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L. Introduction. An n-link of multiplicity u(L7) is a smooth embedding of the disjoint
union of ¢ copies of 8" in S§"+2; L7: 8F U...USY — 87+2. L% issaid to be trivial if it extends
to a smooth embedding of the disjoint union of x copies of D*+1. Let X = §n+2— L%, and
C,, , denote the wedge product of x copies of S* and (4 — 1) copies of §*+1. Then clearly,
if L} is trivial, then X ~ C, ,, where ~ denotes homotopy equivalence.

At the 1969 Georgia Topology Institute, Gutierrez (6) announced the following result:

‘Let L7 be an n-link of multiplicity # (n > 4). The condition 7,(X) = m,(C,, ,) for
1 < g (g < 3(n+1)) is equivalent to the existence of x mutually disjoint, (¢—1)-
connected manifolds V, < §»+2 with oV, = S7.’

One can produce counter-examples to the above result by a generalized spinning
process (2, 5). Gutierrez has since pointed out to the author that the above unlinking
theorem is true with one additional hypothesis: ‘Let X denote the bounded link
complement, and suppose that 7,(X) is free on the meridian curves on §X.’ It is easily
seen that the example produced below does not satisfy this extra requirement; in fact,
the boundary meridian curves do not generate 7,(X) in the example. The author wishes
to thank J.J. Andrews for helpful conversations.

2. The counter-example.
DEFnirioN. 4 ball configuration Kj;: B} U ... U By, < B"*2 is a smooth proper em-
bedding of the disjoint union of y copies of B™ in B"+2.
DEFINTTION. One obtains Ly* by k-spinning K™ as follows:
Sn+k+2 — (Sk X Bn+2) U ( Dk+1 x g Bnt2)
identified along S* x 0B*+? = 9D*+! x gB™+2,
SpHE = (SEx BY) U (D*1x 9BY) (1< i< p)
tdentified along S* x 9B} = dD¥+1 x 0B}.
If k = 1 = p, then this is equivalent to the classical spinning technique of Artin (3).
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Levma 1. Suppose Lyt* is obtained by k-spinning K. Let X = Sntk+2— [n+k gng
Y = B™2— K%, Then my(X) =~ my(Y).

Proof. From the construction, we have X = (8% x Y) U (D¥+1 x 2Y) identified along
Sk x 9Y = oD¥*1x Y, so Van Kampen’s Theorem immediately gives us the desired
result.

Now consider the ball configuration K3 of Fig. 1. The counterexample is produced by
k-spinning K3}, for k > 3. If k = 1, then Artin (3) showed that L2 was not isotopically
splittable, and Andrews—Curtis (1) showed that S} was not homotopic to zero in the
complement of S2.

The surprising thing about K} is that 7,(Y) = Z * Z, where as before ¥ = B*— Kj.
This becomes evident when one realizes that the cube-with-knotted-holes obtained
from boring out the arcs in Fig. 1 is actually homeomorphic to the cube-with-straight-
holes! (See (4), pp. 97.)

Fig. 1

We now k-spin K} (k > 3) producing LE*!, and with 7,(X)=2Z+Z where
X = §k+3— LE+1 So my(X) = m,(Cpq,2) and the result of Gutierrez tells us that each of
Sk+1 and S%+1 bounds (simultaneously) a simply connected (k+ 2) — manifold in S*+3.
Forget the unknotted component S5+, and concentrate on S¥*1, the k-spun trefoil.
We have V¥t2c Sk+3 with aVE+2 = S¥+1 and m,(V) = 1. Having V simply connected
means that Al = 1, where Al is the first Alexander invariant in dimensjon 1 for the
k-spun trefoil (7). This is because, as in Levine (7), if we split S%*3 along V¥+2 to obtain
W, then W ~ §k+3_ Vk+2 g0

H(W; Q) = H*(V;Q) = H(V;Q) =0
where the first isomorphism is Alexander Duality and the second Lefschetz Duality
(2V is a sphere). The infinite cyclic cover of the complement of the k-spun trefoil is
built up of copies of W, and the Mayer-Vietoris sequence gives us that H, of the
infinite cyclic cover = 0, hence Al = 1. However, it is well known that A} = 1 —£+12,
the same as the Alexander polynomial of the trefoil.

3. Calculating the homotopy groups of X. We will prove the following theorem, where
X = Sk+3— [E+1,
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THEOREM 2. my(X) = m(Cpyy ) for 1 <t < k and m1(X) is non-finitely-generated
Jfree Abelian.

Proof. The proof is somewhat analogous to the calculation of Epstein (5). Let X
denote the universal cover of X, and ¥ denote the universal cover of ¥ = B3—K}.
Now 8¥ = lots of copies of 9Y*, where 8Y* is a non-simply connected cover of 3.
Let Y; = B3— B} the complement of the trefoil arc. Now the inclusion 7,(Y) - my(¥;)
is an epimorphism because any loop in ¥; can be deformed homotopically off B}.
Chasing the following diagram with exact rows and vertical maps by inclusion yields
that 7,(Y,0Y) - 7,(Y}, 8Y]) is an epimorphism

>m(Y)>7m(Y,0Y)>0
{ ¥

= m(¥y) - my(¥y, 0Y;) > 0.
We have a 1-1 correspondence

mh, 01y) © [my(Yy), m(N)] = Z+Z,

where [m,(Y;), 7,(¥;)] denotes the commutator subgroup of 7, (Y; ), because the following
are short exact sequences:
0 — my(0Y;) - my(¥y) > my(Xy, 1) - O,
e
z
0 > [m(1), m()] - m(Yh) > Hy(¥y) > 0.
e I
ZxZ V/
Now since 7y(Y) = 0 by asphericity of knots(8), we have from the homotopy exact
sequence of the pair (Y,2Y) that 0Y* is the covering space of 8Y corresponding to
my(Y,08Y).

If X denotes the universal cover of X, then X = (8% x ¥)y (D*+! x 8¥) identified
along S* x Y = aD¥+1 % 9Y. ¥ is contractible since ¥ ~ 81v 81, and ¥ is 1-dimen-
sional. Consider now the Mayer—Vietoris sequence for X:

Casel. k= 1.

> H(S'x ¥) @ Hy(D?*x 8Y) - Hy(X) - H(S1x 2Y)
|

| | I
0 0 Hy (oY)

D
H\(2Y)
- H(S'x ¥)@ H(D*x aY) - H\(X).
%l Hl(a"%’ ) 0
The above sequence reduces to
0> Hy(X) > Hy(0Y)>Z -0

and since Hy(2Y) is nfg free Abelian, then 7,(X) =~ Hy(X) is nfg free Abelian.

Case 2. k > 1. A similar analysis of the Mayer—Vietoris sequence gives us H;(X) = 0,
1<i<kand 0> H(X)—> Hy(2Y) > Z — 0 exact. This completes the proof of
Theorem 2.

https://doi.org/10.1017/50305004100050180 Published online by Cambridge University Press


https://doi.org/10.1017/S0305004100050180

4 D. W. SUMNERS

Note that 7, (X) & 7,41(Cis1,2) = 0s0 LE+! is non-trivial.

It is clear that the process of Fig. 1 of boring a straight hole in the trefoil complement
destroyed one of the crossovers in the trefoil. Hence, one could start with any knot,
and by boring a number of straight holes, could destroy all the crossovers. We there-
fore have the following corollary to the proof of Theorem 2:

COROLLARY 3. Let K} denote a knotted ball pair, and L¥+' < Sk+3 denote the knot
obtained by k-spinning K. Then there exists an integer py > 1 such that if p > po+1
then LF** can be extended to L%+ where all the components of LE* (except S¥*1) are
unknotted, and such that my(X) = m;(Cyiy,), 1 < @ < k and my,4(X) is nfg free Abelian.
Moreover, the link LET} obtained by deleting S¥** is the trivial link.

Mo has been called the ‘Gordian’ number (9, 10) of a classical knot; it is the minimum
number of crossovers in the regular projection of the knot which must be changed to
produce the unknot.
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