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1. Introduction. An n-link of multiplicity fi(L™) is a smooth embedding of the disjoint
union of (i copies of Sn in Sn+2; 1%: 8? U... U £" -» 8n+i. i™ is said to be trivial if it extends
to a smooth embedding of the disjoint union of/t copies of Dn+1..Let X = Sn+2 — L™, and
Cn denote the wedge product of /i copies of S1 and (/i — 1) copies of Sn+1. Then clearly,
if i™ is trivial, then X ~ Cnp where ~ denotes homotopy equivalence.

At the 1969 Georgia Topology Institute, Gutierrez (6) announced the following result:
'Let L™ be an w-link of multiplicity /* (n > 4). The condition n^X) ~ ^ ( C ^ ) for

i < o (q < \(n+l)) is equivalent to the existence of /i mutually disjoint, (q — 1)-
connected manifolds Vt cS"+2 with 8Vt = 8?.'

One can produce counter-examples to the above result by a generalized spinning
process(2,5). Gutierrez has since pointed out to the author that the above unlinking
theorem is true with one additional hypothesis: 'Let X denote the bounded link
complement, and suppose that n^X) is free on the meridian curves on dX.' It is easily
seen that the example produced below does not satisfy this extra requirement; in fact,
the boundary meridian curves do not generate 771(X) in the example. The author wishes
to thank J.J.Andrews for helpful conversations.

2. The counter-example.

DEFINITION. A ball configuration K%: B% u ... U 5™<= Bn+Z is a smooth proper em-

bedding of the disjoint union of /i copies of Bn in Bn+2.

DEFINITION. One obtains L™+k by k-spinning K™ as follows:

gn+k+2 = (gk x Bn+2) U (Dk+1 X dBn+2)

identified along Sk x 8Bn+2 = dDk+1 x dBn+2.

Sn+k = (lSffe x Bn) u p * + i x 8Bn) (1 ̂  i ^ ft)

identified along Sk x dB? = 8Dk+1 x 8B?.

If k = 1 = ji, then this is equivalent to the classical spinning technique of Artin(3).
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LEMMA 1. Suppose L™+k is obtained by k-spinning K%. Let X = Sn+k+2-L™+k and
Y = Bn+2-K^. Then n^X) ~ TT^Y).

Proof. From the construction, we have X = (Sk x Y) u (Dk+1 x8Y) identified along
Sk x8Y = dDk+1 xdY, so Van Kampen's Theorem immediately gives us the desired
result.

Now consider the ball configuration K\ of Fig. 1. The counterexample is produced by
^-spinning E\, for 1c ^ 3. If k = 1, then Artin(3) showed that L\ was not isotopically
splittable, and Andrews-Curtis (l) showed that S\ was not homotopic to zero in the
complement of 8\.

The surprising thing about K\ is that 77^Z) = Z*Z, where as before Y = B3 — K\.
This becomes evident when one realizes that the cube-with-knotted-holes obtained
from boring out the arcs in Fig. 1 is actually homeomorphic to the cube-with-straight-
holes! (See (4), pp. 97.)

Fig. 1

We now &-spin K\ (k > 3) producing Z |+ 1 , and with 7T1(-Z) = Z*Z where
X = Sk+3 — Lk+1. SOTT1(JL) S ^i(Cfc+12) and the result of Gutierrez tells us that each of
Sk+1 and Sk+1 bounds (simultaneously) a simply connected (k + 2) — manifold in Sk+3.
Forget the unknotted component Sk+1, and concentrate on Sk+1, the i-spun trefoil.
We have Vk+2a Sk+3, with dVk+2 = Sk+l and itx(V) = 1. Having V simply connected
means that A\ = 1, where AJ is the first Alexander invariant in dimension 1 for the
jfc-spun trefoil (7). This is because, as in Levine(7), if we split Sk+3 along Vk+i to obtain
W, then W ~ Sk+S- Vk+2 so

H^W; Q) S Hk+\V;Q) s H^V;Q) = 0

where the first isomorphism is Alexander Duality and the second Lefschetz Duality
(dV is a sphere). The infinite cyclic cover of the complement of the &-spun trefoil is
built up of copies of W, and the Mayer-Vietoris sequence gives us that Hx of the
infinite cyclic cover = 0, hence AJ = 1. However, it is well known that AJ = 1 — t +12,
the same as the Alexander polynomial of the trefoil.

3. Calculating the homotopy groups ofX. We will prove the following theorem, where
X = 8k+3-L%+1.
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THEOREM 2. n^X) ^ ^i(Ck+h2) for 1 < i ^ k and nk+1(X) is non-finitely-generated
free Abelian.

Proof. The proof is somewhat analogous to the calculation of Epstein (5). Let X
denote the universal cover of X, and Y denote the universal cover of Y = B3 — K\.
Now BY = lots of copies of 8Y*, where 8Y* is a non-simply connected cover of 8Y.
Let Fx = B3 — B\ the complement of the trefoil arc. Now the inclusion n^Y) ->• n^Yj)
is an epimorphism because any loop in Yx can be deformed homotopically off B\.
Chasing the following diagram with exact rows and vertical maps by inclusion yields
that TTX{ Y, d Y) ->• n^Y^ dY±) is an epimorphism

We have a 1-1 correspondence

irx<Jlt 8TJ <-» [*&), ^(Fj)] = Z * Z,

where [n^Yj), TriiYj}] denotes the commutator subgroup of 77p
1(F1), because the following

are short exact sequences:

n
z

0 - * &&), 7T&)] -> *&) -> H^Yj) -+ 0.
II? II?

z*z z
Now since 7T2(Y) = 0 by asphericity of knots(8), we have from the homotopy exact
sequence of the pair (Y,dY) that 8Y* is the covering space of 8Y corresponding to
7T2(Y,dY).

If $. denotes the universal cover of X, then 1 = (Sk x f) U (-D&+1 x Sf) identified
along Skx8Y = 8Dk+x x8?. Y is contractible since F ~ S1 v S1, and a ? is 1-dimen-
sional. Consider now the Mayer-Vietoris sequence for X:

Case 1. k = 1.
-• ^ ( S 1 x F) © ̂ 2(Z>2 x a?) -». ^2(X) -> ^(/S1 x a?)

II II
0 0

?) © H^D* x 8Y) -
112 I"?, II
Z #i(3?) 0

The above sequence reduces to

• 0 -»• H2(X) -> H0(8Y) -+ Z - • 0

and since H0(8Y) is nfg free Abelian, then n2(X) ~ H2(X) is nfg free Abelian.
Case 2. k > 1. A similar analysis of the Mayer-Vietoris sequence gives us H^X) = 0,

1 < i < k and 0-+ Hk+1{X) -+ E0(8Y) - > Z ^ 0 exact. This completes the proof of
Theorem 2.
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Note that 7Tk+1(X) c£ nk+1(Ch+li 2) = 0 so L%+1 is non-trivial.
I t is clear that the process of Fig. 1 of boring a straight hole in the trefoil complement

destroyed one of the crossovers in the trefoil. Hence, one could start with any knot,
and by boring a number of straight holes, could destroy all the crossovers. We there-
fore have the following corollary to the proof of Theorem 2:

COROLLAS Y 3. Let E\ denote a knotted ball pair, and L\+1 <= Sk+3 denote the knot
obtained by k-spinning K\. Then there exists an integer ju.o ^ 1 such that if ji > /io +1
then Li+1 can be extended to L*+1 where all the components of L*+1 (except Si+1) are
unknotted, and such that TT^X) S ^ ( C ^ + I p)> 1 ^ * ^ & and 7Tk+i(-^-) ^s n f g / r e e Abelian.
Moreover, the link L^t\ obtained by deleting $ i + 1 is the trivial link.

/i0 has been called the ' Gordian' number (9,10) of a classical knot; it is the minimum
number of crossovers in the regular projection of the knot which must be changed to
produce the unknot.
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