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ABSTRACT. Ward(l) has discussed a method, introduced by Tricomi (6), of calculating
transients by means of series involving Laguerre functions which in some cases makes it
unnecessary to determine poles of the relevant characteristic function. This method is here
investigated with special reference to conditions for convergence and adjustments for improving
convergence; some of the examples discussed by Ward are reconsidered.

Both in Ward's paper and here the location of poles of the characteristic function is assumed to
be approximately known. In some cases the determination of poles of outstandingly small or
large modulus and their separation from the remainder may be the most satisfactory procedure.
Lin's method (2) for determining a quadratic factor of a polynomial is more widely applicable
than has previously been supposed, and this is discussed in bare outline, without proof, here,
but in detail, with adequate numerical examples, elsewhere (3).

1. Introduction. Instead of determining the motion of some element of a dynamical
system by building up the Heaviside or Laplace operational equivalent of the motion
and expressing this in partial fractions, Ward(i) transformed his operational variable
so that the operational equivalent became an infinite series, each term of which was
equivalent to a Laguerre function of some multiple of the time. The series involved
was always convergent provided that the motion was stable, but convergence was
sometimes slow. Here we first show, in § 2, that rapidity of convergence is related to the
geometry of the 'operational world'. In §3 geometrical considerations are applied to
determining the most appropriate scale factors for the Laguerre series appropriate to
some of the examples discussed by Ward. In some cases series more rapidly convergent
than those used by Ward are obtainable by systematic methods; in other difficult cases
Ward has obtained by inspection a scale factor almost as good as any systematically
obtainable. In Ward's last example difficulty was experienced because the poles of the
characteristic function were very widely separated. We suggest that in some such cases
widely separated poles should be determined first and their contribution calculated in
exponential form, while for the remainder of the poles a reasonably rapidly convergent
Laguerre series could be found. Up to this point we have assumed, like Ward, that the
location of poles of the characteristic function was known. In § 4 we consider in outline
procedure for finding these poles, that is to say, normally, for solving algebraic
equations. Lin's method (2) for determining a quadratic factor of a polynomial can be
extended so that any pole of interest (not necessarily one having large or small modulus)
can often be found easily. Full details of this work will be published elsewhere (3).

2. A Laguerre-function series for e-"1. Conditions of rapid convergence. Suppose we
wish to express e~ai for any a, real or complex, as a series of Laguerre functions

r A(^) (1)
r=0 r=0
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Approximation to transients by means of Laguerre series 641

where /? is any real positive number, and Ln(x) means the Laguerre polynomial

In (2) I I is to be interpreted as the binomial coefficient %!/{(% —r)!r!}. Then the

operational equivalent of e~ai, starting suddenly when t = 0, is

P = V P+P
=

p + tx p + fip + a.
p

2/? 2/?

where x = (p-fi)l(p+fi)- I t follows that^> = /?(1 +x)/(l — x) and

xr, (3)

so that, returning to the time world,

(4)

where the Laguerre-function terms, like the original exponential, are assumed to start
at t = 0. Equations (3) and (4) are valid provided that the geometric series involved
in the former is convergent, and the condition for this is

z = (5)

which implies that a has a positive real part and that e~at is associated with exponential
decay (with or without oscillation) and not with growth.

If now /? is fixed, the locus of the point a so that X remains constant is a circle of the
coaxal system having (/?, 0) and (—/?, 0) as limiting points. These circles do not intersect,
and the small circles of the system are those for which X is small. Their centres are all
on the real axis Ox, and every circle of the system cuts at right angles any circle
through the limiting points (+/?, 0). For fixed /?, there is one circle of the system
passing through the point a0 = y0 + i(o0, represented on Fig. 1 by Ao or (y0, w0), and the
value of X at all points on the circumference of this circle is

while the value of X is less at all interior points. If now we have only a single exponential
term (or single conjugate pair of exponential terms) to consider, we are at liberty to
vary /? so as to make (6) as small as possible, and it can be shown that under these
conditions X has its least value

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0305004100031716
Downloaded from https://www.cambridge.org/core. Yunnan University, on 16 Aug 2025 at 05:11:56, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004100031716
https://www.cambridge.org/core


642 J. W. HEAD

when /? = (yg + aig)i, so that Ao is on the circle having the limiting points (+ /?, 0) at
the ends of a diameter. If, however, we have several exponential terms we are no
longer at liberty to choose /?. There will be a smallest circle C with its centre on the real
axis which has all the points like Ao associated with the exponential terms in the time
world (or poles of the characteristic function in the operational world) either on its
circumference or inside it; at least two of the points Ao will be on the circumference
of C. If this circle has centre (g, 0) and radius r, the system of coaxal circles whose
equations are „ „

-r2= 0, (8)

where k varies, will include C as a member and be such that the convergence associated
with all the exponential terms is not slower than that associated with points on the
circumference of C. The limiting points of the system (8) are ( ± (g2 — r2)*, 0) and the
value of the constant ratio X for the circle 0 is then

rib + (<72 ~ (9)

Fig. 1. Coaxal circles.

which is a function only of the ratio g\r. X is nearly unity when {gjr) — 1, which must
be positive, is small and X is small when {g\r) is large.

In cases where (9) gives too high a value of X, we can improve convergence as
follows: If e~"r* is a typical term in the transient response found by conventional
methods, rewrite it as

eGte-{.ar+G)t (10)

keeping the eGi as a factor outside, and applying the above to e~^a'+O)i. In effect we
have to replace g by (g + G) in (9) so that X is reduced. The effective exponential
multiplier of the Laguerre polynomial in (4) now becomes e~Kt, where, allowing for
the factor e« in (10), R = {(Q + g)%_^_ Q ( n )

This increases as G increases (for fixed g, r) from (g2 — r2)£ when G = 0 to g when
G + g > r. For large G it increases slowly; for G = r we have, expanding (11) in powers
°* (rl9)> c _ / , _ / ^ / o / . \ i /•»3/o^_ _ Q2)
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Approximation to transients by means of Laguerre series 643

and the appropriate value of X is found to be less than (r/2gr)* so that there is probably
little advantage in using values of 0 above r.

So far we have assumed that the exponential terms have coefficients of the same
order of magnitude. These coefficients are associated with the residues at poles of the
characteristic function in the operational world. We may in some cases find that a pole
associated with an unusually small residue can be safely omitted from consideration
in determining the circle C so that a more favourable value of (g\r) is available for the
poles with high residues.

3. Application to some of the examples discussed by Ward. In Ward's first example,
the operational equivalent of the characteristic function is*

(13)

Here the poles are such that in our notation the circle G is that on the points (1,0) and
(2, 0) as diameter. It follows that g = 1-5 and r = 0-5 so that /?, which is Ward's scale
factor b, is *J2, and the ratio X is 3 — 2 ̂ 2 = 0-171572. Ward, by taking his scale factor
as unity, in effect reduced his series for the factor (p +1) to a single term and then had
a series for the factor (p + 2) in which the ratio X associated with convergence was ^, so
that in this case he has the advantage of simplicity. We, on the other hand, have infinite
series associated with both factors, but a much more rapid convergence, and in more
complicated cases rapidity of convergence will be what matters most.

If in (13) we make the substitution

or p = j2{l+x)Hl-x), (14)

so that (13) contains a factor pl(p + *J%) but everything else is in terms oix, we have

.), (16)

where k = (3^/2- 4)/(3V2 + 4) = 1 7 - 12^/2 = 0-0294372. (17)

The series (16) is particularly simple because the denominator of (15) happens not to
contain any term linear in x, but in the general case the required series in ascending
powers of x could have been obtained by dividing the denominator of (15) into the
numerator and cancelling the lowest power of x left at each stage of the division.
Table 1 below gives a comparison between true and Laguerre-approximation values
obtained from the first four terms of (16) only. The good agreement for small values of
t is mainly due to the fact that the (2r — l)th term of (16) and the 2rt\x have equal and
opposite coefficients while the Laguerre functions A2r_2(2 *j2t) and A2r_x(2 *j2t) associated
are nearly equal. The values of t were chosen to be as nearly as possible comparable
with Ward's, but (2^]2t) was chosen to have tabular arguments in the Laguerre-

* As I prefer the Heaviside to the Laplace notation, I have replaced Ward's s by p throughout,
and added the appropriate factor p.
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644 J. W. HEAD

function tables used, giving four decimal places, or two significant figures when the
tabular entry was numerically less than 10~3.

For Ward's second example, the transient in our notation would be represented
operationally by

' M M I 'MM ^ ^ ^ • • ' r " ^ I

(18)
^(p + 0-8)

Here there is only one pair of complex conjugate poles p = — 0-4 + 0-91652i of F2(p),
and the modulus of each pole is unity, so that, according to (7), the best value of the
scale factor is unity and the value of the ratio X is then 0-65466. In this case, therefore,
Ward has used the best available scale factor, but the convergence is rather slow, unless
we introduce a multiplying factor as in (10). This in effect means that we have to
replace (18) by

' M M I 'MM ^ ^ — • ~W ^ ^ ^ 1 I * f ^ I

(19)

t (to 2
places)

0

0-07
0-14
0-21
0-28

0-49
0-64
0-71
0-85
0-99

1-59
1-94
2-47
3-18
3-89

Table 1

2t 12

0

0-2
0-4
0-6
0-8

1-4
1-8
2-0
2-4
2-8

4-5
5-5
7-0
9 0

110

. Transient represented by (13)

0

0-06358
0-11451
0-15461
0-18568

0-23799
0-24914
0-24995
0-24483
0-23352

0-16222
0-12259
0-07709
0-03978
002005

Laguerre series
(16) (4 terms)

0

0-06358
011445
0-15460
018565

0-23803
0-24923
0-25001
0-24485
0-23350

016215
0-12257
0-07717
0-03986
0-02006

Discrepancy
10-6x

0

0
- 6
- 1
- 3

+ 4
+ 9
+ 6
+ 2
- 2

- 7
+ 2
+ 8
+ 8
+ 1

so that the poles are now p = — (0-4 + G) ± 0-91652* and their modulus is

instead of 1. The best scale factor according to (7) is now also p and the value of X is,

^ ; ' (0-84)*/{((? + 0-4)+/o}. (20)

A convenient value of G is 1-6, since p is then 2-2, and the value of X is then 0-21822,
one-third of the value already obtained for G = 0. Since (0-21822)2 is approximately
equal to (0-65466)7, we should expect to obtain roughly the same degree of accuracy
with three terms using the multiplier e+1'u as Ward did with seven terms and no
multiplier. Theoretically there is no reason why a larger multiplier should not be used
if desired; there are, however, two practical difficulties about using short Laguerre-
function series for large values of the argument, namely (a) the Laguerre functions are
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Approximation to transients by means of Laguerre series 645

then sparsely tabulated, (b) the ratio | An+1(x)IAn(x) | is large for any large value of
x until n approaches the value N at which | XJx) | reaches its first maximum for
increasing n and fixed x. The critical values of a; at which N changes are very approxi-
mately as follows:

Critical a; 2 5-3 9 12-5 16 20 24 27 31 35 40
Change in AT 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11

As the Laguerre-function series obtained has to be multiplied by eGt, which is large for
large t, we find that it is necessary to evaluate it to more decimal places for large values
of t than for small ones. Thus in the case under discussion, the true solution of (18) is

(21)= 1-09109 e-04i cos {0-915615*-sin-10-4}.

If in (19) we put G = 1-6 and a; = (p - 2-2)l(p + 2-2) we can write

p 4-6-0-2z
hip] = p + 2-218-48 + 0-88z2

= 1-09524 [1 - 0-043478a;] [1 + 0-047619Z2]- 1 (22)
p + 2-

so that the Laguerre series required is

<j>%(t) = 1-09524 e1*[A0(4-4«) - 0-04378A1(4-4£) - 0-047619A2(4-4£) + 0-0020738A3(4-4«)
+ 0-00226757A4(4-4«)+ . . . ] . (23)

Expressions (21) and (22) are compared for various values of t in Table 2. For small
values of t up to say 3 sec, the 3-term approximation (column G of Table 2) is quite
adequate, but for larger values of t it rapidly degenerates. If the approximation is

4 = 1-09109 e-°-4'
B=cos{0-91652«-0-41151}
C = Ao(4-4() - 0043478 A!
D=e1M

Table 2
E= 1-09524D
F = 10-3{2-07038 A3(4-44) + 2-26757 A,(.

-0-047619A2(4-4«) G=EC
H=EF
I=E(C + F) = i

t

0 0 0
0-50
102
1-59
2-05
2-50
2-73
2-95
3-64
4-0!)
4-55
5-00

4-4«

0
2-2
4-5
7
9

11
12
13
16
18

20
22

AB
(true)

1
0-8923
0-6249(5)
0-2890
00517

-01221
-0-1812(5)
-0-2221
-0-2486
-0-2083
-01449
-00761

C

0-908903
0-36580
0-110772
0-021540
0-002532

-1-808 xlO-3

-2-0988 xlO-3

-1-9745 x 10-8

-1-0002 x 10-3

-5-363 xlO-4

-2-652 xl0-«
-1-249 xlO-4

.FxlO3

4-3380
0-3719
0-6072

-0-8197
-0-7145
-0-2163
-0-0039
+ 0-1494

0-2962
0-2505
0-1783
01141

3-term
Approx.

G

0-9955
0-8916
0-6231(5)
0-3008
00732

- 0 1 0 8 1
-01805(5)
-0-2443
-0-3685
-0-4088
-0-4184
-0-4078

H

0-0048
0-0009
0-0034(2)

- 0 0 1 1 4
-0-0206
- 0 0 1 2 9
-00003(4)
+ 00185

01091
01910
0-2813
0-3725

5-term
Approx.

/

10003
0-8925
0-6266
0-2894
00526

- 0 1 2 1 0
- 0 1 8 0 9
-0-2258
-0-2594
-0-2178
- 0 1 3 7 1
- 0 0 3 5 3

104x
Discrepancy

G

- 45
- 7
- 18
+ 118
+ 215
+ 140
+ 7
- 222
-1199
-2005
-2735
-3317

I

+ 3
+ 2
+ 16
+ 4
+ 9
+ 11
+ 4
- 37
-108
- 95
+ 78
+ 408
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646 J. W. HEAD

improved by taking two more terms of (23), as in column / of Table 2, the approxima-
tion is adequate until t is between 4*5 and 5. The values of t chosen have been those as
nearly comparable to Ward's values as possible, such that (4-4J) is a tabular entry in
our Laguerre tables. For values of t above about 5, the terms involving A5 and A6 will
be the most important and so on. It is only by this constant increase with time in
the value of n associated with the leading Laguerre function that (23) can follow the
oscillation truly described by (21). The penalty we pay for introducing the multiplying
factor eat will be that we shall be obliged to take rather more terms than we might
have hoped were necessary, if we insist on detailed knowledge of the motion at times
such that high Laguerre-function arguments occur.

Ward's third example is automatically shown by our approach to require a tenfold
increase in the scale factor, and need not be discussed further. For his fourth example,
in our notation the operational equivalent of the motion would be

F[p] = pzl{f + Sip2 + 155p -)-125}, (24)

and the zeros of the denominator are p = — 1, — 5 and — 25. The circle (8) in this case
has the points (1,0) and (25,0) at opposite ends of a diameter; we thus find g = 13 and
r = 12. If therefore we have G = 0, the scale factor will be (g2 - r2)^ = 5 and the worst
value of X involved, from (9), will be f. If we take G = 2, we find that the scale factor
becomes 9 and X is reduced to 0-5, while if we take G = 7, the scale factor becomes
16 and X is reduced to J. We have deliberately discarded for the moment the possibility
of omitting the point (1,0), since the corresponding pole happens to be associated with
a small residue, because we want to avoid the necessity of determining more poles and
residues associated with (24) than we can help. As Ward has only considered values
of t up to 0-3, the highest Laguerre argument involved if G = 7 is 9-6 and the first
maximum of | Aw( 10) | occurs for n = 3, so we are not likely to be involved in neglecting
important terms as in our study of (21) and (23) if we take G = 7; this we now do, so
that in effect we have to find a Laguerre series of argument 32< for

= P(P + V2I{(P + 7)3 + 31(p + 7)2 + 155(p +7) + 125}. (25)

By putting z = -—— so that p = —j -, we find

Z2p T 529 + 414x+81a;2

p~+l6 [32256 + 4608a; - 3584x2 - 512a;3

0-524802[l + 0-639752a; + 0-172837a:3 + 0-062265a;3 + 0-020464a;4
6

+ 0-006738a;5 + 0-002299a;6 + . . . ] , (26)
so that the required time function is

<j>*(t) = e7'[0-524802A0(32«) + 0-335743A1(32«) + 0-090705A2(32«)

+ 0-032677A3(32<) + 0-010740A4(32£) + 0-003536A5(32()

.]. (27)

This is compared with the true solution

= 0-010417e-'-0-312500e-5'+ l-302083e-2s' (28)
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Approximation to transients by means of Laguerre series 647

in Table 3. I t thus appears that the discrepancies using six terms of (27) are slightly
greater than those using seven terms of Ward's series (in which G was zero and the
scale factor was 10). Our approach would have suggested a scale factor of 5 for zero G;
the reason why Ward's choice of 10 as scale factor in this case is better is that the
residue associated with the pole p = — 1 of (24) happens to be small. As already
explained, we have deliberately refrained from taking any advantage of this fact.
With a different numerator in (24), there might be a marked advantage in using an
approximation of the form (27); the convergence ratio X associated with the point
(1,0) when the scale factor is 10 and G is zero is ^ , whereas in our approximation it
would be J.

Table 3

t

0-000
0-009
0019
0-025
0-038
0-050

0-075
0-094
0125
0-156
0-188

0-250
0-313

32«

0
0-3
0-6
0-8
1-2
1-6

2-4
3-0
4-0
5-0
6-0

8-0
10-0

True

1
0-74216
0-54050
0-43135
0-26087
0-13959

- 0-00543
-006111
-0-10087
-0-10797
-0-10175

-0-07891
-0-05737

Approximation
(Laguerre series x 0-524802e7')

n = 4

0-98393
0-74234
0-54697
0-43868
0-26556
0-13955

-0-01235
-0-06860
-0-10247
-0-10128
-0-08989

-0-07236
-0-07072

n = 5

0-99467
0-74285
0-54281
0-43350
0-26137
013834

-0-00772
-0-06225
-0-09898
-0-10468
-0-09982

-0-08330
-0-06366

n= 6

0-99820
0-74255
0-54121
0-43188
0-26070
0-13891

-0-00591
-0-06096
-0-09998
-0-10744
-0-10231

-0-08034
-0-05636

Discrepancy >

n = 4

-1607
+ 18

647
733
469

- 4

- 692
- 749
- 160
+ 669
1186

+ 655
-1335

n = 5

-533
+ 69
231
215
50

-125
-229

-114
+ 189
+ 329
+ 193

-439
-629

clO5

n= 6

-180
+ 39

71
53

- 17
- 68
- 58
+ 15
+ 89
+ 53
- 56
-143
+ 101

For Ward's last example, the operational equivalent of the transient, in our
notation, is

_ P6 + 4:2-65620cfo5 + 363-6445dV + 734-947265d3ff3

(p+l){p + 4) (P+I6){p + 64) (p + 256) (p +1024)' ( >

where d = 32. Here the poles are all real, but are very widely separated. If we do not
use a multiplier eGt as in previous examples, we find that the system of circles (8) must
include the circle having (1,0) and (1024,0) at opposite ends of a diameter; this gives
g = 512-5,r = 511-5and (g2-r2)l, the scale factor,is 32. The value ofX is 0-9393. Now
it so happens that the circle having (4,0) and (256,0) at the ends of a diameter, and the
circle having (16,0) and (64,0) at the ends of a diameter, belong to the same coaxal
system associated with scale factor 32; the values of X are respectively % and J. With
the scale factor 4 chosen by Ward, the corresponding covergence ratios for the six
poles are 0-6, 0 (i.e. a single term), 0-6, 0-882, 0-969 and 0-992. As the poles associated
with high convergence ratios in (29) happen to have small residues, the Laguerre-series
approximation with scale factor 32 will not be markedly better than Ward's, and as
the poles of (29) are so widely separated, r is inevitably large and this makes it impossible
to gain much from using the multiplier eGt. On the other hand, when poles are widely
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648 J. W. HEAD

separated, it is relatively easy to find those of largest or smallest modulus, and their
associated residues. We therefore suggest that for (29) the first step is to find the poles
p = — 1, p = —1024 and their associated residues. The contribution from these two
poles is then determined in the time world as

0-032062 e-<-0-000455 e-1024/. (30)

If we now obtain a Laguerre-function approximation for the remainder of the transient
response in the time world, we shall have the scale factor 32 obtained from the poles
(4, 0) and (256,0); the Laguerre series obtained from

will in fact be found to converge with ratio 0-777 instead of 0-939 for (29). As 0-777 is
still rather high and the poles of f[p] are still widely separated, it is probably in this
sort of case better to find the residues associated with p = — 4 and p = — 256 and
express the contribution from these poles exponentially, especially as the poles
involved are real. In general, we suggest that in complicated cases it will be advan-
tageous to find the isolated poles of relatively very large or small modulus (especially
when these poles are real) and their associated residues. Having expressed the con-
tribution from these poles exponentially, we form a remainder equation analogous to
(31) to which the isolated poles do not contribute. We then obtain a Laguerre
approximation for the time equivalent of this remainder equation. Consider for
examples the case 5 + v + M.25ps + u.5p> + 20.25p

lPi (p + i)Hp*+p+l)(p+16) (* >

+ +(P + W P2+P+l p+16'
If we first locate the pole at p = — 16 and determine its contribution exponentially,
the appropriate value of the scale factor is 1 (from (7)), with y0 = \, w0 = | ^ / 3 ; the
point (\, 0) cannot but be inside any circle through the points (£, + £^/3) and the fact
that the associated pole is double is irrelevant; and the corresponding convergence
ratio is 1/̂ /3 for the points (£, + | /̂3) and \ for the point (£, 0). The fact that the pole
at p = — \ is double merely means that its contribution to the Laguerre series is
associated with the expansion of (1 +x)~2 instead of (1 -fa;)"1; for a multiple pole this
might mean that an extra term or two of the series was required, but it would not affect
the rate of convergence in the long run.

4. Location of poles of the characteristic function. In Ward's paper the location of
poles of the characteristic function in the operational world is given for each of his
examples, together with the associated residues, and hitherto we have also regarded
these poles and residues as known, at any rate approximately. If the poles are not
widely separated, Ward's suggestion of taking the scale factor as numerically equal to
the geometric mean of the roots will often give a satisfactorily convergent Laguerre
series without the necessity of locating the poles more accurately. For the equation

f[p] =pn + o,n_1p
n~1 +... + a-^p + a0 = 0 (34)
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the geometric mean of the roots is — (ao)
y?l. But there remain cases like (29) in which

convergence is inevitably slow unless the position of at any rate some poles, and their
contribution to the total transient, can be determined. Our discussion is therefore
incomplete without some reference to the problem of finding roots of (34). Among
many possible and well-known methods of doing this, we wish in particular to call
attention to that due to Lin (2). Hitherto uncertainty about the convergence of Lin's
process has hindered its application, but in fact even if Lin's process is divergent it is
often possible to determine with reasonable facility the root of the equation from which
it diverges. A full discussion of this matter requires considerable space and adequate
numerical examples, and is therefore published elsewhere (3), but it seems appropriate
to include here the following brief outline, without proof.

If (34) has a real root — a to which an approximation — a0 is known, and all its roots
are well separated, we divide the left-hand side of (34) by p + cc0 stopping at the linear
term. Let the remainder at this stage be Aop + a0. Then the next divisor is p + a0/A0 or
(p + ax), and the process is repeated to give a third divisor p + ct2, etc. Now it is shown
in (2) that the successive divisors a0, a1; a2, etc., form a sequence whose differences form
a geometric progression, provided that the difference between a0 and the root being
sought is sufficiently small. We now assume that (a,x — cc0) and (a2 — at) are in fact the
first two terms of a geometric progression, and deduce that the root being sought is /?,
where

cc2-a0cc2

2ax-a0-a2'

whatever the relative values of | a1 — a0 | and | a2 —ax | may be. As a check we now
start with the divisor (p+fi) and obtain the next two divisors (p + fii), (p + /?2)

 as
before and we can then use (35) again with /? for a0, fi± for ax and /?2 for a2. Convergence
is usually rapid. If we are seeking a complex root y + iw of (34) to which an approxima-
tion y0 + ia)0 is known, in practice in the form of a real quadratic divisor

we divide the left-hand side of (34) by Po stopping at the quadratic stage, so that there
is a remainder X0p

2+/iop + a0, and divide this remainder by p + y0 + icoo to obtain the
next approximation p + yx + iw1 to the divisor as in the real case. We now repeat the
process with divisor P1 = p2 + 2yxp + y\ + u>\ and our next divisor is p + y2 + iw2.
Applying (35) with ar replaced by yr + wT for r = 0,1,2, we determine a complex
quantity /?; if ft is the conjugate of/?, then our next divisor is p2 + (/? + ft) p + /Jft and the
process is repeated as in the case of a real root. To obtain a starting factor like Po or
(p + oco), the following devices are available:

(a) If we seek the root of smallest modulus for (34), try the divisor

or one of its factors if these are real.
(6) If we seek the root of largest modulus, put x = \\y, clear of fractions, and apply

(a) to the y-equation.
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650 J. W. HEAD

(c) Seek obvious real roots first by examining the behaviour of (34) for values of
p which are simple negative numbers like — nlOk (n an integer less than 10 and k an
integer). If the left-hand side of (34) changes sign between p = —S and p = — A try
the divisor p + D (8 < D < A).

(d) Write (34) in the form

(p2 + A1)(p
2 + A2)...(p

2 + Ar) + kp(p*+{i1)(p
2+fi2)...(p*+/i8) = 0. (36)

If (34) is associated with a stable system, the A's and ji's are all real and positive, and
separate each other (4), and they are obtained from equations whose degree in p2 is not
more than half the degree of the original equation. For small k, a useful starting
divisor is

or better l*+A« + * p i ? ~ ^ f r ~ f f ' " f r " ? ' ? , (87)
^ A) (A Al) • • • ('V ~ At)

where t may have any value from 1 to r, and the factor (A, — A,) is omitted from the
denominator of (37). For large k the corresponding useful starting divisor is

or better ?+*-% ^ ~ ^ ~ ^ - &-*> (38)

where again the factor (fit—/it) is omitted from the denominator of (38) and t takes any
values from 1 to s. If k has intermediate values, some of (37) or (38) may still be useful
starting divisors.

(e) Finally, if equal roots or clustered roots are suspected, carry out the H.C.F.
process for f(p) given by (34), and its derivative. The presence of equal or clustered
roots will be indicated by the presence of abnormally small coefficients throughout the
remainders f2(p),fs(p), • • • ,fn(P) after a certain stage, say from fm(p) onwards. In this
case/m_1(p) has factors which are or are nearly multiple factors oif(p). I t is probably
necessary to transform the equation in the manner suggested by Olver ((5), § 9) before
Lin's or any other iterative process can usefully be applied to such equations.

(/) At any stage we may reduce the degree oif(p) by dividing out by the factors
already found, but in this process some accuracy may be lost so that any root found
must be checked in the original equation.

The above considerations enable us to solve many of the equations associated with
practical problems; if we have any a priori reason for expecting a root in a particular
neighbourhood <x0 (because for example a similar but not identical case gave a root a0)
the trial divisor p + <x0 (a0 real) or p2 + (ac0 + a0) p + aoao (a0, a,, conjugate) is probably
better than any we have already suggested. Moreover, the case where Ward's Laguerre
approximation had slow convergence was just the case where the poles of the charac-
teristic function are well separated, so that the Lin process for determining them would
work best, and in the case where multiple or clustered poles might make the Lin process
most difficult, Ward's Laguerre approximation with the geometric mean of the roots
of (34) as the scale factor will be likely to give a rapidly convergent series; the presence
of the multiple poles may slightly increase the coefficients of the Laguerre functions
involved but the series still contains nothing but a linear combination of Laguerre
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functions in contrast to the complication of the conventional exponential solution
when terms of the form f'e""1 are introduced by multiple poles.

The author wishes to express his thanks to the Chief Engineer of the B.B.C. for
permission to publish this paper.
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