PROCEEDINGSOFTHE Cambridge Philosophical Society

Vol. 71

January 1972

Part 1

1

Proc. Camb. Phil. Soc. (1972), 71, 1 With 1 text-figure PCPS 71-1

Printed in Great Britain

On an unlinking theorem

By D. W. SUMNERS† Florida State University

(Received 16 December 1970)

1. Introduction. An n-link of multiplicity $\mu(L^n_\mu)$ is a smooth embedding of the disjoint union of μ copies of S^n in S^{n+2} ; $L^n_{\mu}: S^n_1 \cup \ldots \cup S^n_{\mu} \to S^{n+2}$. L^n_{μ} is said to be trivial if it extends to a smooth embedding of the disjoint union of μ copies of D^{n+1} . Let $X = S^{n+2} - L_{\mu}^n$, and $C_{n,\mu}$ denote the wedge product of μ copies of S^1 and $(\mu-1)$ copies of S^{n+1} . Then clearly, if L^n_μ is trivial, then $X \simeq C_{n,\mu}$, where \simeq denotes homotopy equivalence.

At the 1969 Georgia Topology Institute, Gutierrez (6) announced the following result: 'Let L^n_{μ} be an *n*-link of multiplicity μ $(n \ge 4)$. The condition $\pi_i(X) \cong \pi_i(C_{n,\mu})$ for $i < q \ (q \leq \frac{1}{2}(n+1))$ is equivalent to the existence of μ mutually disjoint, (q-1)connected manifolds $V_i \subset S^{n+2}$ with $\partial V_i = S_i^n$.

One can produce counter-examples to the above result by a generalized spinning process (2,5). Gutierrez has since pointed out to the author that the above unlinking theorem is true with one additional hypothesis: 'Let X denote the bounded link complement, and suppose that $\pi_1(X)$ is free on the meridian curves on ∂X .' It is easily seen that the example produced below does not satisfy this extra requirement; in fact, the boundary meridian curves do not generate $\pi_1(X)$ in the example. The author wishes to thank J. J. Andrews for helpful conversations.

2. The counter-example.

Definition. A ball configuration $K_{\mu}^n \colon B_1^n \cup \ldots \cup B_{\mu}^n \subset B^{n+2}$ is a smooth proper embedding of the disjoint union of μ copies of B^n in B^{n+2} .

Definition. One obtains L^{n+k}_{μ} by k-spinning K^n_{μ} as follows:

$$S^{n+k+2} = (S^k \times B^{n+2}) \cup (D^{k+1} \times \partial B^{n+2})$$

$$identified \ along \quad S^k \times \partial B^{n+2} = \partial D^{k+1} \times \partial B^{n+2}.$$

$$S_i^{n+k} = (S^k \times B_i^n) \cup (D^{k+1} \times \partial B_i^n) \quad (1 \leqslant i \leqslant \mu)$$

$$identified \ along \quad S^k \times \partial B_i^n = \partial D^{k+1} \times \partial B_i^n.$$

If $k = 1 = \mu$, then this is equivalent to the classical spinning technique of Artin (3).

† Research supported by NSF GP-11964.

PSP 7I

I

LEMMA 1. Suppose L^{n+k}_{μ} is obtained by k-spinning K^n_{μ} . Let $X = S^{n+k+2} - L^{n+k}_{\mu}$ and $Y = B^{n+2} - K^n_{\mu}$. Then $\pi_1(X) \cong \pi_1(Y)$.

Proof. From the construction, we have $X = (S^k \times Y) \cup (D^{k+1} \times \partial Y)$ identified along $S^k \times \partial Y = \partial D^{k+1} \times \partial Y$, so Van Kampen's Theorem immediately gives us the desired result.

Now consider the ball configuration K_2^1 of Fig. 1. The counterexample is produced by k-spinning K_2^1 , for $k \ge 3$. If k = 1, then Artin (3) showed that L_2^2 was not isotopically splittable, and Andrews-Curtis (1) showed that S_2^2 was not homotopic to zero in the complement of S_1^2 .

The surprising thing about K_2^1 is that $\pi_1(Y) = \mathbb{Z} * \mathbb{Z}$, where as before $Y = B^3 - K_2^1$. This becomes evident when one realizes that the cube-with-knotted-holes obtained from boring out the arcs in Fig. 1 is actually homeomorphic to the cube-with-straight-holes! (See (4), pp. 97.)

Fig. 1

We now k-spin K_2^1 ($k \ge 3$) producing L_2^{k+1} , and with $\pi_1(X) = \mathbb{Z} * \mathbb{Z}$ where $X = S^{k+3} - L_2^{k+1}$. So $\pi_1(X) \cong \pi_1(C_{k+1,2})$ and the result of Gutierrez tells us that each of S_1^{k+1} and S_2^{k+1} bounds (simultaneously) a simply connected (k+2) – manifold in S^{k+3} . Forget the unknotted component S_2^{k+1} , and concentrate on S_1^{k+1} , the k-spun trefoil. We have $V_1^{k+2} \subset S^{k+3}$, with $\partial V_1^{k+2} = S_1^{k+1}$ and $\pi_1(V) = 1$. Having V simply connected means that $\Delta_1^1 = 1$, where Δ_1^1 is the first Alexander invariant in dimension 1 for the k-spun trefoil (7). This is because, as in Levine (7), if we split S^{k+3} along V_1^{k+2} to obtain W, then $W \simeq S^{k+3} - V_1^{k+2}$ so

$$H_1(W; Q) \cong H^{k+1}(V; Q) \cong H_1(V; Q) = 0$$

where the first isomorphism is Alexander Duality and the second Lefschetz Duality (∂V is a sphere). The infinite cyclic cover of the complement of the k-spun trefoil is built up of copies of W, and the Mayer-Vietoris sequence gives us that H_1 of the infinite cyclic cover = 0, hence $\Delta_1^1 = 1$. However, it is well known that $\Delta_1^1 = 1 - t + t^2$, the same as the Alexander polynomial of the trefoil.

3. Calculating the homotopy groups of X. We will prove the following theorem, where $X = S^{k+3} - L_2^{k+1}$.

THEOREM 2. $\pi_i(X) \cong \pi_i(C_{k+1,2})$ for $1 \leq i \leq k$ and $\pi_{k+1}(X)$ is non-finitely-generated free Abelian.

Proof. The proof is somewhat analogous to the calculation of Epstein (5). Let \tilde{X} denote the universal cover of X, and \tilde{Y} denote the universal cover of $Y=B^3-K_2^1$. Now $\partial \tilde{Y}=$ lots of copies of ∂Y^* , where ∂Y^* is a non-simply connected cover of ∂Y . Let $Y_1=B^3-B_1^1$ the complement of the trefoil arc. Now the inclusion $\pi_1(Y)\to\pi_1(Y_1)$ is an epimorphism because any loop in Y_1 can be deformed homotopically off B_2^1 . Chasing the following diagram with exact rows and vertical maps by inclusion yields that $\pi_1(Y,\partial Y)\to\pi_1(Y_1,\partial Y_1)$ is an epimorphism

$$\begin{array}{c} \rightarrow \pi_1(Y) \rightarrow \pi_1(Y,\,\partial Y) \rightarrow 0 \\ \downarrow \qquad \qquad \downarrow \\ \rightarrow \pi_1(Y_1) \rightarrow \pi_1(Y_1,\partial Y_1) \rightarrow 0. \end{array}$$

We have a 1-1 correspondence

$$\pi_1(Y_1, \partial Y_1) \leftrightarrow [\pi_1(Y_1), \pi_1(Y_1)] = \mathbb{Z} * \mathbb{Z},$$

where $[\pi_1(Y_1), \pi_1(Y_1)]$ denotes the commutator subgroup of $\pi_1(Y_1)$, because the following are short exact sequences:

$$\begin{split} 0 &\to \pi_1(\partial Y_1) \to \pi_1(Y_1) \to \pi_1(Y_1, \partial Y_1) \to 0, \\ & \quad \mathbb{Z} \\ 0 &\to [\pi_1(Y_1), \, \pi_1(Y_1)] \to \pi_1(Y_1) \to H_1(Y_1) \to 0. \\ & \quad \mathbb{R} \\ & \quad \mathbb{Z} * \mathbb{Z} \end{split}$$

Now since $\pi_2(Y) = 0$ by asphericity of knots (8), we have from the homotopy exact sequence of the pair $(Y, \partial Y)$ that ∂Y^* is the covering space of ∂Y corresponding to $\pi_2(Y, \partial Y)$.

If \widetilde{X} denotes the universal cover of X, then $\widetilde{X} = (S^k \times \widetilde{Y}) \cup (D^{k+1} \times \partial \widetilde{Y})$ identified along $S^k \times \partial \widetilde{Y} = \partial D^{k+1} \times \partial \widetilde{Y}$. \widetilde{Y} is contractible since $Y \simeq S^1 \vee S^1$, and $\partial \widetilde{Y}$ is 1-dimensional. Consider now the Mayer-Vietoris sequence for \widetilde{X} :

Case 1. k = 1.

$$\begin{array}{c|c} \rightarrow H_2(S^1\times\tilde{Y}) \oplus H_2(D^2\times\partial\tilde{Y}) \rightarrow H_2(\tilde{X}) \rightarrow H_1(S^1\times\partial\tilde{Y}) \\ \parallel & \parallel & \parallel \wr \\ 0 & 0 & H_0(\partial\tilde{Y}) \\ & \oplus \\ H_1(\partial\tilde{Y}) \\ \rightarrow H_1(S^1\times\tilde{Y}) \oplus H_1(D^2\times\partial\tilde{Y}) \rightarrow H_1(\tilde{X}). \\ \parallel \wr & \parallel \wr & \parallel \\ \mathbb{Z} & H_1(\partial\tilde{Y}) & 0 \end{array}$$

The above sequence reduces to

$$0 \to H_2(\tilde{X}) \to H_0(\partial \tilde{Y}) \to \mathbb{Z} \to 0$$

and since $H_0(\partial \tilde{Y})$ is nfg free Abelian, then $\pi_2(X) \cong H_2(\tilde{X})$ is nfg free Abelian.

Case 2. k > 1. A similar analysis of the Mayer-Vietoris sequence gives us $H_i(\tilde{X}) = 0$, $1 \le i \le k$ and $0 \to H_{k+1}(\tilde{X}) \to H_0(\partial \tilde{Y}) \to \mathbb{Z} \to 0$ exact. This completes the proof of Theorem 2.

Note that $\pi_{k+1}(X) \not\cong \pi_{k+1}(C_{k+1,\,2}) = 0$ so L_2^{k+1} is non-trivial.

It is clear that the process of Fig. 1 of boring a straight hole in the trefoil complement destroyed one of the crossovers in the trefoil. Hence, one could start with any knot, and by boring a number of straight holes, could destroy all the crossovers. We therefore have the following corollary to the proof of Theorem 2:

COROLLARY 3. Let K_1^1 denote a knotted ball pair, and $L_1^{k+1} \subset S^{k+3}$ denote the knot obtained by k-spinning K_1^1 . Then there exists an integer $\mu_0 \geqslant 1$ such that if $\mu \geqslant \mu_0 + 1$ then L_1^{k+1} can be extended to L_{μ}^{k+1} where all the components of L_{μ}^{k+1} (except S_1^{k+1}) are unknotted, and such that $\pi_i(X) \cong \pi_i(C_{k+1,\mu})$, $1 \leqslant i \leqslant k$ and $\pi_{k+1}(X)$ is nfg free Abelian. Moreover, the link $L_{\mu-1}^{k+1}$ obtained by deleting S_1^{k+1} is the trivial link.

 μ_0 has been called the 'Gordian' number (9, 10) of a classical knot; it is the minimum number of crossovers in the regular projection of the knot which must be changed to produce the unknot.

REFERENCES

- (1) ANDREWS, J. J. and Curtis, M. L. Knotted 2-spheres in the 4-sphere. Ann. of Math. 70 (1959), 565-571.
- (2) Andrews, J. J. and Sumners, D. W. On higher-dimensional fibred knots. Trans Amer. Math. Soc. 153 (1971), 415-426.
- (3) ARTIN, E. Zur Isotopie Zweidimensionaler Flachen im R_4 . Abh. Math. Sem. Univ. Hamburg 4 (1925), 174–177.
- (4) BING, R. H. Mapping a 3-sphere onto a homotopy 3-sphere. Topology Seminar Wisconsin, 1965 (Ann. of Math. Study no. 60), 89-99.
- (5) Epstein, D. B. A. Linking spheres. Proc. Cambridge Philos. Soc. 56 (1960), 215-219.
- (6) GUTIERREZ, M. Unlinking spheres in codimension two. Preprint.
- (7) LEVINE, J. Polynomial invariants of knots of codimension two. Ann. of Math. 84 (1966), 537-544.
- (8) PAPKYRIAKOPOULOS, C. D. On Dehn's lemma and the asphericity of knots. Ann. of Math, 66 (1957), 1-26.
- (9) SMYTHE, N. Trivial knots with arbitrary projection. J. Austral. Math. Soc. 7 (1967), 481-489.
- (10) WENDT, H. Die gordische Auflösung von Knoten. Math. Zeit. 42 (1937), 680-696.