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A CORRECT POLYNOMIAL TRANSLATION OF S4 INTO
INTUITIONISTIC LOGIC
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Abstract. 'We show that the polynomial translation of the classical propositional normal modal logic
S4 into the intuitionistic propositional logic Int from Fernandez is incorrect. We give a modified translation
and prove its correctness, and provide implementations of both translations to allow others to test our
results.

§1. Introduction. It is well known that the validity and satisfiability problems
for the classical propositional normal modal logic S4 and the intuitionistic propo-
sitional logic Int are PSPACE-complete and thus there must exist a polynomial
translation from each into the other. The Godel translation [2] provides a transla-
tion from Int into S4, but the only published polynomial translation from S4 into
Int we could find is by Fernandez [1]. Here, we first show that the translation is
incorrect. By pinpointing the flaws, we give a correct polynomial translation from
S4 into Int.

The article is structured as follows. In Section 2 we define the syntax and Kripke
semantics of the propositional intuitionistic logic Int and of the propositional
normal modallogic S4. In Section 3 we show that the original translation is incorrect.
In Section 4, we give our solution and prove it correct.

§2. Semantic preliminaries. We define Int-formulae from an infinite set Prop of
propositional variables using the following BNF grammar where p € Prop and L
is the falsum constant:

p=1LlpleNeleVe|lp—e.

We also define ~¢ = (p — L). We use rooted Kripke models of Int which are
structures M = (W, R.L.r) where: W is a nonempty set of possible worlds; R
is a reflexive, transitive and antisymmetric binary relation on W' the valuation
L : Prop — 2" obeys persistence: if w € L(p) and R(w,v) then v € L(p); and
r € W is a root world such that Vw € W.R(r,w) holds. Since Int enjoys the finite
model property, we can restrict ourselves to models where W is finite.
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M, w lf L,

M, w k- p iffw e L(p).

M,wlEp Ay iff M, w Ik and M, w I+ y,

M,wlkpVy iff M.w IF @ or M, w Ik w,

MuwlFp —w iff Vo. if R(w. v) then M, v Iff ¢ or M, v IF .

FIGURE 1. Kripke semantics for Int.

The semantics of Int are given in Figure 1. An Int-formula ¢ is Int-satisfiable
if there exists some Int-model M and some world w in that Int-model such that
M,w I ¢. An Int-formula is Int-valid if - is not Int-satisfiable. That is, an
Int-formula is Int-valid if every world w in every Int-model M obeys M, w IF .

We define S4-formulae over an infinite set Prop of propositional variables using
the following BNF grammar where p € Prop and L is the falsum constant:

p=LlplereleVele el
Again we define = = (¢ — L). We can also define ¢ = (-—¢). For 84, Kripke
models are structures M = (W, R, L.r) where: W is a nonempty set of possible
worlds; R is a reflexive and transitive binary relation on W; L : Prop — 2" isa
valuation; and r € W is a root world obeying Vw € W.R(r,w).

The semantics of S4 are given in Figure 2. An S4-formula ¢ is S4-satisfiable if there
exists some S4-model M and some world w in that S4-model such that M, w IF ¢.
An S4-formula is S4-valid if —¢ is not S4-satisfiable. That is, an S4-formula is
S4-valid if every world w in every S4-model M obeys M, w IF .

We can restrict this class further because S4 is complete with respect to the class
of binary, reflexive and transitive Kripke frames which are rooted finite trees of
finite clusters of worlds where, within a cluster, all worlds are related to each other.

§3. Translating S4-formulae into Int-formulae. If N is the number of [(J-symbols
that appear in an S4 formula ¢, then we can restrict ourselves to those frames with
at most N + 1 distinct clusters along any branch, and each cluster has at most N + 1
worlds. In such a frame, we say that the leve/ of a world is the number of clusters
between the root and the cluster containing that world. If the world is in the root
cluster, then it has level 0.

M,w I L,

M,w i p iffw e L(p).

Mwlkp Ay iff M, w IF ¢ and M, w Ik y,
Mow ke Vy iff M, w k¢ or M, w -y,
M,wlkp —w iff M, w Iff ¢ or M, w I+ y,
M. w IFOp iff Vo. if R(w, v) then M, v I ¢,

FIGURE 2. Kripke semantics for S4.
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=

(P = P
(L) =L,
(Wl : V/Z)fn = (l/ll)m ’ (Wz)m
Oy);, = by,

FIGURE 3. Translation from Fernandez [1] of an S4-formula y at
the m™ world in a cluster at level n in an S4-model to an Int-
formula (y);,. The propositional variables b}, are disjoint from p},
and “-” on the left/right hand side of the equal sign represents the
same binary connective of S4/Int, respectively.

To represent such S4-frames, the translation of Fernandez [1] creates multiple Int-
propositions pj- for each S4-proposition p in the S4-formula, intended to represent
the valuation of the S4-proposition p in a world with level i, using j to distinguish
between worlds within a cluster in the given S4-model. Figure 3 gives the Int -
formula (y)”, which represents the valuation of the S4-formula y at the m'™ world
in a cluster z clusters from the root in the S4-model. The branching of the Int-model
allows for multiple clusters with level z in the S4-model.

The translation also makes use of new Int-propositions /! intended to indicate
the level of an S4-cluster, and new Int-propositions b;, to indicate when the S4
-formula Oy holds at a cluster of level 7.

To determine S4-validity, Fernandez [1] defines the translation (!, written with
an extra subscript o for “original”, as shown in Figure 4. The claim is that o™ is
Int-valid iff ¢ is S4-valid.

N—1
Lev(p) = 1O A=Y A\ (15— 19),
k=0
Mid"(o) =" | A\ pvesp) e A A v )
Oy esub(p) pEsub(p) 0<m<N—1

N—1
A=\ <lk—”k+lv/\(%”)ﬁ«>»

n<k<N m=0

1
Box), (o) = 1" = (b = 1"V AL A (A0 () —

ity b;)) 7

P(p) = Lev(p) A /\ Mid" (o) A /\ /\ Box”

o.y(p)
0<n<N-1 0<n<N—1OyEsub(p)
Int 0
@, = Plp) = (p)g-

FIGURE 4. S4 to Int translation ¢! of Ferndndez [1].
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However, there are two errors in this encoding. First, consider a formula ¢ of 54
with no O- formulde In this case, N = 0, and so Lev(p) = (/° A —I°), leading to
eIt = | — 0. which is Int-valid regardless of ¢. The obvious solution here is to
modify N to be one more than the number of [J symbols in ¢.

The second error is more subtle, and we demonstrate it via an example.

ExampLE 3.1. Consider the S4-valid formula ¢ = (dp — p) which has only one
(J-symbol and thus a modified N of 2. The translation given in Figure 4 requires
the following Int-formulae as new propositions: /°. /!, I* for level formulae. 5.5}
to represent the formula Op. and p. p¥. p}. pi to represent the value of p in up to
two worlds and up to two levels.

Now consider the Int-model M = ({w}. {(w,w)}, L, w) with a single reflexive
world w. and w € L(y) for y € {I°.1', pj. p!. p{.b).b)}. and w & L(y) for

w e {I%. py}.

Referring to Figure 5. where “underlines” indicate the parts that are “true” at w
and which directly affect the truth value of the larger formulae, we obviously have
M. w IF Lev(p). Wehave M, w |- Mid" (¢) because in a single-world model. l//\/—|l//
is intuitionistically true for all y. Since M.w IF I', we have M, w I Box’ 0.p(0)*
because the inner implications are made true by the “escape hatch” prov1ded by
["+! = ['. Wealso have M. w I+ pj A pl, thus M, w IF Ai{pw .and since M. w Ik b,

we have M, w I+ BOXip((p)‘ Thus we have M, w I P(p). However, M, w Iff ¢ =
b9 — p{. and so M is an Int-countermodel to ™. despite ¢ being S4-valid.

=(dp — p) modified N =2 sub(p) = {p.0Op},

Lev(p) = IO A=IN A AN (I = 1) = DA 2 A (1 = IO A (12— 1Y),
Mid" () = 1" = (Asycusto) (B Y 52) A A pcusior Aozmen 1 ()Y (p))
Box! () = 1° — ((bg SIVA A4S I bg)) ,

A o = Nikea (15 = 150V AL (p)S,) = 10— 151 (ph A ph),
Boxi,p(w =1 (= 1V AL )AL = Vb))

P(p) = Lev(p) A /\ogngl Mid” () A Box2,p<¢) A Boxé,p(w,

e = P(p) = ()5,

w I+ 1°.1'. py. pY. p{.bY. b, .
FIGURE 5. Computation of ¢! using the Fernandez translation
from Example 3.1. Underlines indicate the formulae that are “true”
at w in the given model and which directly influence the truth value
of the larger formula.
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The culprits are the “escape hatches” /”*! in Box () and [*lin A}, (). which
allow us to ignore constraints imposed by /° by jumping straight to /'.

What happens if we keep the original definition of N and just drop the /" part
from Lev(p)? Example 3.1 is no longer a counter-example, but using ¢ = (Op —

p) A (Og — q) with exactly the same structure does give a counterexample.

84. Solution. As mentioned before, the first step of the solution is to modify N
to be one more than the number of [J-formulae in the given S4-formula ¢. This
is probably what was intended, as no proofs need to change and there are no 0-
standard models, as defined by Fernandez [1]. To avoid confusion, we will retain N
as the number of [J-symbols, as used by Fernandez [1], and use M = N + 1 for the
modified value.

The second change is to modify the definition of 4} , and Boxj, , as follows:

4
M—1
A= A (zu /\(V/)',2>,

n<k<M m=0
Box), (o) = 1" — ((b, — A4, (¢)) A (4}, (0) = b},)).

This removes the “escape hatches” in the formula in the case where a higher
[ proposition was true. All conditions imposed on formulae by some // must be
met, regardless of whether other // formulae are true. For example we no longer
have M, w I+ P(p) in Example 3.1 because M, w Iff Boxg(go): that is, we have
M. w - bg and M, w I- [°, but M, w I Ag(cp) because M, w I pY.

We write @™ for our “correct” translation (we cannot use n for “new” as it
clashes with the integers used as subscripts). Note that our translation ¢ is
actually smaller than the translation ¢! of Fernandez [1] since all we have done is
remove some disjunctions, and so the translation remains polynomial.

4.1. Converting Int-models to S4-models. We work with rooted and finite Int-
models M = (W, R, L.r). We intend to show that the modified ™ has an Int-
countermodel iff ¢ has an S4-countermodel.

First, we prove some lemmas about small modifications to Int-models.

DEFINITION 4.1. Given an Int-model M = (W, R, L.r), aworldu € W, and a
finite set £ of propositional variables such that Vw € W,Vp € L. if R(w.,u) and
w # u then w ¢ L(p). Define insert(L,u, M) = (W', R'. L', r') as follows:

1. let v be a new world not in W,

if ¥ = u then r’ = v otherwise r’ =r,

w'=w U {v},

R'=RU{(v.v)} U{(v.x) | (u.x) € R} U{(».v) | (y.u) € R& y #u}.
for all p we have L'(p) N W = L(p),

forall p ¢ L wehavev € L'(p)iffu € L'(p),

forall p € L wehavev & L'(p).

That is, we insert a new world v as an immediate predecessor of u, where all
proper predecessors y of u are made proper predecessors of v and all successors x
of u including u itself are made successors of v.

Nk wd
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Lemma 4.2. If M = (W.R.L.r) is an Int-model with a world u, and L is a
set of propositional variables falsified at all y such that R(y.u) and y # u. then
M' = insert(L.u. M) is an Int-model and for all Int-formulae w which do not
include propositions from L and for all w € W, we have M’ w b w iff M, w Ik v,
and additionally we have M’ v |- w iff M, u l- .

ProOOF. We first prove that M’ is still an Int -model. That is, we have to prove
that M’ is transitive, reflexive, antisymmetric and persistent. Of these. we deal only
with the nontrivial cases.

Transitivity still holds: the only case that could possibly failis R’ (a. b) and R’(b. v)
but not R’(a.v) for some @ # v and b # v. Since both a and b are in the original
model, the edge R’(a.b) is from the original model. hence R(a. b). Since R’ (b.v).
we must have R(b,u) and b # u by definition of R’. By the transitivity of R we
must have R(a. u), and thus by definition of R’ we must have R’(a.v) as required.

The valuation L’ obeys the persistence property: because the original model had
a persistent valuation, the only way for M’ to not have a persistent valuation is if
the introduction of v changed something. Suppose for a contradiction that for some
proposition p and some world w we have R'(v.w).v € L'(p) andw & L'(p). Then
p & L.and u € L(p) by the definition of L’. Similarly, w ¢ L(p). Since R(u.w).
the original M does not satisfy persistence, giving a contradiction. Suppose then
that R’(w.v)andw € L'(p) and v € L'(p). Then we must have R(w, u) and w # u
by the definition of R’. If p € £ then w € W and w € L'(p) implies w € L(p).
contradicting the definition of £, hence p ¢ L. But then v ¢ L'(p) implies that
u ¢ L(p). and the persistence of M implies that w ¢ L(p). and hence w ¢ L'(p):
contradiction. Thus M’ is an Int-model.

Now we prove by structural induction on  that we must have M, u IF w iff
M vk w, and M, w Ik w iff M’,w IF y. First the base cases:

w = p: Since p appears in w. we must have p ¢ £ and so by Definition 4.1.6
u € L(p) if v € L'(p). Thus M,u IF p iff M’ v I+ p. Additionally. by
Definition 4.1.5, we have w € L'(p) iff w € L(p), thus M. w IF p if M',w I p.

w = L: Trivially, M,ulf L. M, vlf L, M, wlf Land M, w lf L.

Now the step cases, using the following inductive hypotheses:

IHI: for all subformulae ¢ of y we have M. u I+ ¢ iff M’ v I ¢.
IH2: for all subformulae ¢ of y and for all worlds w € W we have M, w I+ ¢ iff
M w k¢,

v = w1 A w2 Suppose that M, u I+ w1 A wa. Then M, u I+ w; and M, u IF w7, so
by IH1 we have M', v I ) and M’ v I y,, and thus M’, v |+ w Aw,. Similarly,
it M,u I w1 A wsthen M. u I w; for some i € {1,2}, and so M’, v IV w; and
therefore M’, v Iff w1 A y».

Similarly M, w IF w A y; iff M, w IF w; and M, w IF y,, which by IH2 holds
iff M/, w Ik wy and M, w I+ w, and thus M, w IF w1 A y; as required.

w = w1 V > Similar to the above.

W = w1 — w7 Suppose that M, u I+ w; — w,. Thenforallw € W, if R(u, w) and
M, w IF yy then M, w I wy. For these w (which does not include v) by IH2, if
M’ w I w; then we also have M’, w IF y;. Finally it follows from IHI that if
M’ v Ik wq then M’ v IF yw; because the same held for u.
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Suppose instead that M., u I w1 — y». Then there must exist a witnessw € W
such that R(u,w) and M, w I y; and M, w I w,. But this same witness will
also exist in M’ by IH2, thus M’, w I+ w; and M’, w I w». Since w is reachable
from u, and v is a predecessor of u, we must also have w reachable from v, and
thus M’ v Iff w — y».

For any w € W, suppose that M. w I y; — wa. Then for all successors x of
w, if M., x IF w then M, x I w,. Thus by IH2, for all x # v with R(w, x), if
M, x |k wy then M’ x IF y,. If v is a successor of w in M’ then u must also be
a successor of w in M’, and so by IHI1, if M’.v I+ w; then M’,v IF w,. Thus
M’ w Ik w1 — w; as required.

If instead M, w ¥ w1 — w> then there is some successor x of w such that
M, x IF yy and M. x I w,. By IH2. we have M’, x IF yw; and M’, x I w,. and
thus M", w I w1 — wo. .

Effectively Lemma 4.2 states that we can insert “copies” of worlds with minor
changes to some atomic propositions £ without changing the truth values of
formulae which do not refer to those atomic propositions.

Next we prove that if our amended '™ has an Int-countermodel, then ¢ has an
S4-countermodel.

DEFINITION 4.3. If M = (W,R. L.r) is an Int-model such that M.r I P(yp).
then for w € W, let Lv(w) be defined as the index i such that w € L(/’) an
w ¢ L(I').

As long as M, w IF Lev(yp) then Lv(w) has a unique definition because then we
must have M, w IF [° and thus Lv(w) > 0. and we must have M, w I} /M and
thus Lv(w) < M. and we must have that if M, w I [¥ then M, w IF [/ for all

j<k.
DEFINITION 4.4. A model M = (W, R, L, r) which falsifies o™ is stratified if:
1. Lv(r) = 0;

2. for any two worlds w,v € W, if R(w.v) and Lv(v) > Lv(w) + 1 then there
is another (necessarily different) world u such that R(w, u) and R(u,v) with
Lv(u) = Lv(w) + 1; and

3. if for some w, u € W we have R(w. u) and Lv(w) = Lv(u) then w = u.

Int

M if there is

‘We now prove that there must be a stratified Int-countermodel to ¢
any Int-countermodel of !,

LemMma 4.5. If a countermodel to o™ exists, then one satisfying Condition 1 of
Definition 4.4 exists.

PrOOF. Let M = (W, R, L.r) be an Int-countermodel of ¢!™. Without loss of
generality, assume M. r I P(p) and M.r I (¢)d. If Lv(r) = 0 then the lemma
holds immediately. Otherwise Lv(r) > 1 and so we have M. r IF [' and M. r I [°.
Create a new Int-model M’ = insert(L.r. M) = (W'.R’.L’.r') according to
Lemma4.2using L={/' |0 <i < M}.

The new model M’ still falsifies ¢ at the new root r’ according to Lemma 4.2
because ¢y does not refer to any proposition in £. Note that Lv(r’) = 0 by the
definition of L’ as required. It remains to show that M’, ' I P(¢p).

https://doi.org/10.1017/js1.2017.66 Published online by Cambridge University Press


https://doi.org/10.1017/jsl.2017.66

446 RAJEEV GORE AND JIMMY THOMSON

We obviously have M’. " I Lev(¢). The successors of r are also successors of 7/,
so the only way for  to fail Mid' (¢) would be to fail locally. Since M’. " I I* only
for i = 0, we have M’, ' I Mid' (¢) for i > 0. For i = 0, Mid°(¢) does not refer to
any propositions in £ and thus by Lemma 4.2 we must also have M’, " I- Mido(cp).

Finally, we show that ’ satisfies Box’l/', (). Forn > Oitsatisfies Box’;, (¢) vacuously
because M’. ¢’ I 1", and all strict successors of ' satisfy Boxi(go) because they
did in M. For n = 0, we have M. r I+ bf/), “ Ag,(cp), and we want to show that
M IF bg, o Ag,(cp). Because bg, ¢ L. we have M. 7" I bS, iff M.r - bg, S0 it
remains to show that M. r - 49, () iff M'. 1" IF A9 ().

Suppose that M. r Iff A‘V),(go). Then there must be some successor which satisfies

/¥ and falsifies l//f; for some k and m. and such a successor is also a successor of r’
thus M. ' I 49, ().

Suppose instead that M., r IF A?,,((p) and thus since M, r I [° we must have
M.r |- (y)y, forall0 < m < M. The only way that r’ could fail to satisfy 4, (¢)
is to do so locally, and with k = 0. However, since (-)”, does not refer to any /*, we
must also have M’, 1" I- (w) iff M, r I ()X, using Lemma 4.2, so M’ 7" IF (y)Y,
and thus M’ ' I- A9 ().

Thus M’. " I P(p), and M’ ¢ Iff cpg, hence M’ is a countermodel to @™ with
Lv(r'") = 0 as required. =

Note that Lemma 4.5 does not hold for the original specification of ¢! from
Fernandez[1]: the counterexample we gave cannot be converted to one with Lv(r) =
0 while still satisfying the original P(y). In particular Boxg‘ p(cp) will fail to hold if
I! is false at the root as required by Lv(r) = 0.

LEMMA 4.6. If an Int-countermodel of o™ exists, then one satisfying Conditions
1 and 2 of Definition 4.4 exists.

PrOOF. Let M = (W,R,L.r) be an Int-countermodel of o after applying
Lemma 4.5, with w,v € W such that Lv(w) = j. Lv(v) > j + 1. R(w.v). Thus
we have M, w IF 17 and M, w Iff 17!, and M, v I+ [7+%. Suppose that there is no u
such that R(w, u), R(u,v) and Lv(u) = j + 1, and thus Condition 2 does not hold.
Let £L={l'| j+1<i < Lv(v)}. and consider M’ = insert(L, v, M) where the
newly introduced world is u.

That is, u is a copy of v, added between w and v with the valuation only differing
on the level variables in £. Note that Lv(u) = j + 1 because //*! ¢ £ and so
M ulF D+ but 1742 € Lso M u lfF 1742,

A similar argument to Lemma 4.5 applies, again using Lemma 4.2. The structure
M’ is an Int-model, the truth of formulae which do not refer to I* € £ does not
change between M and M’, and the truth of the formulae which do refer to /% € £
is preserved because the /¥ are falsified on the left of an implication.

Let the “gap” between a world x and one of its immediate successors y be defined
as Lv(y) — Lv(x) — 1if Lv(y) > Lv(x), and 0 if Lv(y) = Lv(x). The sum of
these gaps is unchanged between M and M’ except that for the gaps between v
and the immediate predecessors of v. The gap between w and u is 0, while the
gaps between u and the previous immediate successors of w is decreased by 1, so
the total sum of the gaps decreases through this process. Since our Int-models
are finite we repeat the process until Condition 2 holds. Note that because the
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original model satisfies Condition 1, and because we do not change the root (we
add a world in between two other existing worlds) the model M’ must still satisfy
Condition 1. 4

Note that this may break Condition 3, since the world v may already have a
predecessor x with level j + 1, but x is not a successor of w. When we introduce
the new world u# we make u a successor of x, which causes Condition 3 to fail.

LemMmA 4.7. If an Int-countermodel to @™ exists, then one satisfying all three
conditions of Definition 4.4 exists.

PrOOF. Let M = (W, R, L.r) be an Int-countermodel of " satisfying Con-
ditions 1 and 2 after applying Lemma 4.6, with worlds a.b € W such that
Lv(a) = Lv(b). R(a.b) and a # b. thus breaking Condition 3.

There must be a pair of “adjacent” worlds w and u such that Lv(w) = Lv(u),
R(w.u), w # u and there is no distinct v such that R(w.v) and R(v.u). We show
that we get closer to satisfying Condition 3 by removing the edge R(w.u). Let
M’ = (W.R',L,r) where R" = R\ {(w,u)}.

The relation R’ is still transitive because R was, and there is no “intermediate”
world v that could require the removed edge. Reflexivity and antisymmetry are also
preserved.

Suppose that M, r IF P(yp), but M, r I P(). The only change is the removal of
R(w, u), so it is simple to see that M’ I- Lev(p) and M’ IF Mid" (). Therefore we
must have M’ [ Boxj, (). Thus there must be some world x such that M’, x I /"
and M'. x I b}, — A}, (¢) or M',x ¥ A} (p) — b},. We consider each case to
obtain a contradiction.

Suppose that M’, x I by, — A, (). Expanding the semantics, there must there-
fore be some indices k& and m and some world y such that R(x, y) and M’ y I- b},
and M’y IF I¥ and M, y I (y)X,. All propositional variables referred to by (),
will have superscript k. and since M’, y I+ Midk(cp) we must have M’. y |+ ¢ or
M.y IF ¢* — L for all propositional variables ¢*, thus the valuations are fixed in
all successors. The valuations are common between M and M’, thus M. y If* (w),
as well, and so M Iff Box’;,, a contradiction.

Suppose instead that M’, x Iff A’,},(cp) — by,. There must therefore be a world y
such that R(x, y) and M. y I 4}, () and M’, y Iff bj;. Because M I+ Box;, (¢) and
M,y Ik 1", we must have M, y I+ A’,},((p) — b,’},, and because M, y Iy b,’;, we must
have M. y If A’.},(cp). Thus the witness falsifying A’,},(cp) must be u, and y must be
w (otherwise the witness would still exist in M’); thatis M, u I+ I¥ and M, u I} X
for some k and m. However, this means that Lv(u) > k. and thus Lv(w) > k.
Since M, w I+ Mid* () we have M, w I+ ¢* or M, w I+ ¢* — L. and since R(w. u)
we must have M, w Ik ¢ iff M.u I+ ¢, Thus we must have M, w Iff An (). a
contradiction.

Thus M'.r Ik P(p), and M'.r I ¢)). and so M’ is a countermodel with at least
one fewer instance of Condition 3 failing. Since Int has the finite model property
we can begin with a finite model (and a finite number of failures of Condition 3)
and repeat the process until Condition 3 holds. Since we only remove edges between
worlds with the same level, we do not break either Condition 1 or Condition 2 if
they hold initially. B
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Int
C

COROLLARY 4.8. [f there is some Int-countermodel to ¢
Int-countermodel to o™

c

then there is a stratified

PrOOF. Given an arbitrary finite rooted Int-countermodel to ™, apply

Lemma 4.5 to obtain a model satisfying Condition 1, then Lemma 4.6 to intro-
duce worlds to satisfy Condition 2 without destroying Condition 1. Finally we use
Lemma 4.7 to combine worlds with the same level to satisfy Condition 3 without
breaking Condition 2 or Condition 1. -

We now show how Int-countermodels of o™ correspond to S4-countermodels

of ¢ following Fernandez [1] but being mindful of our modifications.

DEFINITION 4.9, Let Mt = (Wint RInt [Int pInt) be g stratified Int
countermodel for o™, such that M™*, rI2¢ | ()0 and M™* 12 |- P(p).

For each x € W™ let X = {xo...., xym—1} be aset of M distinct worlds, and
let WI»*—54 be the disjoint union of all X. Let R™* 5% = {(x,,, yu) | R™*(x, )},

and x,, € LInt»—>S4(p) iff x € LGt(p’an(x))‘
Define MI2t—54 — (Jy/Ints84 RIntrsS4 JIntsSd pInt)

LeEmMMA 4.10. If y is a subformula of ¢, then M™% x, I w iff M™t, x IF
Lv(x)
Ym .

ProOF. We proceed by induction on the structure of . First the base cases:

w = L: Trivially true.

w = p: By the definition of LI#*~54 the lemma holds.

Now the step cases, using the inductive hypothesis that for all formulae smaller than

v the property already holds.

w = w1 A wo: By definition, we have M™%7254 x|y A wo iff MPPP254 x 1w,
for alli € {1,2}. By the induction hypothesis, M™% x|k y; iff M, x |-
()57 and thus M, x IF (w1 A ) 5™ as required.

w =y V yy: Asabove.

v = w1 — . If MF=5% x I- w — w, then x,, either satisfies w; or falsifies
w1. By induction this translates to M=%, thus M, x I ()5 or M=, x |-
(y2)5™) Both of these formulae refer to only propositional atoms indexed by .,
and so because Mid“"™ () holds, all successors of x will give the same valuation,
and thus either satisfy (y2)5"™) or falsify ()5, and so M™¢ x I (y; —
vl

If instead M™% x IF (y; — y/z),Ln”<x), then because R™® is reflexive we must
have M™% x £ (1) 5™ or M8, x I (y)5"™) . Using the inductive hypothesis,
we thus have M54 x |- w; — w; as required.

w = Ow: Because BOXVL,l”<x)(<p) holds, we have M, x |- bVL,f’(x) iff Vy.R™ (x, y)
implies Vk.M™ |- (y; ),f”(y ). By induction, for each of these worlds y we have
MIE=S4 1y ik . By the definition of R™55% these y are exactly the worlds
such that R™54(x,,. y.). thus we have M™* x I bl,L,l”<x) iff Yy R(xpm. vi)
implies M™9*=54 3, |- . This is exactly the definition of M™*=5% x I Cy.

_|
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COROLLARY 4.11. If there is an Int-countermodel to o™ then there is an S4-

countermodel to . Equivalently, if o is S4-valid, then o™ is Int-valid.

Proor. By Corollary 4.8 if there is an Int-countermodel to o™ then there must

be a stratified Int-countermodel M™®* as well. Construct MIn*54 a5 described in
Definition 4.9. Applying Lemma 4.10 to M ™3¢ and choosing = ¢, we find that
because M™*, 1% |/ ()% and Lo (r™™*) = 0, we must have M54 pInt )£ 5 as
required. B

4.2. Converting S4-models to Int-models. It remains to show that the converse

holds, that if there is an S4-countermodel to ¢ then there is an Int-countermodel
Int

to ..

We will use the same notion of N-standard frames as Fernandez [1], though we
refer to it as M -standard to avoid confusion between the N used by Fernandez [1]
and the M = N + 1 that we use. If K = (W, R) is an S4-frame. then let X denote the
R-equivalence class of worlds {y | (x,y) € R and (y,x) € R}. The quotient W/R
with induced relation R forms a partial order since R is transitive and reflexive, and
taking the quotient ensures that it is antisymmetric as well.

DEFINITION 4.12. An 84 Kripke frame K = (W, R) is M -standard if:

1. Any strictly ascending chain in R has length shorter than M :
2. For allﬁe W . X has exactly M elements, {xo,...,Xy—1}:
3. (W/R,R) forms a tree.

Fernandez [1] proves the following theorem:

THEOREM 4.13 (THEOREM 5.1 OF [1]). If M = (W, R, L.r) is an S4-model, and
o is a formula of 84, then there is an M -standard model M?%, such that for all
subformulae v of ¢, we have M¥ ., r? |-y ift M. r IF .

Thus if there is a countermodel to ¢, then there is an M -standard countermodel
to . Let M5 = (WS4, RS54 5% r5%) be such a model. Let Lv(X) be the length of
the shortest chain R(r$4, w;), R(w;. w»). . ... R(w,_. %) where each w; is distinct,
and there is no intermediate such that R(w;,u) and R(u. w;41). We now define an
Int-model which is a countermodel to ¢!

c

DEFINITION 4 14 Deﬁne MS4)—>Int — (IJ/S‘})—)IIH:7 1?34)—>In1:7 LS‘})—)Int7 ;,.54)—>In1:)7
where
WS4»—>Int — WS4/RS4,
RS4—Int _ W,

pS4—Int VS4,

w e L3*~ (1) iff Lo(w) > i,

w e L3 (pl ) iff Lv(w) = i and w,, € L3*(p). or Lv(w) > i and the
immediate predecessor of w in RS540t js § with v € L5471t (pi ),

w e L%*7%(pl) iff Lv(w) = i and M3*, wy I+ Oy, or Lv(w) > i and the
immediate predecessor of w in R*~1% is 7 with v € LS4~ (pl ).

Now we prove that M54 =% is in fact an Int-model, MS47Int ;S4=Int || p(5),
0
and MS4>—>Int, rS4»—>Int W 900'

LEMMA 4.15. M3*21It jg gn Int-model.
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Proor. First, R5*~1% is transitive, reflexive, because R5* was, and it is antisym-
metric because clusters have been collapsed to their equivalence class. We must show
that L3%71% is persistent.

If R3*~»*(w,v), then Lv(w) < v from the definition of Lv. Thus if w €
L54=13(]7) then Lv(v) > i and so v € L5*1%(]7) as required.

For the other propositions, the truth is defined inductively based on the truth

at predecessors, so if w € L3*7I¢(p") then any successor v will also be in

L34=Int(pn ) as required. -
LEMMA 4.16. For all subformulae w of ¢, M3 w,, & w iff MS*7 @, |-
().

PrROOF. Much of the proof is the same as for Lemma 4.10. The only difference is
for O-formulae.

By the definition of L*7™*(b ) we have w,, € L(bﬁw”‘)) iff M54, wp IF Oy,
and thus M5*, w,, |- Oy, since wy and w,, must have the same set of successors.

Therefore M3*, w,, I+ Oy iff M54 5, |- (Dyll),Ln”<w”‘), as required. -
LEMMA 4.17. We have MS*=18¢ yS4=Int |- P() jn the constructed intuitionistic
model.

PrOOF. From the definition of L5*~* we obviously have M54t 75 || [i+1 —
['. We also have M34212t 75 |- [° since Lv(w) > 0. Also, because the models
are M-standard. the maximum chain length is M — 1, thus Lv(w) < M and so
MBIt i - —[M Thus M3#210t |- Lev(p).

Next, if Lv(w) = i then w € L5712 (pl ) iff w, € L5*(p) for all atomic
propositions p. All successors v of w must have Lv(v) > i and thus if w ¢
L34~ (pl ) then MS*=10¢ 75 |- —(pl ). Thus we have MS#2Int |- 7 — pit v/ = pnt
for all n,m and p. A similar argument applies to b;. Thus we have MS4=1t |-
Mid" (¢) for all n.

The base case of the definition of w € L5*7™*(h; ) requires that M5* wy IF
Oy which is exactly when all R5* successors v,, of wy satisfy w. Any such v,
will correspond to a v, with Lv(v,,) > Lv(w). and it will satisfy t//,f,”<m) due to
Lemma 4.16. Thus if M5*2* 75 |- b7 then all successors T will satisfy 1% — (yk)

for any k > n and any m. Similarly, if w ¢ L5%7nt (blﬁ”(w) then there must be
some successor vy, of wy such that M54 v, I y and thus M54~ 5 ¢ (w)k for

k = Lv(v,). Thus M3*7 1 |- Box,, () as required. -

COROLLARY 4.18. If M54, 1S4 | o then we have MS4=1nt pS4—Int i plnt,

PrOOF. Lemma 4.17 gives us MB4=Int 3S4=Int | P(p) and then because
M4 34 ) o and Lo (rS%) = 0, using Lemma 4.16 we have M3471nt ;S4—Int |/
(¢)5. Thus we have MB347Int jpS4=Int 1/ oIt 45 required. -

MAaIN THEOREM. We have shown that there is an S4-countermodel to ¢ if and only
if there is an Int-countermodel to /™, and thus @™ is a faithful translation from
5S4 to Int.

REMARK 4.19. We might ask where Fernandez [1] goes awry; where does the pur-

ported proof fail? The theorems and lemmas presented there appear to be correct,
and yet Example 3.1 demonstrates that the original translation is wrong.
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The problem is with his application of his Theorem 4.1, which is our Lemma 4.10.
The theorem states that worlds in the constructed S4-model satisfy the same formu-
lae as the worlds in the original Int-model of the same level. The assumption that
Fernandez [1] makes is effectively that the original Int-models are stratified, and in
particular that the root of the Int-countermodel has level 0. If this is the case, then
applying his Theorem 4.1 will indeed result in an S4-model where the root falsifies
. because the Int-model falsifies (). What we illustrated with Example 3.1 was
that this assumption does not always hold for the original definition of ¢!, and
indeed because his Theorem 4.1 is correct the example cannot be “fixed” into a
stratified model.

By changing the translation as we have, we are able to prove that all models
of the modified translation can be converted into stratified models according to
Corollary 4.8, and then Fernandez’s original proofs only require slight changes to
account for the changed translation to prove that this new translation is in fact
correct. Our Lemmas 4.5 to 4.7 which we use to prove Corollary 4.8 are the bulk of
the new work here, and they do not hold for the original translation.

An implementation of our translation is available at the URL below:

http://users.cecs.anu.edu.au/~rpg/S4ToInt/

There are also options to apply the original translation ™ of Ferndndez [1], as

well as that translation using our M instead of V. Thus the reader can test that: our
translation (! is correct; the original translation ™ is incorrect; and that even

changing N to M in the original translation is still incorrect.
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