ifMS4 �→Int, w � bn�, then all successors v will satisfy l k → (�km)
for any k ≥ n and any m. Similarly, if w �∈ LS4 �→Int(bLv(w)� then there must be
some successor vm of w0 such thatMS4, vm �� � and thusMS4�→Int, vm �� (�)km for
k = Lv(vm). ThusMS4�→Int � Boxn�(ϕ) as required. �
Corollary 4.18. IfMS4, rS4 �� ϕ then we haveMS4 �→Int, rS4 �→Int �� ϕIntc .
Proof. Lemma 4.17 gives us MS4�→Int, rS4 �→Int � P(ϕ), and then because

MS4, rS4 �� ϕ and Lv(rS4) = 0, using Lemma 4.16 we haveMS4�→Int, rS4 �→Int ��
(ϕ)00. Thus we haveMS4�→Int, rS4 �→Int �� ϕIntc as required. �
Main theorem. We have shown that there is an S4-countermodel to ϕ if and only
if there is an Int-countermodel to ϕIntc , and thus ϕ

Int
c is a faithful translation from

S4 to Int.

Remark 4.19. Wemight ask where Fernández [1] goes awry; where does the pur-
ported proof fail? The theorems and lemmas presented there appear to be correct,
and yet Example 3.1 demonstrates that the original translation is wrong.
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The problem is with his application of his Theorem 4.1, which is our Lemma 4.10.
The theorem states that worlds in the constructed S4-model satisfy the same formu-
lae as the worlds in the original Int-model of the same level. The assumption that
Fernández [1] makes is effectively that the original Int-models are stratified, and in
particular that the root of the Int-countermodel has level 0. If this is the case, then
applying his Theorem 4.1 will indeed result in an S4-model where the root falsifies
ϕ, because the Int-model falsifies (ϕ)00. What we illustrated with Example 3.1 was
that this assumption does not always hold for the original definition of ϕInto , and
indeed because his Theorem 4.1 is correct the example cannot be “fixed” into a
stratified model.
By changing the translation as we have, we are able to prove that all models
of the modified translation can be converted into stratified models according to
Corollary 4.8, and then Fernández’s original proofs only require slight changes to
account for the changed translation to prove that this new translation is in fact
correct. Our Lemmas 4.5 to 4.7 which we use to prove Corollary 4.8 are the bulk of
the new work here, and they do not hold for the original translation.

An implementation of our translation is available at the URL below:

http://users.cecs.anu.edu.au/~rpg/S4ToInt/

There are also options to apply the original translation ϕInto of Fernández [1], as
well as that translation using ourM instead ofN . Thus the reader can test that: our
translation ϕIntc is correct; the original translation ϕ

Int
o is incorrect; and that even

changing N toM in the original translation is still incorrect.
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