
Forum of Mathematics, Sigma (2022), Vol. 10:e106 1–29
doi:10.1017/fms.2022.96

RESEARCH ARTICLE

Stability condition on Calabi–Yau threefold of complete
intersection of quadratic and quartic hypersurfaces
Shengxuan Liu
1Mathematics Institute, University of Warwick, Coventry, CV4 7AL, United Kingdom;
E-mail: Shengxuan.Liu.1@warwick.ac.uk.

Received: 16 December 2021; Revised: 20 September 2022; Accepted: 12 October 2022

2020 Mathematics Subject Classification: Primary – 14F08; Secondary – 14J32, 18G80

Abstract
In this paper, we prove a Clifford type inequality for the curve 𝑋2,2,2,4, which is the intersection of a quartic and three
general quadratics in P5. We thus prove a stronger Bogomolov–Gieseker inequality for characters of stable vector
bundles and stable objects on Calabi–Yau complete intersection 𝑋2,4. Applying the scheme proposed by Bayer,
Bertram, Macrì, Stellari and Toda, we can construct an open subset of Bridgeland stability conditions on 𝑋2,4.
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1. Introduction

Stability conditions on a triangulated category were first introduced by Bridgeland in [Bri07] to
understand Π-stability, which was proposed by Douglas. Since then, the existence of Bridgeland sta-
bility conditions on smooth projective varieties has become a central problem. In a series of works
[BMT14, BBMT14, BMS16], a conjectural Bogomolov–Gieseker inequality is proposed to construct
geometric stability conditions on threefolds. The construction is based on the double tilting technique,
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2 S. Liu

and the existence of geometric stability conditions relies on the conjectural Bogomolov–Gieseker
inequality.

The existence of stability conditions on threefolds is only known for a limited number of examples:
Fano threefolds [Mac14b, Sch14, Li19b, Piy17, BMSZ17], Abelian threefolds [MP15, MP16, BMS16],
Kummer type threefolds [BMS16], threefolds with nef tangent bundle [Kos20] and product varieties of
a curve with a surface [Liu21]. On Calabi–Yau threefolds, apart from the above examples, Li proved
the existence of stability conditions on quintic threefolds [Li19a], and Koseki proved the existence
on some weighted hypersurfaces in P1,1,1,1,2 and P1,1,1,1,4 [Kos22]. They both show the existence by
proving that a stronger or modified Bogomolov–Gieseker inequality holds for these varieties. It is worth
mentioning that the original conjectural Bogomolov–Gieseker inequality as in [BMS16] does not hold
for all threefolds. In particular, counterexamples can be found in [Sch17, MS19]. However, a modified
version of the Bogomolov–Gieseker inequality is sufficient to show the existence. An explanation of the
construction can be found in [BMS16, Li19a, Kos22].

Let 𝑋2,4 be a polarized smooth complete intersection of quadratic and quartic hypersurfaces with
𝐻 = 𝑂𝑋2,4 (1). The main result of this paper is the following theorem ([BMS16, Conjecture 4.1]) for
𝑋2,4 ⊂ P5, with mild restrictions on 𝛼, 𝛽.

Theorem 1.1 (Theorem 2.14). Conjecture 4.1 in [BMS16] holds for 𝑋2,4 when the parameters (𝛼, 𝛽)
satisfy 𝛼2 + (𝛽 − �𝛽� − 1

2 )
2 > 1

4 . More precisely, assume E is 𝜈𝛼,𝛽,𝐻 -tilt semistable for some
𝛼2 + (𝛽 − �𝛽� − 1

2 )
2 > 1

4 , then the generalised Bogomolov–Gieseker inequality holds:

𝑄𝛼,𝛽 (𝐸) :=
(
2𝛼 − 𝛽2

)
Δ𝐻 (𝐸) + 4

(
𝐻 ch𝛽𝐻

2 (𝐸)
)2

− 6𝐻2 ch𝛽𝐻
1 (𝐸) ch𝛽𝐻

3 (𝐸) ≥ 0.

By Theorem 1.1 and the framework in [BM14a, BBMT14, BMS16] (see [BMS16, Theorem 8.6,
Proposition 8.10]), we have

Theorem 1.2. There is a continuous family 𝜎𝑎,𝑏
𝛼,𝛽,𝐻 =

(
𝑍𝑎,𝑏

𝛼,𝛽,𝐻 (𝑋2,4),A𝛼,𝛽,𝐻 (𝑋2,4)
)

of stability
conditions on 𝑋2,4, parameterized by (𝛼, 𝛽, 𝑎, 𝑏) ∈ R>0 × R × R>0 × R satisfying

𝛼2 +
(
𝛽 − �𝛽� − 1

2

)2
>

1
4

and 𝑎 >
𝛼2

6
+ 1

2
|𝑏 |𝛼.

The detailed notation of the stability condition in the above theorem will be explained in Section 2.
The proof of Theorem 1.1 is based on a Bogomolov–Gieseker type inequality on 𝑋2,4, the smooth

projective Calabi–Yau threefold of complete intersection of quadratic and quartic hypersurfaces.

Proposition 1.3 (Proposition 5.2). Suppose F is a slope semistable sheaf on 𝑋2,4 with ch0 (𝐹) ≠ 0, then

𝐻 ch2(𝐹)
𝐻3 ch0(𝐹)

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
𝐻 2 ch1 (𝐹 )
𝐻 3 ch0 (𝐹 )

)2
− 𝐻 2 ch1 (𝐹 )

𝐻 3 ch0 (𝐹 ) if 𝐻 2 ch1 (𝐹 )
𝐻 3 ch0 (𝐹 ) ∈ [0, 4

3 −
√

13
3 ]

5
8

(
𝐻 2 ch1 (𝐹 )
𝐻 3 ch0 (𝐹 )

)2
− 1

8 if 𝐻 2 ch1 (𝐹 )
𝐻 3 ch0 (𝐹 ) ∈ ( 4

3 −
√

13
3 , 1

2 ]
5
8

(
𝐻 2 ch1 (𝐹 )
𝐻 3 ch0 (𝐹 )

)2
− 1

4
𝐻 2 ch1 (𝐹 )
𝐻 3 ch0 (𝐹 ) if 𝐻 2 ch1 (𝐹 )

𝐻 3 ch0 (𝐹 ) ∈ ( 1
2 ,

√
13
3 − 1

3 )(
𝐻 2 ch1 (𝐹 )
𝐻 3 ch0 (𝐹 )

)2
− 1

2 if 𝐻 2 ch1 (𝐹 )
𝐻 3 ch0 (𝐹 ) ∈ [

√
13
3 − 1

3 , 1)

(1.1)

and for 𝐻 2 ch1 (𝐹 )
𝐻 3 ch0 (𝐹 ) ∈ [𝑛, 𝑛 + 1) for 𝑛 ∈ Z, we take 𝐹 (−𝑛𝐻) with the property 𝐻 2 ch1 (𝐹 (−𝑛𝐻 ))

𝐻 3 ch0 (𝐹 (−𝑛𝐻 )) ∈ [0, 1).

Recall that the classical Bogomolov inequality tells us that, for a slope semistable sheaf F on 𝑋2,4,

we have 𝐻 ch2 (𝐹 )
𝐻 3 rk(𝐹 ) ≤ 1

2

(
𝐻 2 ch1 (𝐹 )
𝐻 3 rk(𝐹 )

)2
. From this we note that the above inequality is strictly stronger than

the classical Bogomolov inequality unless 𝐻 2 ch1 (𝐹 )
𝐻 3 rk(𝐹 ) takes integer values.
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On the other hand, as we prove the Bogomolov–Gieseker inequality for 𝑋2,4, by applying the
framework of [FT20, FT21, FT22, Fey22b], we get explicit descriptions and properties of many enu-
merative invariants. In particular, let v be a numerical K-theory class of rank > 0 on 𝑋2,4. Let 𝐽 (𝑣)
denote the Joyce–Song’s generalized Donaldson–Thomas invariant counting the number of Gieseker
semistable sheaves. Then by [FT22], we have

𝐽 (𝑣) = 𝐹 (𝐽 (𝛼1), 𝐽 (𝛼2), . . .),

where F is a universal polynomial in the invariants 𝐽 (𝛼𝑖) and the 𝛼𝑖’s are rank 1 characters. By [PP17],
MNOP conjecture holds for 𝑋2,4, and we can replace the 𝐽 (𝛼𝑖)’s by corresponding Gromov–Witten
invariants.

1.1. Strategy of proof

In this subsection, we explain how we prove Theorem 1.1. The general logical flow will follow
[Li19a, Kos22], and thus we briefly review the proof of [Li19a]. Let 𝑋5 be a smooth quintic threefold
with polarization 𝐻 = 𝑂𝑋5 (1). Consider the following tower of smooth varieties:

𝐶2,2,5 ⊂ 𝑆2,5 ⊂ 𝑋5 and 𝐶2,2,5 ⊂ 𝑆2,2,

where 𝐶2,2,5, 𝑆2,5 and 𝑆2,2 are generic smooth complete intersections of (2, 2, 5), (2, 5) and (2, 2)
hypersurfaces, respectively. Then Theorem 1.1 for 𝑋5 is proved in following three steps:

1. For a stable vector bundle F on 𝐶2,2,5, by pushing forward along the embedding 𝐶2,2,5 ⊂ 𝑆2,2, one
regards F as a torsion sheaf on 𝑆2,2. Then by the wall-crossing technique on the Bridgeland stability
space on 𝑆2,2 as in [Fey20], one gets a Clifford type inequality of F.

2. Using Feyzbakhsh’s restriction theorem in [Fey22a], one recovers a Bogomolov–Gieseker type
inequality on 𝑆2,5. Using Feyzbakhsh’s restriction theorem again, a Bogomolov–Gieseker type
inequality on 𝑋5 is obtained.

3. By applying the Bogomolov–Gieseker type inequality on 𝑋5 in step (2), one proves that 𝑄0,0 (𝐸) ≥ 0
for a Brill–Noether stable object E. Then by [BMS16, Theorem 5.4], one gets Theorem 1.1.

The main difference of this paper compared to [Li19a, Kos22] is step (1), where we do not embed
the curve 𝑋2,2,2,4 into a del Pezzo surface but a K3 surface of Picard rank 1. Unlike the proof of
[Li19a, Kos22], we do not have Hom vanishings of Brill–Noether semistable objects as in their cases
of del Pezzo surfaces. Although a bound for global sections hom(𝑂𝑆 , 𝐸) is already given in [Fey20],
this bound is not strong enough to produce a Clifford type inequality to prove Theorem 5.5. Instead,
we bound hom(𝑂𝑆 , 𝐸) directly if E is Brill–Noether semistable of negative slope or ext1(𝑂𝑆 , 𝐸) if E is
Brill–Noether semistable of positive slope and then use hom(𝑂𝑆 , 𝐸) = 𝜒(𝑂𝑆 , 𝐸) + ext1(𝑂𝑆 , 𝐸) to get
the bound. The main technique we use is the semistability of the spherical twist of E as in Proposition 4.3.
Next, we use the convex polygon trick in [FL21] to get the Clifford type inequality, which is similar to
[Li19a, Section 4].

1.2. Plan of paper

The plan of this paper is the following. In Section 2, we recall basic notations, constructions and
properties of stability conditions. In Section 3, with a similar method to [Li19a], we prove Theorem 1.1
by assuming that the results in Section 5, especially Theorem 5.5, hold. This corresponds to step (3) in
Section 1.1. In Section 4, we deduce a Clifford type inequality for the curve 𝐶 := 𝑋2,2,2,4 for a slope
semistable vector bundle E. The method follows the last part in Section 1.1. In Section 5, we deduce
Theorem 5.5 by using the Clifford type inequality in Section 4. The proof is similar to [Li19a]. This
corresponds to step (2).
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2. Introduction to Bridgeland stability

2.1. Notations of slope stability

In this section, we review notations of slope stability conditions. Let X be a smooth projective variety.
The facts concerning slope stability can all be found in [HL10].

Definition 2.1 (Slope stability). Let F be a coherent sheaf on X, and let H be an ample divisor. The
slope of F with respect to H is

𝜇𝐻 (𝐹) =
{

𝐻𝑛−1 ch1 (𝐹 )
𝐻𝑛 ch0 (𝐹 ) if ch0(𝐹) ≠ 0
+∞ if ch0(𝐹) = 0.

A coherent sheaf F is said to be slope (semi)stable if for any nontrivial coherent subsheaf 𝐸 ⊂ 𝐹,

𝜇𝐻 (𝐸) < (≤)𝜇𝐻 (𝐹/𝐸).

Proposition 2.2 (Harder–Narasimhan filtration). For every coherent sheaf F, there is a filtration, called
the Harder–Narasimhan filtration,

0 = 𝐹0 ⊂ 𝐹1 ⊂ . . . ⊂ 𝐹𝑛 = 𝐹,

where 𝐹𝑖/𝐹𝑖−1 is slope semistable and

𝜇𝐻 (𝐹1/𝐹0) > 𝜇𝐻 (𝐹2/𝐹1) > . . . > 𝜇𝐻 (𝐹𝑛/𝐹𝑛−1).

We denote 𝜇+(𝐹) (respectively 𝜇−(𝐹)) to be the maximum (respectively minimum) slope of the HN
factors of F under the slope stability function.

2.2. Weak stability condition and Bridgeland stability condition

Let 𝐷𝑏 (𝑋) be the bounded derived category of coherent sheaves on X. From now on, we consider that
X is of dimension 2 or 3.

Definition 2.3 (Heart of a bounded t-structure). A full additive subcategory A ⊂ 𝐷𝑏 (𝑋) is called the
heart of a bounded t-structure if

1. Hom(A[𝑖],A[ 𝑗]) = 0 if 𝑖 > 𝑗 .
2. For every 𝐸 ⊂ 𝐷𝑏 (𝑋), there is a chain of morphisms

0 = 𝐸0
𝜙0−−→ 𝐸1

𝜙1−−→ 𝐸2
𝜙2−−→ . . .

𝜙𝑛−1−−−−→ 𝐸𝑛 = 𝐸

such that Cone(𝜙𝑖) ∈ A[𝑘𝑖] and 𝑘0 > 𝑘1 > . . . > 𝑘𝑛−1.

One can actually show that A is an abelian category.

Definition 2.4 (Weak stability function). Let A be an abelian category. A group homomorphism
𝑍 : 𝐾0(A) → C is called a weak stability function on A if, for 𝐸 ∈ A, we have �(𝑍 ([𝐸])) ≥ 0,
with �(𝑍 ([𝐸])) = 0 =⇒ 
(𝑍 ([𝐸])) ≤ 0. The function Z is called a stability function if, moreover,
for all 0 ≠ 𝐸 ∈ A, �(𝑍 ([𝐸])) = 0 =⇒ 
(𝑍 ([𝐸])) < 0.

The original definition of Bridgeland stability is given by [Bri07]. By [Bri07, Proposition 5.3][MS17,
Lemma 5.11], a pair 𝜎 = (A, 𝑍), where A is the heart of a bounded t-structure and the function
𝑍 : 𝐾0(A) → C is a group homomorphism, is a Bridgeland stability condition if it satisfies the
following properties:
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(1) The group homomorphism Z is a stability function. We define the slope of a nonzero object E in A
to be

𝜈(𝐸) :=

{
−
(𝑍 ( [𝐸 ]))

�(𝑍 ( [𝐸 ])) if �(𝑍 ([𝐸])) ≠ 0
+∞ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

An object E is called 𝜎-(semi)stable if, for any nonzero proper subobject 𝐹 ⊂ 𝐸 , we have
𝜈(𝐹) < (≤)𝜈(𝐸/𝐹).

(2) (HN filtrations) For any nonzero object 𝐸 ∈ A, we have a filtration of E, called the Harder–
Narasimhan filtration:

0 = 𝐸0 ⊂ 𝐸1 ⊂ . . . ⊂ 𝐸𝑚 = 𝐸,

where 𝜈(𝐸1/𝐸0) > 𝜈(𝐸2/𝐸1) > . . . > 𝜈(𝐸𝑚/𝐸𝑚−1) and 𝐸𝑖/𝐸𝑖−1 are semistable.
(3) (Support property) There is a constant 𝐶 > 0 such that, for any semistable object E, we have

| |𝐸 | | ≤ 𝐶 |𝑍 ([𝐸]) |, where | | · | | is a fixed norm on 𝐾0(𝑋) ⊗ R.

The pair 𝜎 is called a weak stability condition if in (1), we only require Z to be a weak stability function.
Let 𝑆𝑡𝑎𝑏(𝑋) denote the set of all Bridgeland stability conditions on X, then Bridgeland showed that
𝑆𝑡𝑎𝑏(𝑋) is actually a complex manifold [Bri07, Proposition 8.1]. Now, we fix a class 𝑣 ∈ 𝐾𝑛𝑢𝑚(𝑋), and
consider the class of 𝜎-semistable objects of class v when 𝜎 varies. Then we have a wall and chamber
structure on 𝑆𝑡𝑎𝑏(𝑋) based on the following proposition.

Proposition 2.5 [Bri08, Section 9][Tod08, Proposition 2.8][BM11, Proposition 3.3][BM14b,
Proposition 2.3]. There exists a locally finite set 𝒲 of real codimension 1 submanifolds with boundary
in 𝑆𝑡𝑎𝑏(𝑋) only depending on v, called walls, with the following properties:

1. When 𝜎 varies in a chamber (connected components of 𝑆𝑡𝑎𝑏(𝑋)\(∪𝑊 ∈𝒲𝑊)), then the sets of
𝜎-semistable objects and 𝜎-stable objects do not change.

2. When 𝜎 is on a single wall 𝑊 ∈ 𝒲, then there exists an object F such that F is unstable on the
adjacent chamber of one side of the wall and semistable on the adjacent chamber on the other side
of the wall.

An important technique to construct weak or Bridgeland stability conditions is by tilting, which we
recall now. Most of the materials here can be found in [BMS16, MS17, Li19a].

We define the torsion pair (T𝛽,𝐻 ,F𝛽,𝐻 ) as

T𝛽,𝐻 =
{
𝐸 ∈ Coh(𝑋)

��𝜇−
𝐻 (𝐸) > 𝛽

}
and F𝛽,𝐻 =

{
𝐸 ∈ Coh(𝑋)

��𝜇+
𝐻 (𝐸) ≤ 𝛽

}
.

Definition 2.6. We let Coh𝛽,𝐻 (𝑋) ⊂ 𝐷𝑏 (𝑋) be the extension-closure

〈T𝛽,𝐻 ,F𝛽,𝐻 [1]〉.

Then, by tilting, Coh𝛽,𝐻 (𝑋) is the heart of a bounded t-structure, in particular an abelian category.
Let 𝐵 ∈ 𝑁𝑆(𝑋)R. We define the twisted characters as

ch𝐵
0 (𝐸) = ch0(𝐸); ch𝐵

1 (𝐸) = ch1(𝐸) − 𝐵 ch0 (𝐸); ch𝐵
2 (𝐸) = ch2(𝐸) − 𝐵 ch1(𝐸) +

𝐵2 ch0(𝐸)
2

ch𝐵
3 (𝐸) = ch3(𝐸) − 𝐵 ch2 (𝐸) +

𝐵2 ch1(𝐸)
2

− 𝐵3 ch0(𝐸)
6

.
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Definition 2.7 (Tilt slope and stability). Let 𝐸 ∈ Coh𝛽,𝐻 (𝑋), we define

𝜈𝛼,𝛽,𝐻 (𝐸) =
⎧⎪⎪⎨⎪⎪⎩

𝐻𝑛−2 ch2 (𝐸)−𝛼𝐻𝑛 ch0 (𝐸)
𝐻𝑛−1 ch𝛽𝐻1 (𝐸)

if 𝐻𝑛−1 ch𝛽,𝐻
1 (𝐸) ≠ 0

+∞ if 𝐻𝑛−1 ch𝛽𝐻
1 (𝐸) = 0.

An object 𝐸 ∈ Coh𝛽,𝐻 (𝑋) is called 𝜈𝛼,𝛽,𝐻 -tilt (semi)stable if for any nontrivial subobject 𝐹 ⊂ 𝐸 inside
Coh𝛽,𝐻 (𝑋), we have

𝜈𝛼,𝛽,𝐻 (𝐹) < (≤)𝜈𝛼,𝛽,𝐻 (𝐸/𝐹).

An object 𝐸 ∈ 𝐷𝑏 (𝑋) is called 𝜈𝛼,𝛽,𝐻 -tilt (semi)stable if 𝐸 [𝑛] ∈ Coh𝛽,𝐻 (𝑋) is 𝜈𝛼,𝛽,𝐻 -tilt (semi)stable
for some integer n.

Same as slope stability, 𝜈𝛼,𝛽,𝐻 -stability also admits the Harder–Narasimhan filtration property when
𝛼 > 𝛽2

2 . For an object 𝐸 ∈ Coh𝛽,𝐻 (𝑋), we denote 𝜈+𝛼,𝛽,𝐻 (𝐸) (respectively 𝜈−𝛼,𝛽,𝐻 (𝐸)) as the maximum
(respectively minimum) slopes of 𝜈𝛼,𝛽,𝐻 -HN filtration factors. We also write the central charge

𝑍𝛼,𝛽,𝐻 (𝐸) := −
(
𝐻𝑛−2 ch2 (𝐸) − 𝛼𝐻𝑛 ch0(𝐸)

)
+ 𝑖𝐻𝑛−1 ch𝛽𝐻

1 (𝐸).

Definition 2.8. Let 𝐸 ∈ Coh𝛽,𝐻 (𝑋). We define the H-discriminant of E to be

Δ𝐻 (𝐸) :=
(
𝐻𝑛−1 ch1(𝐸)

)2
− 2𝐻𝑛 ch0(𝐸) · 𝐻𝑛−2 ch2 (𝐸).

Theorem 2.9 [Bog78], [BMT14, Theorem 7.3.1], [PT19, Proposition 2.21]. Let E be a 𝜈𝛼,𝛽,𝐻 -
semistable object for 𝛼 > 1

2 𝛽2. Then Δ𝐻 (𝐸) ≥ 0.

2.3. Bridgeland stability on K3 surfaces

In this section, we recall the Bridgeland stability condition on K3 surfaces. Most of this can be found in
[Bri08]. A review of it can be found in [FL21].

Let (𝑆, 𝐻) be a polarized K3 surface with a Picard group generated by H. We use the same heart of
bounded t-structure Coh𝛽,𝐻 (𝑆) as above and define the central charge as

𝑍𝛼,𝛽 (𝐸) = − ch2 (𝐸) + 𝛼 rk(𝐸) + 𝑖

(
𝐻 ch1(𝐸)

𝐻2 − 𝛽 rk(𝐸)
)
.

Note that this is slightly different from the central charge given above, but they give the same family of
weak stability conditions. We will only use this family of stability conditions on K3 surfaces.

Now, we define a periodic function of period 1,

𝛾(𝑥) =
{

1 − 𝑥2 if 𝑥 ∈ [− 1
2 ,

1
2 ]\{0}

0 if 𝑥 = 0.

Let Γ(𝑥) = 𝐻 2

2 𝑥2 − 𝛾(𝑥) and Γ+ to be the region above Γ. Then Bridgeland showed that (𝛼, 𝛽) with
𝛼 > Γ(𝛽) defines a stability condition 𝜎𝛼,𝛽 = (Coh𝛽,𝐻 (𝑋), 𝑍𝛼,𝛽) on K3 surfaces [Bri08, FL21] by
using Theorem 2.9. The slope is defined to be −
(𝑍𝛼,𝛽 )

�(𝑍𝛼,𝛽 ) . If E is an object with rk(𝐸) ≠ 0, we define

𝑝𝑟 (𝐸) := 𝑝𝑟 (ch(𝐸)) =
(
𝐻 ch1 (𝐸)
𝐻2 rk(𝐸)

,
ch2(𝐸)
rk(𝐸)

)
.

By abuse of notation, we also write Γ for the graph on the plane. Then we have a description of walls.
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Proposition 2.10 [Bri08, Proposition 9.3]. Let 𝐹 ∈ 𝐷𝑏 (𝑋). Then there exists a collection of line
segments (walls) W 𝑖

𝐹 in Γ+ with the following property:

(1) The end points are either on Γ or on the vertical line segment (𝑛, 𝐻 2

2 𝑛2) to
(
𝑛, 𝐻 2

2 𝑛2 − 1
)
;

(2) The extension of the wall passes through 𝑝𝑟 (𝐹) if rk(𝐹) ≠ 0, otherwise it has slope 𝐻 2 ch2 (𝐹 )
𝐻 ch1 (𝐹 ) ;

(3) The stability of F does not change between two consecutive walls;
(4) F is strictly 𝜎𝛼,𝛽-semistable (in other words semistable but not stable) if (𝛼, 𝛽) is contained in one

of the walls;
(5) If F is semistable on one side of the wall, then it is unstable on the other side of the wall.

The above proposition also holds if we consider a numerical class v. Then the proposition holds for
potential walls, which means the walls that can happen for an object F with 𝑣(𝐹) = 𝑣. The following
proposition is important for us to give an upper bound for the global sections of Brill–Noether semistable
objects.
Proposition 2.11 [BM14a, Theorem 2.15(a)]. Let 𝑆𝑡𝑎𝑏†(𝑋) denote the connected components of
𝑆𝑡𝑎𝑏(𝑋) containing geometric stability conditions. In particular, the stability conditions 𝜎𝛼,𝛽 given
above are in 𝑆𝑡𝑎𝑏†(𝑋). Let 𝑣 = 𝑚𝑣0 ∈ 𝐻∗

𝑎𝑙𝑔 (𝑋;Z) be a Mukai vector with 𝑣0 primitive and 𝑚 > 0, and
let 𝜎 ∈ 𝑆𝑡𝑎𝑏†(𝑋) be a generic stability condition with respect to v. (This means that 𝜎 is not on the
wall of v.) Then the coarse moduli space 𝑀𝜎 (𝑣) is nonempty if and only if 𝑣2

0 ≥ −2.

Now, we briefly explain how to relate 𝑣2
0 ≥ −2 with the curve Γ. Let 𝑣0 = (rk, 𝑐𝐻, 𝑠). If 𝑐𝐻 = 0, then

−2 rk ch2 −2rk2 ≥ −2. This implies ch2
rk ≤ 1

rk2 − 1 ≤ 0. Now, suppose 𝑐 ≠ 0. Suppose 𝐻 ch1
𝐻 2 rk ∈ [− 1

2 ,
1
2 ],

then we have

−2 rk ch2 +(ch1)2 − 2rk2 ≥ −2 ≥ −2𝑐2.

This implies

ch2
rk

≤ 𝐻2

2

(
𝐻 ch1

𝐻2 rk

)2
− 1 +

(
𝐻 ch1

𝐻2 rk

)2
.

If 𝐻 ch1
𝐻 2 rk ∈ [𝑛 − 1

2 , 𝑛 + 1
2 ]\{𝑛}, we have

−2 rk ch2 +(ch1)2 − 2rk2 ≥ −2 ≥ −2(𝑐 − 𝑛 rk)2.

And thus, we get the curve Γ. So we see that, if an object is 𝜎-semistable for some generic 𝜎, we
have ch2

rk ≤ Γ
(

𝐻 ch1
𝐻 2 rk

)
. For a more detailed explanation of Γ, we would like to ask readers to consult

[LR22, FLZ22] on Le Potier functions.

2.4. Stability conditions on 𝑋2,4

The goal of this paper is to show that the following conjectural Bogomolov–Gieseker inequality holds
when X is the complete intersection of quadratic and quartic hypersurfaces in P5.
Conjecture 2.12 [BMT14, Conjecture 2.7], [BMS16, Conjecture 4.1]. Let X be a smooth projective
threefold of complete intersection of quadratic and quartic hypersurfaces in P5, and let H be an ample
class. Assume E is 𝜈𝛼,𝛽,𝐻 -tilt semistable for some 𝛼 > 1

2 𝛽2. Then

𝑄𝛼,𝛽 (𝐸) :=
(
2𝛼 − 𝛽2

)
Δ𝐻 (𝐸) + 4

(
𝐻 ch𝛽𝐻

2 (𝐸)
)2

− 6𝐻2 ch𝛽𝐻
1 (𝐸) ch𝛽𝐻

3 (𝐸) ≥ 0.

Remark 2.13. It was expected that Conjecture 2.12 is correct for all projective threefolds. However, this
is not the case. A counterexample is given in [Sch17]: The above inequality is violated in blowing up a
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point on P3. A weaker Bogomolov–Gieseker inequality is proposed and proved for all Fano threefolds;
see [BMSZ17].

In this paper, we prove the above conjecture with small restrictions on 𝛼, 𝛽.

Theorem 2.14. Let X be a smooth projective threefold of complete intersection of quadratic and
quartic hypersurfaces in P5, and let 𝐻 = 𝑂𝑋 (1). Assume that E is 𝜈𝛼,𝛽,𝐻 -tilt semistable for some
𝛼 > 1

2 𝛽2 + 1
2 (𝛽 − �𝛽�)(�𝛽� + 1 − 𝛽). Then 𝑄𝛼,𝛽 (𝐸) ≥ 0.

Under the framework of [BMT14, BBMT14, BMS16], we can construct a family of Bridgeland
stability conditions on 𝑋2,4. The heart A of the stability condition is constructed by ‘double-tilting’
Coh(𝑋2,4). We define the double-tilting heart A𝛼,𝛽,𝐻 to be the extension 〈T𝛼,𝛽,𝐻 ,F𝛼,𝛽,𝐻 [1]〉, where

T𝛼,𝛽,𝐻 =
{
𝐸 ∈ Coh𝛽,𝐻 (𝑋)

���𝜈−𝛼,𝛽,𝐻 (𝐸) > 0
}

and F𝛼,𝛽,𝐻 =
{
𝐸 ∈ Coh𝛽,𝐻 (𝑋)

���𝜈+𝛼,𝛽,𝐻 (𝐸) ≤ 0
}
.

We define the central charge Z on A𝛼,𝛽,𝐻 to be

𝑍𝑎,𝑏
𝛼,𝛽,𝐻 (𝐸) :=

(
− ch𝛽𝐻

3 (𝐸) + 𝑏𝐻 ch𝛽𝐻
2 (𝐸) + 𝑎𝐻2 ch𝛽𝐻

1 (𝐸)
)
+ 𝑖

(
𝐻 ch𝛽𝐻

2 (𝐸) − 𝛼2

2
𝐻3 rk(𝐸)

)
.

By Theorem 1.1 and the framework in [BMT14, BBMT14, BMS16] (see [BMS16, Theorem 8.6,
Proposition 8.10]), we have:

Theorem 2.15. There is a continuous family 𝜎𝑎,𝑏
𝛼,𝛽,𝐻 =

(
𝑍𝑎,𝑏

𝛼,𝛽,𝐻 (𝑋2,4),A𝛼,𝛽,𝐻 (𝑋2,4)
)

of stability
conditions on 𝑋2,4, parameterized by (𝛼, 𝛽, 𝑎, 𝑏) ∈ R>0 × R × R>0 × R satisfying

𝛼2 +
(
𝛽 − �𝛽� − 1

2

)2
>

1
4

and 𝑎 >
𝛼2

6
+ 1

2
|𝑏 |𝛼.

2.5. Useful lemmas

Now, let

𝑣𝐻 (𝐸) =
(
𝐻𝑛 ch0 (𝐸), 𝐻𝑛−1 ch1 (𝐸), 𝐻𝑛−2 ch2 (𝐸)

)
and 𝑝𝐻 (𝐸) =

(
𝐻𝑛−2 ch2 (𝐸)
𝐻𝑛 ch0 (𝐸)

,
𝐻𝑛−1 ch1(𝐸)
𝐻𝑛 ch0(𝐸)

)
.

Then we have the following lemma on stability conditions.

Lemma 2.16. Let E be a 𝜈𝛼0 ,𝛽0 ,𝐻 -tilt stable object in Coh𝛽0 ,𝐻 (𝑋) for some 𝛼0 > 1
2 𝛽0. Then

1. [BMT14, Corollary 3.3.3][BMS16, Appendix B] There is an open neighbourhood U of (𝛼0, 𝛽0)
such that E is 𝜈𝛼,𝛽,𝐻 -tilt stable for all (𝛼, 𝛽) ∈ 𝑈 with 𝛼 > 1

2 𝛽2.
2. [Mac14b, Theorem 3.1][BMS16, Lemma 4.3][Li19a, Lemma 2.9](Bertram’s nested wall theorem)

The object E is 𝜈𝛼,𝛽,𝐻 -tilt stable for any (𝛼, 𝛽) with 𝛼 > 1
2 𝛽2 on the line through (𝛼0, 𝛽0) and

𝑝𝐻 (𝐸). More precisely, the object E is 𝜈𝛼,𝛽,𝐻 -tilt stable for (𝛼, 𝛽) such that

det���
1 𝛼 𝛽
1 𝛼0 𝛽0

𝐻𝑛 ch0(𝐸) 𝐻𝑛−2 ch2 (𝐸) 𝐻𝑛−1 ch1 (𝐸)

��� = 0.

The statement also holds for the semistable case. Moreover, when X is a threefold,

𝐻𝑛−1 ch𝛽𝐻
1 (𝐸)𝑄𝛼0 ,𝛽0 (𝐸) = 𝐻𝑛−1 ch𝛽0𝐻

1 (𝐸)𝑄𝛼,𝛽 (𝐸).
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2’. Let F be an object in Coh𝛽,𝐻 (𝑋) such that 𝑝𝐻 (𝐹) is on the line through the points (𝛼0, 𝛽0) and
𝑝𝐻 (𝐸), then 𝜈𝛼0 ,𝛽0 ,𝐻 (𝐸) = 𝜈𝛼0 ,𝛽0 ,𝐻 (𝐹). More precisely, the requirements on E and F are as
follows: Both 𝑣𝐻 (𝐸) and 𝑣𝐻 (𝐹) are not zero and

det���
1 𝛼0 𝛽0

𝐻𝑛 ch0(𝐸) 𝐻𝑛−2 ch2 (𝐸) 𝐻𝑛−1 ch1 (𝐸)
𝐻𝑛 ch0(𝐹) 𝐻𝑛−2 ch2(𝐹) 𝐻𝑛−1 ch1 (𝐹)

��� = 0.

3. [BMT14, Corollary 3.3.3][BMS16, Appendix B] (destabilising walls) The set{
(𝛼, 𝛽)

����𝛼 >
1
2
𝛽2 and 𝐸 is strictly 𝜈𝛼,𝛽,𝐻 -semistable

}
is either empty or a union of lines and rays.

The following lemma is essential to the proof in the following sections.

Lemma 2.17 [BMS16, Corollary 3.10]. Let E be a strictly 𝜈𝛼,𝛽,𝐻 -tilt semistable object with finite slope.
Then, for any of the Jordan–Hölder factors 𝐸𝑖 of E, we have

Δ𝐻 (𝐸𝑖) ≤ Δ𝐻 (𝐸).

The equality only holds when 𝜈𝐻 (𝐸𝑖) = 𝜈𝐻 (𝐸) and Δ𝐻 (𝐸) = Δ𝐻 (𝐸𝑖) = 0.

One more (weak) stability condition we use is the Brill–Noether stability condition. A detailed
explanation can be found in [Bay18].

Definition 2.18. An object E is called Brill–Noether stable if there is an open subset

𝑈𝛿 = {(𝛼, 𝛽) |𝛼2 + 𝛽2 < 𝛿 and 𝛼 >
1
2
𝛽2},

such that E is 𝜈𝛼,𝛽,𝐻 -tilt stable for all (𝛼, 𝛽) ∈ 𝑈𝛿 .
We call an object E Brill–Noether semistable if there exists 𝛿 > 0 such that E is 𝜈𝛼,0,𝐻 -semistable

for every 0 < 𝛼 < 𝛿.
The Brill–Noether slope is defined by 𝜈𝐵𝑁 (𝐸) = 𝐻𝑛−2 ch2 (𝐸)

𝐻𝑛−1 ch1 (𝐸) if 𝐻𝑛−1 ch1(𝐸) ≠ 0, and +∞ otherwise.

By Lemma 2.16, an object E with 𝐻𝑛−2 ch2(𝐸) ≠ 0 is Brill–Noether stable if and only if it is
𝜈𝛼,𝛽,𝐻 -tilt stable for some (𝛼, 𝛽) proportional to 𝑝𝐻 (𝐸), and a similar result holds for the Brill–Noether
semistable case.

The following well-known lemma will be used, and the proof can be found in [Li19a, lemma 2.12].

Lemma 2.19 [Bay18, Lemma 6.5]. Assume that 𝐸 ∈ Coh0,𝐻 (𝑋) is Brill–Noether stable. If 𝜈𝐵𝑁 (𝐸) > 0,
let 𝑊 ⊂ Hom(𝑂𝑋 , 𝐸) be a vector subspace and let

�̃� = Cone(𝑊 ⊗ 𝑂𝑋
𝑒𝑣−−→ 𝐸),

where the map is the evaluation map. Then the spherical twist �̃� is also Brill–Noether semistable and
�̃� ∈ Coh0,𝐻 (𝑋).

If 𝜈𝐵𝑁 (𝐸) < 0, let 𝑊 ′ ⊂ Hom(𝐸 [−1], 𝑂𝑋 ) be a vector subspace and let

�̃� ′ = Cone(𝐸 [−1] 𝑐𝑎𝑛−−−→ 𝑊 ′ ⊗ 𝑂𝑋 ),

where the map is the canonical map. Then the spherical twist �̃� ′ is also Brill–Noether semistable and
�̃� ′ ∈ Coh0,𝐻 (𝑋).
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3. Proof of the main result

Let 𝑋 := 𝑋2,4 ⊂ P5 be a smooth complete intersection of quadratic and quartic hypersurfaces. Thus, it
is a Calabi–Yau threefold by the adjunction formula. By Hirzebruch–Riemann–Roch, we have

𝜒(𝐸) = 7
12

𝐻2 ch1(𝐸) + ch3(𝐸).

By the same argument as that in [Li19a, Theorem 3.2], we get the following theorem and proposition.

Theorem 3.1 [Li19a, Theorem 3.2], [BMS16, Theorem 5.4]. Theorem 1.1 holds if

𝑄0,0 (𝐸) := 4(𝐻 ch2(𝐸))2 − 6
(
𝐻2 ch1(𝐸)

)
(ch3(𝐸)) ≥ 0

for any Brill–Noether stable object 𝐸 ∈ Coh0,𝐻 (𝑋) with 𝜈𝐵𝑁 (𝐸) ∈ [− 1
2 ,

1
2 ].

Proposition 3.2. The inequality 𝑄0,0 (𝐸) ≥ 0 holds for any Brill–Noether stable object 𝐸 ∈ Coh0,𝐻 (𝑋)
with 𝜈𝐵𝑁 (𝐸) ∈ [− 1

2 ,
1
2 ].

The proof of this proposition depends on the positivity of the slope 𝜈𝐵𝑁 (𝐸). First, we consider
𝜈𝐵𝑁 (𝐸) ∈ (0, 1

2 ].

Lemma 3.3. Let 𝐸 ∈ Coh0,𝐻 (𝑋) be a Brill–Noether stable object with 𝜈𝐵𝑁 (𝐸) ∈ (0, 1
2 ]. Then we have

𝑄0,0 (𝐸) ≥ 4(𝐻 ch2(𝐸))2 − 6(𝐻2 ch1(𝐸)) rk(𝐸) + 7
4
(𝐻2 ch1(𝐸))2 − 4(𝐻 ch2 (𝐸)) (𝐻2 ch1(𝐸)).

Proof. Let 𝐸 ∈ Coh0,𝐻 (𝑋) be a Brill–Noether stable object with 𝜈𝐵𝑁 (𝐸) ∈ (0, 1
2 ]. There exists (𝛼, 𝛽)

such that 𝛼 > 1
2 𝛽2, 0 < 𝛼

𝛽 < 𝜈𝐵𝑁 (𝐸) and E is 𝜈𝛼,𝛽,𝐻 -tilt stable. Note that

𝜈𝛼,𝛽,𝐻 (𝑂𝑋 [1]) = 𝛼

𝛽
< 𝜈𝛼,𝛽,𝐻 (𝐸).

By tilt stability and Serre duality, we have

Hom(𝑂𝑋 , 𝐸 [2 + 𝑖]) = (Hom(𝐸,𝑂𝑋 [1 − 𝑖]))∗ = 0 (3.1)

for 𝑖 ≥ 0. Consider �̃� := Cone(𝑂𝑋 ⊗ Hom(𝑂𝑋 , 𝐸) → 𝐸). By Lemma 2.19, �̃� is also Brill–Noether
semistable. By Theorem 5.5, the slope 𝐻 2 ch1 (�̃�)

𝐻 3 rk(�̃�) cannot be in (− 1
5 , 0]. Then either

𝐻2 ch1(𝐸)
𝐻3(rk(𝐸) − hom(𝑂𝑋 , 𝐸))

=
𝐻2 ch1 (�̃�)
𝐻3rk(�̃�)

∉ [−1
2
,−1

5
],

which implies

hom(𝑂𝑋 , 𝐸) < rk(𝐸) + 1
4
𝐻2 ch1(𝐸),

or

𝐻2 ch1 (�̃�)
𝐻3rk(�̃�)

∈ [−1
2
,−1

5
],

which implies

hom(𝑂𝑋 , 𝐸) ≤ rk(𝐸) + 7
24

𝐻2 ch1(𝐸) +
2
3
𝐻 ch2 (𝐸).
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As we require 𝐸 ∈ Coh0,𝐻 (𝐸) and 𝜈𝐵𝑁 (𝐸) ∈ (0, 1
2 ], we know that 𝐻 ch2(𝐸) > 0 and 𝐻2 ch1(𝐸) > 0,

and thus in both cases we always have

hom(𝑂𝑋 , 𝐸) ≤ rk(𝐸) + 7
24

𝐻2 ch1(𝐸) +
2
3
𝐻 ch2(𝐸).

By slope, we have Hom(𝑂𝑋 [1], 𝐸 [ 𝑗]) = 0 for 𝑗 ≤ −1, and combining this with equation (3.1), we have

𝜒(𝑂𝑋 , 𝐸) ≤ hom(𝑂𝑋 , 𝐸).

By Hirzebruch–Riemann–Roch, we have

7
12

𝐻2 ch1(𝐸) + ch3 (𝐸) ≤ rk(𝐸) + 7
24

𝐻2 ch1(𝐸) +
2
3
𝐻 ch2 (𝐸).

By multiplying with 6𝐻2 ch1(𝐸) and rearranging terms, we have

𝑄0,0 (𝐸) ≥ 4(𝐻 ch2 (𝐸))2 − 6(𝐻2 ch1(𝐸)) rk(𝐸) + 7
4
(𝐻2 ch1(𝐸))2 − 4(𝐻 ch2(𝐸)) (𝐻2 ch1 (𝐸)). �

Lemma 3.4. For a Brill–Noether stable object 𝐸 ∈ Coh0,𝐻 (𝑋) with 𝜈𝐵𝑁 (𝐸) ∈ (0, 1
2 ], we have

𝑄0,0 (𝐸) ≥ 0.

Proof. Let 𝐸 ∈ Coh0,𝐻 (𝑋) be a Brill–Noether stable object with 𝜈𝐵𝑁 (𝐸) ∈ (0, 1
2 ]. By Lemma 3.3, we

have the following inequality on 𝑄0,0:

𝑄0,0 (𝐸) ≥ 4(𝐻 ch2(𝐸))2 − 6(𝐻2 ch1 (𝐸)) rk(𝐸) + 7
4
(𝐻2 ch1(𝐸))2 − 4(𝐻 ch2(𝐸)) (𝐻2 ch1(𝐸))

= 4
(
(𝐻 ch2 (𝐸)) −

1
2
(𝐻2 ch1(𝐸))

)2
+ 3

4

(
𝐻2 ch1(𝐸)

)2
− 3

4
(𝐻2 ch1 (𝐸)) (𝐻3 rk(𝐸)). (3.2)

As we assume 𝜈𝐵𝑁 (𝐸) ∈ (0, 1
2 ], we have 𝐻 2 ch1 (𝐸)

𝐻 3 rk(𝐸) ∉ [0, 3
7 ] by Theorem 5.5.

Case 1. When 𝐻 2 ch1 (𝐸)
𝐻 3 rk(𝐸) ∉ [ 3

7 , 1], then we have 𝐻2 ch1 (𝐸) > 𝐻3 rk(𝐸) and thus by inequality (3.2),
we have 𝑄0,0 (𝐸) ≥ 0.

Case 2. When 𝐻 2 ch1 (𝐸)
𝐻 3 rk(𝐸) ∈ [ 4

5 ,
10
11 ], by Theorem 5.5, we have

− rk(𝐸) ≥ 11
64

𝐻 ch2(𝐸) −
51

256
𝐻2 ch1(𝐸).

Thus,

𝑄0,0 (𝐸) ≥ 4(𝐻 ch2(𝐸))2 − 95
32

(𝐻 ch2(𝐸)) (𝐻2 ch1(𝐸)) +
71

128
(𝐻2 ch1(𝐸))2 ≥ 0.

Case 3. When 𝐻 2 ch1 (𝐸)
𝐻 3 rk(𝐸) ∈ [ 1

2 ,
4
5 ], by Theorem 5.5, we have

−6 rk(𝐸) ≥ 3𝐻 ch2 (𝐸) −
27
16

𝐻2 ch1(𝐸)

and thus,

𝑄0,0 (𝐸) ≥ 4
(
(𝐻 ch2(𝐸) −

1
8
(𝐻2 ch1 (𝐸))

)2
≥ 0.

https://doi.org/10.1017/fms.2022.96 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.96


12 S. Liu

Case 4. When 𝐻 2 ch1 (𝐸)
𝐻 3 rk(𝐸) ∈ [ 3

7 ,
1
2 ], by Theorem 5.5, we have

−6 rk(𝐸) ≥ 4𝐻 ch2 (𝐸) −
7
4
𝐻2 ch1(𝐸),

and thus we have

𝑄0,0 (𝐸) ≥ 4(𝐻 ch2(𝐸))2 ≥ 0.

Case 5. When 𝐻 2 ch1 (𝐸)
𝐻 3 rk(𝐸) ∈ [ 10

11 , 1], we need a better bound of 𝑄0,0. There are two subcases:
(1) 𝐻 ch2 (𝐸)

𝐻 2 ch1 (𝐸) ≤ 79
220 . In this case, we have

𝑄0,0 (𝐸) ≥ 4(𝐻 ch2(𝐸))2 − 4(𝐻 ch2(𝐸)) (𝐻2 ch1(𝐸)) +
7
4
(𝐻2 ch1(𝐸))2 − 3

4
(𝐻2 ch1(𝐸)) (𝐻3 rk(𝐸))

≥ 2, 509
3, 025

(𝐻 ch1 (𝐸))2 − 3
4
(𝐻2 ch1 (𝐸)) (𝐻3 rk(𝐸))

≥
(

2, 509
3, 025

× 10
11

− 3
4

)
(𝐻2 ch1(𝐸)) (𝐻3 rk(𝐸)) > 0,

where the second inequality follows from considering 𝑓 (𝑥) = 4𝑥2 − 4𝑥 + 7
4 for 𝑥 ≤ 79

220 , and the third
inequality follows from 𝐻 2 ch1 (𝐸)

𝐻 3 rk(𝐸) ≥ 10
11 .

(2) 𝐻 ch2 (𝐸)
𝐻 2 ch1 (𝐸) ≥ 79

220 . In this case, we consider the line 𝑦 = 79
220𝑥 and the parabola 𝑦 = 5

8𝑥
2 − 1

8 . They

intersect at 𝑥 = 79−3
√

2,374
275 > − 1

4 . Then we know that in this region, we always have

𝐻 ch2 (�̃�)
𝐻3 rk(�̃�)

≤ − 9
32

𝐻2 ch1(�̃�)
𝐻3 rk(�̃�)

− 5
32

.

By a similar calculation as above, we have

hom(𝑂𝑋 , 𝐸) ≤ rk(𝐸) + 9
40

𝐻2 ch1(𝐸) +
4
5
𝐻 ch2 (𝐸),

ch3 (𝐸) ≤ rk(𝐸) − 43
120

𝐻2 ch1 (𝐸) +
4
5
𝐻 ch2 (𝐸),

and thus we have

𝑄0,0 ≥ 4(𝐻 ch2(𝐸))2 − 6(𝐻2 ch1 (𝐸)) (rk(𝐸)) +
43
20

(𝐻2 ch1(𝐸))2 − 24
5
(𝐻 ch2(𝐸)) (𝐻2 ch1 (𝐸))

=
4
5
( 3
2
(𝐻2 ch1 (𝐸))2 − (𝐻 ch2(𝐸)) (𝐻3 rk(𝐸)) − (𝐻2 ch1 (𝐸)) (𝐻3 rk(𝐸))) (3.3)

+ 9
20

(𝐻2 ch1 (𝐸)) (𝐻3 rk(𝐸) − 𝐻2 ch1(𝐸)) (3.4)

+ 1
5
(7𝐻2 ch1 (𝐸) − 10𝐻 ch2 (𝐸) − 2𝐻3 rk(𝐸)) (𝐻2 ch1(𝐸) − 2𝐻 ch2 (𝐸)). (3.5)

The first term (3.3) is nonnegative since by Theorem 5.5 we have

(𝐻2 ch1(𝐸))2 − (𝐻 ch2 (𝐸)) (𝐻3 rk(𝐸)) − 1
2
(𝐻3 rk(𝐸))2 ≥ 0
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and

3
2
(𝐻2 ch1(𝐸))2 − (𝐻 ch2 (𝐸)) (𝐻3 rk(𝐸)) − (𝐻2 ch1(𝐸)) (𝐻3 rk(𝐸))

− (𝐻2 ch1(𝐸))2 + (𝐻 ch2 (𝐸)) (𝐻3 rk(𝐸)) + 1
2
(𝐻3 rk(𝐸))2

=
1
2
(𝐻2 ch1(𝐸) − 𝐻3 rk(𝐸))2 ≥ 0.

The second term (3.4) is also nonnegative because 𝐻 2 ch1 (𝐸)
𝐻 3 rk(𝐸) ≤ 1. The third term (3.5) is also

nonnegative because by Theorem 5.5 we have 𝐻 ch2(𝐸) ≤ 21
11 (𝐻

2 ch1(𝐸)) − 31
22 (𝐻

3 rk(𝐸)), and thus
we have

7𝐻2 ch1(𝐸) − 10𝐻 ch2(𝐸) − 2𝐻3 rk(𝐸) ≥ 133
11

(𝐻3 rk(𝐸) − 𝐻2 ch1(𝐸)) ≥ 0.

Also, 𝐻2 ch1 (𝐸) − 2𝐻 ch2 (𝐸) ≥ 0 since we assumed 𝐻 ch2 (𝐸)
𝐻 2 ch1 (𝐸) ≤ 1

2 from the beginning.
Thus, when 𝜈𝐵𝑁 (𝐸) ∈ (0, 1

2 ], we have 𝑄0,0 (𝐸) ≥ 0. �

Next, we show the case 𝜈𝐵𝑁 (𝐸) ∈ [− 1
2 , 0). A direct proof like Lemma 3.4 is possible, but we follow

an enlightening method in [Li19a, Proposition 3.3] by considering the derived dual D(𝐸) := 𝐸∗ [1] to
reduce to Lemma 3.4. First we recall the following proposition.

Proposition 3.5 [BMT14, Proposition 5.1.3(b)]. The derived dualD(𝐸) fits into a distinguished triangle:

𝐸 → D(𝐸) → 𝑇0 [−1] → 𝐸 [1], (3.6)

where 𝐸 is a Brill–Noether stable object and 𝑇0 is a torsion sheaf of dimension 0.

With this proposition, we can prove the inequality for negative slope.

Lemma 3.6. For a Brill–Noether stable object 𝐸 ∈ Coh0,𝐻 (𝑋) with 𝜈𝐵𝑁 (𝐸) ∈ [− 1
2 , 0), we have

𝑄0,0 (𝐸) ≥ 0.

Proof. Let 𝐸 ∈ Coh0,𝐻 (𝑋) be a Brill–Noether stable object with 𝜈𝐵𝑁 (𝐸) ∈ [− 1
2 , 0). Then D(𝐸) fits

into the distinguished triangle

𝐸 → D(𝐸) → 𝑇0 [−1] → 𝐸 [1] (3.7)

for some Brill–Noether stable object 𝐸 and some torsion sheaf 𝑇0 of dimension 0 by Proposition 3.5.
The Chern characters are related by

ch1(𝐸) = ch1 (D(𝐸)) = ch1 (𝐸) and ch2 (𝐸) = − ch2(𝐸).

Thus, we have 𝜈𝐵𝑁 (𝐸) ∈ (0, 1
2 ]. Thus, we have

𝑄0,0 (𝐸) = 𝑄0,0 (D(𝐸)) = 𝑄0,0 (𝐸) + 6𝐻2 ch1 (𝐸) ch3 (𝑇0) ≥ 0.

�

Proof of Proposition 3.2. The remaining case is when 𝜈𝐵𝑁 (𝐸) = 𝐻 ch2 (𝐸) = 0. To show this, we
define the object �̃� to be

�̃� = Cone(𝑂𝑋 ⊗ Hom(𝑂𝑋 , 𝐸) 𝑒𝑣−−→ 𝐸).
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If �̃� is 𝜈𝛼,0,𝐻 -tilt semistable for some 𝛼 > 0, then by Theorem 5.5 we have

𝐻2 ch1 (�̃�)
𝐻3 rk(�̃�)

∉ (− 1
√

5
, 0] .

This implies

𝐻3 rk(�̃�) ≥ −
√

5𝐻2 ch1(�̃�).

Otherwise, for any 𝛿 > 0, �̃� is destablised by some 𝐹𝛿 when considering the 𝜈𝛿2 , 𝛿,𝐻 -stability condition.
We assume 𝛿 is small enough such that E is 𝜈𝛿2 , 𝛿,𝐻 -tilt stable because E is Brill–Noether stable. As
Hom(𝐹𝛿 , �̃�) ≠ 0, we have Hom(𝐹𝛿 , 𝐸) or Hom(𝐹𝛿 , 𝑂 [1]) is nonzero because �̃� is the cone of them.
Then we have 𝜈𝛿2 , 𝛿,𝐻 (𝐹𝛿) ≤ 𝜈𝛿2 , 𝛿,𝐻 (𝑂 [1]) or 𝜈𝛿2 , 𝛿,𝐻 (𝐹𝛿) ≤ 𝜈𝛿2 , 𝛿,𝐻 (𝐸). By Theorem 5.5, when
𝛿 < 3

7 ,

𝜈𝛿2 , 𝛿,𝐻 (𝐸) ≤ 𝜈𝛿2 , 𝛿,𝐻 (𝑂𝑋 [1]) = 𝛿.

This in total gives 𝜈𝛿2 , 𝛿,𝐻 (𝐹𝛿) ≤ 𝜈𝛿2 , 𝛿,𝐻 (𝑂 [1]) = 𝛿. Note that the equality only holds when 𝐹𝛿 =
𝑂𝑋 [1] because both are stable, so we have 𝜈𝛿2 , 𝛿,𝐻 < 𝛿. Now, assume 𝐹𝛿 has the largest slope among
all destabilising objects. Then, by the above argument, the HN filtration for �̃� has factors 𝐸𝑖 , with each
slope smaller than 𝛿. By the wall property, there is an 𝛼𝑖 such that 𝐸𝑖 is 𝜈𝛼𝑖 ,0,𝐻 (𝐸𝑖)-tilt stable and
𝜈𝐵𝑁 (𝐸𝑖) < 𝛿. Then by Theorem 5.5,

𝐻2 ch1(𝐸𝑖)
𝐻3 rk(𝐸𝑖)

∉

[
4𝛿 −

√
16𝛿2 + 5
5

, 0

]
.

As 𝛿 → 0, we have

𝐻3 rk(𝐸𝑖)
𝐻2 ch1 (𝐸𝑖)

≥ −
√

5.

Thus, in any case, we have

hom(𝑂𝑋 , 𝐸) ≤ rk(𝐸) +
√

5
8

𝐻2 ch1 (𝐸).

Taking 𝐸 → D(𝐸) → 𝑇0 [−1], we have

hom(𝑂𝑋 , 𝐸 [2]) = hom(𝐸,𝑂𝑋 [1]) = hom(D(𝑂𝑋 [1]),D(𝐸)) = hom(𝑂𝑋 ,D(𝐸))

= hom(𝑂𝑋 , 𝐸) ≤
√

5
8

𝐻2 ch1(𝐸) − rk(𝐸),

where the first equality is due to Serre duality and being Calabi–Yau, the second is due to duality, the
third is straightforward, the fourth is due to the fact that 𝑇0 is torsion of dimension 0 and the inequality
is due to 𝐸 being Brill–Noether stable.

Thus, by HRR, we have

ch3(𝐸) +
7

12
𝐻2 ch1(𝐸) = 𝜒(𝐸) ≤ hom(𝑂𝑋 , 𝐸) + hom(𝑂𝑋 , 𝐸 [2]) ≤

√
5

4
𝐻2 ch1(𝐸).

This implies ch3 (𝐸) < 0, and we are done. �
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Figure 1. The Γ curve (blue) intersects with positive slope line (red) and negative slope line (green).

4. Clifford type inequality for curves 𝑋2,2,2,4

4.1. Bound for the wall

Let 𝐶 := 𝑋2,2,2,4 ⊂ 𝑋2,2,4 ⊂ 𝑋2,4 ⊂ P5 be the curve of generic smooth complete intersection of X
with two quadratic hypersurfaces. By the adjunction formula, we know that the canonical bundle of C
is 𝑂𝐶 ((−6 + 2 + 2 + 2 + 4)𝐻) = 𝑂𝐶 (4𝐻). Then the degree of the canonical bundle is deg(𝑂𝐶 (4𝐻)) =
4∗2∗2∗2∗4 = 128, and thus the genus is 𝑔 = 65 by the formula 2𝑔−2 = deg(𝑂𝐶 (4𝐻)). Let 𝑆 := 𝑋2,2,2
be a general K3 surface given as the complete intersection of three quadratic hypersurfaces containing
this curve of Picard number 1, with three quadratic hypersurfaces coming from the complete intersection
that gave us C, and let 𝚤 : 𝐶 → 𝑆 be the embedding. Such a pair (𝐶, 𝑆) always exists by [RS09, Theorem
1]. Let E be a slope semistable vector bundle on C with rank r and degree d. Then for sufficiently large
𝛼, the object 𝚤∗𝐸 is a 𝜎𝛼,0,𝐻 -semistable object ([Mac14a, Theorem 3.11]). We would like to detect its
first wall. Suppose the first wall intersects Γ at (𝛽1, Γ(𝛽1)) and (𝛽2, Γ(𝛽2)) (or the vertical line segments
in Proposition 2.10 (𝛽1, 𝛼1), (𝛽2, 𝛼2)), where 𝛽1 < 𝛽2. By Grothendieck–Riemann–Roch, we have

ch(𝚤∗𝐸) = (0, 4𝑟𝐻, 𝑑 + (1 − 𝑔)𝑟).

We use 𝜇 to denote the slope of E on C. In this case, the curve Γ (Figure 1) is

Γ(𝑥) =
{

4𝑥2 − 1 + (𝑥 − 𝑛)2 if 𝑥 ∈ [𝑛 − 1
2 , 𝑛) ∪ (𝑛, 𝑛 + 1

2 ], 𝑛 ∈ Z
4𝑥2 if 𝑥 ∈ Z.

Lemma 4.1. When 𝜇 ∈ [0, 64], we have

1. When 𝜇 ∈ [0, 256
3 − 32

√
61

3 ), the object 𝚤∗𝐸 is Brill–Noether semistable.
2. When 𝜇 ∈ [31, 32], then we have

𝛽1 ≥ 𝜇

32
− 4 and 𝛽2 ≤ 1.

3. When 𝜇 ∈ [32, 33], then we have

𝛽1 ≥ −3 and 𝛽2 ≤ 𝜇

32
.
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4. When 𝜇 ∈ [63, 64], then we have

𝛽1 ≥ 𝜇

32
− 4 and 𝛽2 ≤ 2.

5. Otherwise, we have

𝛽1 ≥ 𝜇

32
− 4, and 𝛽2 ≤ 𝜇

32
.

Proof. The proof is similar to the proof of [FL21, Lemma 3.1] and [Li19a, Lemma 4.10]. On the wall,
there is a destablising sequence 0 → 𝐹2 → 𝚤∗𝐸 → 𝐹1 → 0. This sequence actually happens in the heart
Coh0(𝑆). Thus, we have the following long exact sequence for cohomology sheaves:

0 → 𝐻−1(𝐹1) → 𝐹2 → 𝚤∗𝐸 → 𝐻0 (𝐹1) → 0

rk 𝑠 𝑠 0 0

ch1 𝑑1𝐻 𝑑2𝐻 4𝑟𝐻 4𝑎𝐻

The left side is 0 since 𝐻−1(𝚤∗𝐸) = 0. Now, we have two cases: 𝑠 = 0 or 𝑠 ≠ 0.
Suppose 𝑠 = 0. Then 𝐻−1(𝐹1) = 0 because this term is torsion-free. Since 𝚤∗𝐸 is supported on C,

the other two supports are contained in C. Since 𝐹2 destablises 𝚤∗𝐸 , 𝐹2 and 𝚤∗𝐸 have the same tilt slope.
Thus, we get ch(𝐹2) = 𝑘 ch(𝚤∗𝐸), which contradicts the destabilising sequence being on the first wall.
So this case cannot happen.

Suppose 𝑠 ≠ 0. Let 𝑇 (𝐹2) be the maximal torsion subsheaf of 𝐹2. Suppose ch1 (𝑇 (𝐹2)) = 4𝑡𝐻. Since
E is of rank r, we have

𝑟 − 𝑎 ≤ rk(𝚤∗𝑇 (𝐹2)) + rk(𝚤∗(𝐹2/𝑇 (𝐹2))) = 𝑠 + 𝑡.

From this, we get the following inequality:

𝐻 ch1(𝐹2/𝑇 (𝐹2))
𝑠𝐻2 − 𝐻 ch1 (𝐻−1(𝐹1))

𝑠𝐻2 =
𝑑2 − 4𝑡 − 𝑑1

𝑠
=

4𝑟 − 4𝑎 − 4𝑡
𝑠

≤ 4.

By Proposition 2.10, we have 𝐹1 is semistable with the same slope as 𝚤∗𝐸 on the wall. In particular,
if −4 < 𝛽1, it is in the heart Coh𝛽1+𝜖 when 𝜖 → 0+. Thus,

𝐻 ch1 (𝐻−1(𝐹1))
𝐻2𝑠

=
𝑑1
𝑠

≤ 𝛽1.

Thus,

𝐻 ch1(𝐹2/𝑇 (𝐹2))
𝐻2𝑠

≤ 4 + 𝛽1.

Suppose 𝛽1 ≤ −4, then 𝑑1
𝑠 ≤ −4, and thus

𝐻 ch1(𝐹2/𝑇 (𝐹2))
𝐻2𝑠

≤ 0.

This contradicts the assumption that 𝐹2/𝑇 (𝐹2) ∈ Coh0(𝑆).
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On the other hand, by Proposition 2.10, we know that

𝐻 ch1(𝐹2/𝑇 (𝐹2))
𝐻2𝑠

≥ 𝛽2.

Thus, we have that

𝛽2 − 𝛽1 ≤ 4 and − 4 ≤ 𝛽1, 𝛽2 ≤ 4.

Also, by Proposition 2.10, we know that the wall needs to have slope of 𝜇
4 − 16 by the Chern character

of 𝚤∗𝐸 . However, there are two separate cases we need to consider here, where the first case is that the
wall ends on Γ, and the second case is the wall ends at the vertical line segment from (𝑛, 𝐻 2

2 𝑛2) to(
𝑛, 𝐻 2

2 𝑛2 − 1
)
. Since we want to detect the largest range of the wall, the maximum can happen when

𝛽2 − 𝛽1 = 4. Therefore, from now on we assume that 𝛽2 − 𝛽1 is equal to 4.
Case 1. The object 𝚤∗𝐸 is Brill–Noether semistable. In this case, the line l intersects the y-axis below

zero, where the line l is the line with slope

Γ(𝛽2) − Γ(𝛽1)
𝛽2 − 𝛽1

=
𝐻2 ch2 (𝚤∗𝐸)
𝐻 ch1(𝚤∗𝐸)

=
𝜇

4
− 16

and intersecting the curve at 𝛽1 and 𝛽2 = 𝛽1 + 4. Then, similar to the case 2 below, we have that the line
intersects Γ at 𝛽2 = 𝜇

32 and 𝛽1 = 𝜇
32 −4. As the slope is small in this case, we can assume Γ(𝑥) = 5𝑥2 −1

near 𝛽2. Then the intersection point with the y-axis is

𝑡 := − 3
1, 024

𝜇2 + 𝜇

2
− 1,

and the requirement for 𝜇 is 𝑡 < 0, which is equivalent to 𝜇 ∈ [0, 256
3 − 32

√
61

3 ).
Case 2. The end point is on Γ. Then we have

Γ(𝛽2) − Γ(𝛽1)
𝛽2 − 𝛽1

=
𝐻2 ch2(𝚤∗𝐸)
𝐻 ch1(𝚤∗𝐸)

=
𝜇

4
− 16.

Substituting 𝛽2 = 𝛽1 + 4 and the equation of Γ, we have

Γ(𝛽2) − Γ(𝛽1) = Γ(𝛽2) − Γ(𝛽2 − 4) = 𝐻2

2
((𝛽2)2 − (𝛽2 − 4)2) = 𝐻2

2
(8𝛽2 − 16).

This quantity is equal to

(𝛽2 − 𝛽1) (
𝜇

4
− 16) = 𝜇 − 64.

Thus, 𝛽2 = 𝜇
32 , and 𝛽1 = 𝜇

32 − 4.
Case 3. The end point is on the vertical line segment from (𝑛, 𝐻 2

2 𝑛2) to
(
𝑛, 𝐻 2

2 𝑛2 − 1
)
. First, one

notices that the slope is always negative in the range that we are considering. So the special endpoints
happen when both endpoints touch the vertical wall. So we just pick 𝛽1 = −𝑛, and the endpoint has a
vertical value of 4𝑛2. The corresponding 𝛽2 is −𝑛 + 4, and the vertical minimum value is 4(4 − 𝑛)2 − 1.
By a direct calculation, we get

𝛽2 = 1 when 𝜇 ∈ [31, 32], 𝛽2 = 2 when 𝜇 ∈ [63, 64], and 𝛽1 = −3 when 𝜇 ∈ [32, 33] . �
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4.2. Upper bound of global sections

An upper bound for the global sections of semistable objects on K3 surfaces is already known in [Fey20].
However, we need to produce a better bound to get our final result. We will see that in some regions
the two results coincide. The idea here is that we consider proper spherical twist of the object. The
spherical twist of the object is semistable with respect to some generic stability condition 𝜎𝛼,𝛽 (refer to
the proof of Proposition 4.3), and thus the Chern characters need to lie under the curve Γ. Let S be the
K3 surface we mentioned at the beginning of this section, which is the complete intersection of three
quadratic hypersurfaces. The following proposition is essential to the calculation.

Proposition 4.2 [Fey20, Proposition 3.4]. Let X be a K3 surface. Let 𝐸 ∈ Coh0,𝐻 (𝑋), then there exists
𝜖 > 0 such that the HN filtration for E is the same sequence with respect to all 𝜎𝛼,0,𝐻 for 0 < 𝛼 < 𝜖
and is denoted by

0 = �̃�0 ⊂ �̃�1 ⊂ . . . ⊂ �̃�𝑛 = 𝐸.

Proposition 4.3. Let F be a 𝜈𝐵𝑁 -semistable object in Coh0,𝐻 (𝑆). Then we have

hom(O𝑆 , 𝐹) ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

rk(𝐹) + 2
3

𝐻 ch1 (𝐹 )
𝐻 2 + 7

6 ch2 (𝐹)

− 1
6

√(
4 𝐻 ch1 (𝐹 )

𝐻 2 + ch2 (𝐹)
)2

− 60
(

𝐻 ch1 (𝐹 )
𝐻 2

)2
if 𝐻 2 ch2 (𝐹 )

𝐻 ch1 (𝐹 ) ∈ [ 11
2 , 15

2 ) ∪ (8, 97
10 ]

rk(𝐹) + ch2 (𝐹) +
5(𝐻 ch1 (𝐹 ))2

8(𝐻 2 ch2 (𝐹 )+2𝐻 ch1 (𝐹 )) if 𝐻 2 ch2 (𝐹 )
𝐻 ch1 (𝐹 ) ∈ [ 1

2 , 3) ∪ (4, 11
2 ]

rk(𝐹) + ch2 (𝐹 )
2 + 1

2

√
ch2 (𝐹)2 + 20

(
𝐻 ch1 (𝐹 )

𝐻 2

)2
if 𝐻 2 ch2 (𝐹 )

𝐻 ch1 (𝐹 ) ∈ [− 1
2 , 1

2 ]

rk(𝐹) + 5(𝐻 ch1 (𝐹 ))2

𝐻 2 (2𝐻 ch1 (𝐹 )−𝐻 2 ch2 (𝐹 )) if 𝐻 2 ch2 (𝐹 )
𝐻 ch1 (𝐹 ) ∈ [− 11

2 ,−4) ∪ (−3,− 1
2 ]

rk(𝐹) + 2
3

𝐻 ch1 (𝐹 )
𝐻 2 − 1

6 ch2 (𝐹)

− 1
6

√(
ch2 (𝐹) − 4 𝐻 ch1 (𝐹 )

𝐻 2

)2
− 60

(
𝐻 ch1 (𝐹 )

𝐻 2

)2
if 𝐻 2 ch2 (𝐹 )

𝐻 ch1 (𝐹 ) ∈ [− 97
10 ,−8) ∪ (− 15

2 ,− 11
2 ]

rk(𝐹) + 3
8

𝐻 ch1 (𝐹 )
𝐻 2 − ch2 (𝐹 )

16

− 1
16

√(
ch2 (𝐹) − 6 𝐻 ch1 (𝐹 )

𝐻 2

)2
− 160

(
𝐻 ch1 (𝐹 )

𝐻 2

)2
if 𝐻 2 ch2 (𝐹 )

𝐻 ch1 (𝐹 ) ∈ [− 193
14 ,−12) ∪ (− 35

3 ,− 97
10 ]

rk(𝐹) + 4
15

𝐻 ch1 (𝐹 )
𝐻 2 − ch2 (𝐹 )

30

− 1
30

√(
ch2 (𝐹) − 8 𝐻 ch1 (𝐹 )

𝐻 2

)2
− 300

(
𝐻 ch1 (𝐹 )

𝐻 2

)2
if 𝐻 2 ch2 (𝐹 )

𝐻 ch1 (𝐹 ) ∈ [− 107
6 ,−16) ∪ (− 63

4 ,− 193
14 ]

rk(𝐹) − (𝐻 ch1 (𝐹 ))2

16 ch2 (𝐹 ) if 𝐻 2 ch2 (𝐹 )
𝐻 ch1 (𝐹 ) ∈ [−4𝑛, 1−4𝑛2

𝑛 ] and 𝑛 ∈ Z>0

rk(𝐹) + ch2 (𝐹) +
(𝐻 ch1 (𝐹 ))2

16 ch2 (𝐹 ) if 𝐻 2 ch2 (𝐹 )
𝐻 ch1 (𝐹 ) ∈ [ 4𝑛2−1

𝑛 , 4𝑛] and 𝑛 ∈ Z>0.

(4.1)

Proof. The proof is divided into three parts, depending on the sign of 𝐻 2 ch2 (𝐹 )
𝐻 ch1 (𝐹 ) and whether it is close

to 4𝑛 for some integer n.
First case. When 𝐻 2 ch2 (𝐹 )

𝐻 ch1 (𝐹 ) > 0, and it is not inside [ 4𝑛2−1
𝑛 , 4𝑛], we have 𝜈𝐵𝑁 (𝑂𝑆 [1]) = +∞. Thus,

hom(𝑂𝑆 , 𝐹 [−1 − 𝑖]) = hom(𝑂𝑆 [1 + 𝑖], 𝐹) = 0

for 𝑖 ≥ 0. On the other hand, there exists some (𝛼, 𝛽) on the line through 0 and 𝑝𝑟 (𝐹) such that
𝛼 > Γ(𝛽). Thus,

hom(𝑂𝑆 , 𝐹 [2 + 𝑖]) = hom(𝐹,𝑂𝑆 [−𝑖]) = 0

for 𝑖 ≥ 0 because 𝑂𝑆 [1] and F both are 𝜎𝛼,𝛽-semistable of same slope by the nesting wall theorem.
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Thus, we have

𝜒(𝑂𝑆 , 𝐹) = hom(𝑂𝑆 , 𝐹) − hom(𝑂𝑆 , 𝐹 [1]).

We consider the object

�̃� [1] = Cone(𝐹 𝑐𝑎𝑛−−−→ 𝑂 [1] ⊗ Hom(𝐹,𝑂 [1])∗).

Then �̃� is 𝜎𝛼,𝛽-semistable for 𝛽 < 0. We claim that 𝑝𝑟 (�̃�) is below the curve Γ. Otherwise, suppose
𝑝𝑟 (�̃�) is not below the curve Γ. Consider the HN factors 𝐹𝑖 of �̃� with respect to 𝜎𝛼,𝛽 . Then by
Lemma 2.16, the 𝑝𝑟 (𝐹𝑖) are on the line passing through (𝛼, 𝛽) and �̃�. As the segment of this line above
Γ is convex, there is at least one HN factor 𝐹𝑗 is above Γ. However, by Proposition 2.11, 𝐹𝑗 cannot lie
above the curve Γ. So the point 𝑝𝑟 (�̃�) is below the curve Γ. We consider the line passing through 0
with slope k (Figure 1), where 𝑘 = 𝐻 2 ch2 (𝐹 )

𝐻 ch1 (𝐹 ) . Then it is obvious that 𝑝𝑟 (𝑂 [1]), 𝑝𝑟 (𝐹), and 𝑝𝑟 (�̃� [1])
are on this line. Let 𝑥0 be the intersection point of the line with Γ. Depending on the slope, we can solve
𝑥0 explicitly.

When 𝐻 2 ch2 (𝐹 )
𝐻 ch1 (𝐹 ) ∈ [ 11

2 , 15
2 ) ∪ (8, 97

10 ], we have Γ(𝑥) = 5𝑥2 − 4𝑥 + 3. By solving the intersection
equation with the line, we have

𝑥0 =
4 + 𝑘 +

√
((4 + 𝑘)2 − 60)

10
.

Thus, since 𝑝𝐻 (�̃� [1]) is below Γ, we have

𝐻 ch1 (�̃� [1])
𝐻2 rk(�̃� [1])

≥ 𝑥0.

(The case 𝐻 ch1 (�̃� [1])
𝐻 2 rk(�̃� [1]) < 0 is also contained in this case.) Here, ch1(�̃� [1]) = − ch1(�̃�), rk(�̃� [1]) =

− rk(�̃�) and rk(�̃�) = hom(𝑂𝑆 , 𝐹 [1]) + rk(𝐹) > 0. This implies that

𝐻 ch1 (𝐹)
𝐻2𝑥0

≥ rk(�̃�) = hom(𝑂𝑆 , 𝐹 [1]) + rk(𝐹),

and considering this with

hom(𝑂𝑆 , 𝐹) = 𝜒(𝑂𝑆 , 𝐹) + hom(𝑂𝑆 , 𝐹 [1])

we get the conclusion.
When 𝐻 2 ch2 (𝐹 )

𝐻 ch1 (𝐹 ) ∈ [ 1
2 , 3) ∪ (4, 11

2 ], we use the same calculation method with Γ(𝑥) = 5𝑥2 − 2𝑥 and
we get the conclusion.

Second case. When 𝐻 2 ch2 (𝐹 )
𝐻 ch1 (𝐹 ) < 0 and it is not inside [−4𝑛, 1−4𝑛2

𝑛 ], we know that there exist some
(𝛼, 𝛽) on the line through 0 and 𝑝𝑟 (𝐹) with 𝛼 > Γ(𝛽) and by nesting wall theorem, 𝑂 [1] and F are
𝜎𝛼,𝛽-semistable. If we consider

�̃� = Cone(Hom(𝑂𝑋 , 𝐹) ⊗ 𝑂
𝑒𝑣−−→ 𝐹),

we get that �̃� is 𝜎𝛼,𝛽-semistable for 𝛽 > 0. By a similar argument to the first case, we know that
the reduced character 𝑝𝑟 (�̃�) is below the curve Γ. Consider the line passing through 0 and 𝑝𝑟 (𝐹)
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(Figure 1). Then 𝑝𝑟 (�̃�) is on the same line. Let 𝑥1 be the intersection of the line and Γ on the left-hand
side. We can solve 𝑥1 explicitly depending on the slope of the line.

When 𝐻 2 ch2 (𝐹 )
𝐻 ch1 (𝐹 ) ∈ [− 107

6 ,−16) ∪ (− 63
4 ,− 193

14 ], let the line be 𝑦 = 𝑘𝑥, where 𝑘 = 𝐻 2 ch2 (𝐹 )
𝐻 ch1 (𝐹 ) . Recall

that when 𝑥 ∈ [𝑛 − 1
2 , 𝑛 + 1

2 ], the curve Γ has the form

Γ(𝑥) =
{

4𝑥2 − 1 + (𝑥 − 𝑛)2 if 𝑥 ≠ 𝑛

4𝑥2 if 𝑥 = 𝑛.

Then by solving the equation, we get

𝑥1 =
𝑘 − 8 −

√
(8 − 𝑘)2 − 300
10

.

Then we have the requirement that

𝐻 ch1(�̃�)
𝐻2 rk(�̃�)

≤ 𝑥1.

This in turn tells us that

𝐻 ch1(�̃�)
𝐻2𝑥1

≤ rk(�̃�) = rk(𝐹) − hom(𝑂𝑆 , 𝐹),

and then this gives

hom(𝑂𝑆 , 𝐹) ≤ rk(𝐹) + 4
15

𝐻 ch1 (𝐹)
𝐻2 − ch2 (𝐹)

30
− 1

30

√(
ch2(𝐹) − 8

𝐻 ch1(𝐹)
𝐻2

)2
− 300

(
𝐻 ch1 (𝐹)

𝐻2

)2
.

For 𝐻 2 ch2 (𝐹 )
𝐻 ch1 (𝐹 ) inside the other range, a similar calculation is done with the appropriate expression for

Γ used.
Third case. When the slope 𝐻 2 ch2 (𝐹 )

𝐻 ch1 (𝐹 ) ∈ [−4𝑛, 1−4𝑛2

𝑛 ] or [ 4𝑛2−1
𝑛 , 4𝑛]. In this case, we just use a proper

spherical twist as above and use the Bogomolov inequality. If moreover 𝐻 2 ch2 (𝐹 )
𝐻 ch1 (𝐹 ) > 0, then we consider

�̃� as in the first case. Because �̃� is 𝜎𝛼,𝛽-semistable for some (𝛼, 𝛽), we have

(𝐻 ch1(𝐹))2 − 2𝐻2 (ch2(𝐹)) (rk(𝐹) + ext1 (𝑂𝑆 , 𝐹)) ≥ 0,

hence

ext1(𝑂𝑆 , 𝐹) ≤ rk(𝐹) + (𝐻 ch1 (𝐹))2

2𝐻2 ch2(𝐹)
+ ch2(𝐹).

If 𝐻 2 ch2 (𝐹 )
𝐻 ch1 (𝐹 ) < 0, we consider �̃� as in the second case. Because �̃� is 𝜎𝛼,𝛽-semistable for some (𝛼, 𝛽),

we have

(𝐻 ch1 (𝐹))2 − 2𝐻2 (ch2(𝐹)) (rk(𝐹) − hom(𝑂𝑆 , 𝐹)) ≥ 0,

=⇒ hom(𝑂𝑆 , 𝐹) ≤ rk(𝐹) − (𝐻 ch1(𝐹))2

2𝐻2 ch2(𝐹)
.

�

Remark 4.4. We see that the bound for the range [− 1
2 ,

1
2 ] works for all other ranges. This is the same

bound given by [Fey20].
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Next, we would like to show some kind of convexity of the above bound. Let

♠(𝑥, 𝑦) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
3

𝑦
𝐻 2 + 7

6𝑥 −
1
6

√(
4 𝑦

𝐻 2 + 𝑥
)2

− 60
(

𝑦
𝐻 2

)2
if 𝐻 2 𝑥

𝑦 ∈ [ 11
2 , 15

2 ) ∪ (8, 97
10 ]

𝑥 + 5𝑦2

8(𝐻 2 𝑥+2𝑦) if 𝐻 2 𝑥
𝑦 ∈ [ 1

2 , 3) ∪ (4, 11
2 ]

𝑥
2 + 1

2

√
𝑥2 + 20

(
𝑦

𝐻 2

)2
if 𝐻 2 𝑥

𝑦 ∈ [− 1
2 ,

1
2 ]

5𝑦2

𝐻 2 (2𝑦−𝐻 2 𝑥) if 𝐻 2 𝑥
𝑦 ∈ [− 11

2 ,−4) ∪ (−3,− 1
2 ]

2
3

𝑦
𝐻 2 − 1

6𝑥 −
1
6

√(
𝑥 − 4 𝑦

𝐻 2 )2 − 60( 𝑦
𝐻 2

)2
if 𝐻 2 𝑥

𝑦 ∈ [− 97
10 ,−8) ∪ (− 15

2 ,− 11
2 ]

3
8

𝑦
𝐻 2 − 𝑥

16 − 1
16

√(
𝑥 − 6 𝑦

𝐻 2

)2
− 160

(
𝑦

𝐻 2

)2
if 𝐻 2 𝑥

𝑦 ∈ [− 193
14 ,−12) ∪ (− 35

3 ,− 97
10 ]

4
15

𝑦
𝐻 2 − 𝑥

30 − 1
30

√(
𝑥 − 8 𝑦

𝐻 2

)2
− 300

(
𝑦

𝐻 2

)2
if 𝐻 2 𝑥

𝑦 ∈ [− 107
6 ,−16) ∪ (− 63

4 ,− 193
14 ]

− 𝑦2

16𝑥 if 𝐻 2 𝑥
𝑦 ∈ [−4𝑛, 1−4𝑛2

𝑛 ] and 𝑛 ∈ Z>0

𝑥 + 𝑦2

16𝑥 if 𝐻 2 𝑥
𝑦 ∈ [ 4𝑛2−1

𝑛 , 4𝑛] and 𝑛 ∈ Z>0.

(4.2)

Lemma 4.5. Let 𝑂 = (0, 0) be the origin, and let 𝑃 = (𝑥𝑝 , 𝑦𝑝) and 𝑄 = (𝑥𝑞 , 𝑦𝑞) be two points on the
upper half plane such that 𝑥𝑝

𝑦𝑝
>

𝑥𝑞
𝑦𝑞

and 𝑦𝑝 < 𝑦𝑞 . Consider a sequence of points 𝑃0 = 𝑂, 𝑃1, . . . , 𝑃𝑛 = 𝑄

on the upper half plane and inside the triangle 𝑂𝑃𝑄. In addition, assume that the points 𝑃0, . . . , 𝑃𝑛

form a convex polygon. If we consider the sum

𝑛−1∑
𝑖=0

♠(−−−−−→𝑃𝑖𝑃𝑖+1),

it can achieve its maximum only when 𝑛 = 1 or 𝑛 = 2. When 𝑛 = 2, we can choose 𝑃1 on 𝑂𝑃 or 𝑃𝑄,
unless 𝑥1

𝑦1
= 𝑚, or 4𝑚2−1

𝑚 ; or 𝑥𝑞−𝑥1
𝑦𝑞−𝑦1

= 𝑚 or 4𝑚2−1
𝑚 for some nonzero integer m.

Proof. Here, we use the trick in [FL21, Section 2.2]. The first part is basically the same as in [Li19a,
Lemma 4.11], because the essence of the proof is that, in all the cases, the function is homogeneous
of degree 1. This implies that we can reduce to the case 𝑛 ≤ 2. Now, we consider a triangle 𝑂𝐴𝐵,
with slope 𝑥 (𝐴)

𝑦 (𝐴) > 𝑥 (𝐵)
𝑦 (𝐵) , such that slopes of

−−→
𝑂𝐴,

−−→
𝑂𝐵, or slopes of

−−→
𝐴𝐵,

−−→
𝑂𝐵 fall in the same region. By

calculating the derivative, we get a weak triangular inequality, that is to say

♠(−−→𝑂𝐴) + ♠(−−→𝐴𝐵) ≥ ♠(−−→𝑂𝐵).

Now, we consider the triangle 𝑂𝑃′𝑄 inside the triangle 𝑂𝑃𝑄. Then by extending the line 𝑂𝑃′ or 𝑄𝑃′,
we get a new small triangle. As the function ♠ is linear when the slope is fixed, we can just consider
the new small triangle. Then by the weak triangular inequality, we get the conclusion. The only thing
that needs to be proven is the case in which the changing point is not equal to 4𝑚2−1

𝑚 or 4𝑚. Let 𝑃′ be
a point that does not coincide with P and the slope of 𝑂𝑃′ (or 𝑃′𝑄) is at the changing point not equal
to 4𝑚2−1

𝑚 or 4𝑚. Then the value ♠(
−−−→
𝑂𝑃′) + ♠(

−−−→
𝑃′𝑄) achieves the same value when the sum is calculated

by the functions in different regions. Also, by the weak triangular inequality, we get the conclusion, and
thus we finish the proof. �

With the above lemma, we can give a Clifford type inequality for the curve 𝐶 = 𝑋2,2,2,4. In the next
proof, we make a change of the coordinate of ♠ to be (𝑥 ′, 𝑦′) = (𝑥, 𝑦

𝐻 2 ). By abuse of notation, we still
use ♠ to denote it.
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Figure 2. The Clifford type inequality for the curve C.

Theorem 4.6. Let F be a semistable vector bundle on C of rank r, degree d and slope 𝜇 = 𝑑
𝑟 . Then we

have the following inequality (Figure 2):

ℎ0 (𝐹) ≤

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
64𝑟2

64𝑟−𝑑 if 𝜇 ∈ [0, 256
3 − 32

√
61

3 )
𝑟 + 5𝑑2

1,024𝑟 if 𝜇 ∈ [ 256
3 − 32

√
61

3 , 16]
5𝑑2

1,024𝑟 + 5𝑟 − 𝑑
8 if 𝜇 ∈ [48, 576−32

√
69

5 ]
𝑑 − 46𝑟 if 𝜇 ∈ [ 576−32

√
69

5 , 64] .

(4.3)

Proof. If the object 𝚤∗𝐹 is Brill–Noether semistable, then by the Bogomolov inequality, with the same
argument as in Proposition 4.3, we have

ℎ0 (𝐹) ≤ rk(𝚤∗𝐹) −
(𝐻 ch1(𝚤∗𝐹))2

2𝐻2 ch2(𝚤∗𝐹)
=

64𝑟2

64𝑟 − 𝑑
.

In particular, by Lemma 4.1, the bound holds for 𝜇 ∈ [0, 256
3 − 32

√
61

3 ). We may assume that there is a
wall as that in Lemma 4.1 for 𝚤∗𝐹 for the rest of the argument.

For 𝜇 ∈ [ 256
3 − 32

√
61

3 , 16], by Proposition 4.1, we know that the wall is inside the range 𝜇
32 and 𝜇

32 −4.
Let m be the number of HN factors of 𝚤∗𝐹 with respect to the Brill–Noether stability condition as that
in Proposition 4.3. Then we have:

ℎ0 (𝐹) = hom(𝑂𝑆 , 𝚤∗𝐹) ≤
𝑚−1∑
𝑖=0

hom(𝑂𝑆 , 𝐹𝑖+1/𝐹𝑖)

≤
𝑚−1∑
𝑖=0

rk(𝐹𝑖+1/𝐹𝑖) + ♠(ch2 (𝐹𝑖+1/𝐹𝑖), 𝐻 ch1(𝐹𝑖+1/𝐹𝑖)/𝐻2)

=
𝑚−1∑
𝑖=0

♠(ch2(𝐹𝑖+1/𝐹𝑖), 𝐻 ch1(𝐹𝑖+1/𝐹𝑖)/𝐻2).

On the other hand, by Lemma 4.5, we can take the number of HN factors to be less than or equal to
2. By the explanation at the beginning for the case that 𝚤∗𝐹 is BN-semistable, we may assume that the
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number of the HN factors is 2. Let 𝑄 = (𝑑 − 64𝑟, 4𝑟). Let P be the point such that the slope of 𝑃𝑄 is

𝜇
32 − 4

Γ( 𝜇
32 − 4)

=
𝜇
32 − 4

𝐻 2

2 ( 𝜇
32 − 4)2 − 1 + ( 𝜇

32 )2

and the slope of 𝑂𝑃 is

𝜇
32

Γ( 𝜇
32 )

=
𝜇
32

𝐻 2

2 ( 𝜇
32 )2 − 1 + ( 𝜇

32 )2
=

𝜇
32

5( 𝜇
32 )2 − 1

.

By a direct calculation, the point P has the coordinate ( 5𝑑2

1,024𝑟 − 𝑟, 𝑑
32 ). Inside this region,(

𝐻 2 ch2
𝐻 ch1

)−
(𝚤∗(𝐹)) ≥ − 63

4 . Also, we notice that in each case we have

hom(𝑂𝑆 , 𝐹) ≤ rk(𝐹) + ch2 (𝐹)
2

+ 1
2
√

ch2 (𝐹)2 + 20(𝐻 ch1)2.

Then, by Lemma 4.5, we get ℎ0 (𝐹) ≤ 𝑓1 + 𝑓2, where

𝑓1 =
5𝑑2

2048
− 𝑟

2
+ 1

2

(
5𝑑2

1, 024𝑟
+ 𝑟

)
=

5𝑑2

1, 024𝑟

and

𝑓2 =
4
15

(
4𝑟 − 𝑑

32

)
− 1

30

(
𝑑 − 64𝑟 − 5𝑑2

1, 024𝑟
+ 𝑟

)
−
√
Δ

30
,

where

Δ =

(
𝑑 − 64𝑟 − 5𝑑2

1, 024𝑟
+ 𝑟 − 32𝑟 + 𝑑

4

)2

− 300
(
4𝑟 − 𝑑

32

)2
.

By a direct calculation, we get
√
Δ = 65𝑟 − 5

4 𝑑 +
5𝑑2

1,024𝑟 , 𝑓2 = 𝑟 , and thus we get the second inequality.
When 𝜇 ∈ [48, 64], we let 𝑄 = (𝑑 − 64𝑟, 4𝑟) and let P be the point satisfying that the slope of 𝑂𝑃 is

𝜇
32

Γ( 𝜇
32 )

=
𝜇
32

𝐻 2

2 ( 𝜇
32 )2 − 1 + ( 𝜇

32 − 2)2
=

𝜇
32

4( 𝜇
32 )2 − 1 + ( 𝜇

32 − 2)2

and the slope of 𝑃𝑄 is

𝜇
32 − 4

Γ( 𝜇
32 − 4)

=
𝜇
32 − 4

𝐻 2

2 ( 𝜇
32 − 4)2 − 1 + ( 𝜇

32 − 2)2
.

By a direct calculation, we get

𝑃 =

(
5𝑑2

1, 024𝑟
− 𝑑

8
+ 3𝑟,

𝑑

32

)
.
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Thus, we have

♠(−−→𝑂𝑃) = 𝑑

48
+ 7

6

(
5𝑑2

1, 024𝑟
− 𝑑

8
+ 3𝑟

)
− 1

6

√(
𝑑

8
+ 5𝑑2

1, 024𝑟
− 𝑑

8
+ 3𝑟

)2
− 60

(
𝑑

32

)2

=
𝑑

48
+ 7

6

(
5𝑑2

1, 024𝑟
− 𝑑

8
+ 3𝑟

)
+ 1

6
(3𝑟 − 5𝑑2

1, 024𝑟
) = 5𝑑2

1, 024𝑟
+ 4𝑟 − 𝑑

8
and

♠(−−→𝑃𝑄) = 8
3
𝑟 − 𝑑

48
− 𝑑

6
+ 32

3
𝑟 + 5𝑑2

6 × 1, 024𝑟
− 𝑑

48
+ 𝑟

2
− 1

6
√
Δ ′,

where

Δ ′ =

(
𝑑 − 64𝑟 − 5𝑑2

1, 024𝑟
+ 𝑑

8
− 3𝑟 − 4

(
4𝑟 − 𝑑

32

))2

− 60
(
4𝑟 − 𝑑

32

)2
.

By a direct calculation, we get
√
Δ ′ = 5𝑑2

1,024𝑟 − 5𝑑
4 + 77𝑟 and thus ♠(−−→𝑂𝑃) + ♠(−−→𝑃𝑄) = 5𝑑2

1,024𝑟 + 5𝑟 − 𝑑
8 . On

the other hand, we consider now a point 𝑃′ such that the slope of 𝑂𝑃′ is

2
Γ(2) − (𝜇 − 64) =

2
𝜇 − 48

and the slope of 𝑃′𝑄 is

−2
Γ(2) = −1

8
.

By a direct computation, we get 𝑃′ = (𝑑 − 48𝑟, 2𝑟). We also consider a point 𝑃′′ on the line 𝑂𝑃 that
the line 𝑃𝑄 has slope − 1

8 . We note that both 𝑃′ and 𝑃′′ are inside 𝑂𝑃′′′𝑄, where 𝑃′′′ is a point such
that the slope of 𝑂𝑃′′′ is 1

8 and the slope of 𝑃′′′𝑄 is − 1
8 . Accordingly, we get 𝑃′′′ = ( 𝑑

2 − 16𝑟, 𝑑
16 − 2𝑟),

and thus ♠(
−−−−→
𝑂𝑃′′′) = 𝑑 − 47𝑟 and ♠(

−−−−→
𝑃′′′𝑄) = 𝑟 and so ♠(

−−−−→
𝑂𝑃′′′) + ♠(

−−−−→
𝑃′′′𝑄) ≤ 𝑑 − 46𝑟 . By Lemma 4.5,

we get the last two cases by considering max{𝑑 − 46𝑟, 5𝑑2

1,024𝑟 + 5𝑟 − 𝑑
8 }. �

Remark 4.7. For the Brill–Noether semistable region, one can get a better Clifford type inequality by
applying Lemma 4.3. One can do a more careful argument to make the break point more precise and
thus get a better Clifford type inequality. But the bound above is enough for our purpose.

5. Bogomolov–Gieseker type inequality on 𝑋2,2,4 and 𝑋2,4

Now, we give a Bogomolov–Gieseker type inequality for ch2 on 𝑆′ = 𝑋2,2,4. By Hirzebruch–Riemann–
Roch, we get

𝜒(𝐸) = ch2 (𝐸) − 𝐻 ch1(𝐸) + 20 ch0 (𝐸)

for a coherent sheaf E on 𝑆′. The following lemma is essential to the calculation.

Lemma 5.1 [Fey22a, Corollary 4.3], [Li19a, Lemma 5.1]. Let (𝑋, 𝐻) be a polarized variety of dimension
𝑛 = 2, 3. Let E be a coherent sheaf in Coh0,𝐻 (𝑋). Suppose there exists 𝛼 > 0 and 𝑚 ∈ Z>0 such that

1. 𝐸 (−𝑚𝐻) [1] is in Coh0,𝐻 (𝑋);
2. Both E and 𝐸 (−𝑚𝐻) [1] are 𝜈𝛼,0,𝐻 -tilt stable;
3. 𝜈𝛼,0,𝐻 (𝐸) = 𝜈𝛼,0,𝐻 (𝐸 (−𝑚𝐻) [1]).
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Figure 3. The Bogomolov–Gieseker type inequality (blue) and the classical Bogomolov inequality (red).

Then, for a generic smooth projective irreducible subvariety 𝑌 ∈ |𝑚𝐻 |, the restriction 𝐸 |𝑌 is 𝜇𝐻𝑌 -
semistable. Moreover, rk(𝐸) = rk(𝐸 |𝑌 ), 𝐻𝑛−2

𝑌 ch1 (𝐸 |𝑌 ) = 𝑚𝐻𝑛−1 ch1(𝐸), and when 𝑛 = 3, ch2(𝐸 |𝑌 ) =
𝑚𝐻 ch2(𝐸).
Proposition 5.2. Suppose 𝐹 ∈ 𝐷𝑏 (𝑆′), with 𝐻 ch1 (𝐹 )

𝐻 2 rk(𝐹 ) ∈ (0, 1), is 𝜈𝛼,0,𝐻 -semistable or 𝜈𝛼′,1,𝐻 -
semistable for some 𝛼 > 0 or 𝛼′ > 1

2 , then we have the following Bogomolov–Gieseker type inequality
(Figure 3):

ch2(𝐹)
𝐻2 ch0(𝐹)

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
𝐻 ch1 (𝐹 )
𝐻 2 ch0 (𝐹 )

)2
− 𝐻 ch1 (𝐹 )

𝐻 2 ch0 (𝐹 ) if 𝐻 ch1 (𝐹 )
𝐻 2 ch0 (𝐹 ) ∈ (0, 4

3 −
√

13
3 ]

5
8

(
𝐻 ch1 (𝐹 )
𝐻 2 ch0 (𝐹 )

)2
− 1

8 if 𝐻 ch1 (𝐹 )
𝐻 2 ch0 (𝐹 ) ∈ ( 4

3 −
√

13
3 , 1

2 ]
5
8

(
𝐻 ch1 (𝐹 )
𝐻 2 ch0 (𝐹 )

)2
− 1

4
𝐻 ch1 (𝐹 )
𝐻 2 ch0 (𝐹 ) if 𝐻 ch1 (𝐹 )

𝐻 2 ch0 (𝐹 ) ∈ ( 1
2 ,

√
13
3 − 1

3 )(
𝐻 ch1 (𝐹 )
𝐻 2 ch0 (𝐹 )

)2
− 1

2 if 𝐻 ch1 (𝐹 )
𝐻 2 ch0 (𝐹 ) ∈ [

√
13
3 − 1

3 , 1).

(5.1)

Proof. The proof here is similar to [Li19a]. We prove this by contradiction. The idea is that first
to reduce to stable objects by considering Jordan–Hölder factors for 𝜈𝛼,0,𝐻 or 𝜈𝛼′,−1,𝐻 . Next, by
using the Feyzbakhsh’s restriction theorem (Lemma 5.1) and the Clifford type inequality in Section 4
(Theorem 4.6), we get inequalities as in inequality (5.1) for the stable objects, and thus get the result.

Reduce to stable objects: Suppose there is a 𝜈𝛼,0,𝐻 or 𝜈𝛼′,1,𝐻 -tilt stable object with 𝐻 ch1 (𝐹 )
𝐻 2 rk(𝐹 ) ∈ (0, 1)

violating the above inequality. We assume that F is an object with the minimal Δ𝐻 of all such objects.
Suppose F becomes strictly 𝜈𝛼,0,𝐻 -semistable for some 𝛼 > 0 (or 𝜈𝛼′,1,𝐻 strictly semistable), then we
take a Jordan–Hölder filtration. Since the inequality forms a convex curve in (0, 1

2 ] and [ 1
2 , 1) separately,

there is at least one Jordan–Hölder factor violating the inequality. For example, if 𝐻 ch1 (𝐹 )
𝐻 2 rk(𝐹 ) ∈

(
0, 1

2
]

and we are considering 𝜈𝛼,0,𝐻 , then the line passing through (𝛼, 0) and 𝑝𝐻 (𝐹) has the
(
0, 𝐻 ch1 (𝐹 )

𝐻 2 rk(𝐹 )

]
segment completely above the curve of the proposition. Thus, F must have a Jordan–Hölder factor 𝐹𝑖

that violates the inequality. Similarly, we can show it in the remaining cases. Finally, by Lemma 2.17,
we have Δ𝐻 (𝐹𝑖) < Δ𝐻 (𝐹), which contradicts the minimum assumption.

Now, suppose that F becomes strictly 𝜈𝛼0 ,𝛽,𝐻 -semistable on the vertical wall for 𝛽 = 𝐻 ch1 (𝐹 )
𝐻 2 rk(𝐹 ) . We

may assume that 𝐹 ∈ Coh𝛽,𝐻 (𝑆′). If all the Jordan–Hölder factors of F are torsion-free, then there
is a 𝜈𝛼,𝛽-stable Jordan–Hölder factor 𝐹𝑖 of F that has 𝑝𝐻 (𝐹) = 𝑝𝐻 (𝐹𝑖). By Lemma 2.17, we have
Δ𝐻 (𝐹) = Δ𝐻 (𝐹𝑖). Also, by the openess of the stability conditions, 𝐹𝑖 is 𝜈𝛼,0 and 𝜈𝛼′,1-stable for 𝛼 and 𝛼′
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large enough. If F has a torsion Jordan–Hölder factor 𝐹0, then the torsion factors must have ch2 (𝐹0) ≥ 0.
Since other Jordan–Hölder factors must have 0 > rk(𝐹𝑖) ≥ rk(𝐹) as we assume that 𝐹 ∈ Coh𝛽,𝐻 (𝑆′),
we must have some factor 𝐹𝑖 such that 𝐻 ch1 (𝐹 )

𝐻 2 ch0 (𝐹 ) = 𝐻 ch1 (𝐹𝑖)
𝐻 2 ch0 (𝐹𝑖)

and ch2 (𝐹 )
𝐻 2 ch0 (𝐹 ) ≤ ch2 (𝐹𝑖)

𝐻 2 ch0 (𝐹𝑖 )
. Again, by the

openness of the stability conditions, 𝐹𝑖 is 𝜈𝛼,0 and 𝜈𝛼′,1-stable for 𝛼 and 𝛼′ large enough. Thus, we can
assume that F is 𝜈𝛼,0,𝐻 -tilt stable for all 𝛼 > 0, and similarly for 𝜈𝛼′,1,𝐻 .

Inequalities for stable objects: To apply the last lemma, we consider the line passing through
𝑝𝐻 (𝐹) := (𝑎, 𝑏) and 𝑝𝐻 (𝐹 (−2𝐻) [1]) := (𝑎 − 2𝑏 + 2, 𝑏 − 2). This line has the equation

(𝑏 − 1)𝑌 − 𝑋 = −𝑎 + 𝑏2 − 𝑏.

In the proper region of (𝑎, 𝑏), it will intersect at (𝛼0, 0) and (𝛼1,−1) such that 𝛼0 > 0 and 𝛼1 > 1
2 .

This is equivalent to saying that 𝑎 > 𝑏2 − 𝑏 and 𝑎 > 𝑏2 − 1
2 . We see that the bound above satisfies

these two conditions. Thus, we can apply the last lemma for F and we have rk(𝐹 |𝐶 ) = rk(𝐹) and
deg(𝐹 |𝐶 ) = 2𝐻 ch1(𝐹).

Without loss of generality, we may assume that 𝐻 ch1 (𝐹 )
𝐻 2 rk(𝐹 ) ≤ 1

2 , otherwise we can take 𝐹∗(𝐻), where
∗ denote the dual. Then we have

𝜒(𝑂𝑆′ , 𝐹) = ch2 (𝐹) − ch1(𝐹) + 20 ch0(𝐹)
≤ hom(𝑂𝑆′ , 𝐹) + hom(𝑂𝑆′ , 𝐹 [2])
= hom(𝑂𝑆′ , 𝐹) + hom(𝑂𝑆′ , 𝐹∗(2𝐻))
≤ hom(𝑂𝐶 , 𝐹 |𝐶 ) + hom(𝑂𝐶 , 𝐹∗(2𝐻) |𝐶 ) =: Λ.

Note that in this case, 𝜇(𝐹 |𝐶 ) = 2𝐻 ch1 (𝐹 )
ch0 (𝐹 ) = 32𝐻 ch1 (𝐹 )

𝐻 2 ch0 (𝐹 ) ∈ (0, 16] .
From now on, we let 𝑟 := ch0(𝐹), 𝜇 = 32 𝐻 ch1 (𝐹 )

𝐻 2 ch0 (𝐹 ) and 𝑑 = 𝜇𝑟 . As in the last section, we have several
cases:

Case 1. 𝐻 ch1 (𝐹 )
𝐻 2 ch0 (𝐹 ) ∈

(
0,

√
69−8
5

]
. In this region, we have

Λ ≤ 64𝑟2

64𝑟 − 𝑑
+ (64 − 𝜇)𝑟 − 46𝑟 =

64𝑟2

64𝑟 − 𝑑
+ 18𝑟 − 𝜇𝑟.

Therefore,

ch2(𝐹)
𝐻2 ch0(𝐹)

≤ − 𝐻 ch1 (𝐹)
𝐻2 ch0 (𝐹)

+ 4
64 − 32 𝐻 ch1 (𝐹 )

𝐻 2 ch0 (𝐹 )

− 1
8
.

This satisfies the bound of the proposition.
Case 2. 𝐻 ch1 (𝐹 )

𝐻 2 ch0 (𝐹 ) ∈
(√

69−8
5 , 8

3 −
√

61
3

]
. In this region, we have

Λ ≤ 64𝑟2

64𝑟 − 𝑑
+ 5

1, 024
(64 − 𝜇)2𝑟 + 5𝑟 − 1

8
(64 − 𝜇)𝑟

=
64𝑟2

64𝑟 − 𝑑
+ 17𝑟 − 1

2
𝜇𝑟 + 5𝜇2𝑟

1, 024
.

This implies

ch2(𝐹)
𝐻2 ch0(𝐹)

≤ 5
16

(
𝐻 ch1 (𝐹)
𝐻2 ch0(𝐹)

)2
+ 4

64 − 32 𝐻 ch1 (𝐹 )
𝐻 2 ch0 (𝐹 )

− 3
16

.

This satisfies the bound of the proposition.
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Case 3. 𝐻 ch1 (𝐹 )
𝐻 2 ch0 (𝐹 ) ∈

(
8
3 −

√
61
3 , 1

2

]
. In this region, we are back to the general case.

Λ ≤ 𝑟 + 5𝑑2

1, 024𝑟
+ 5

1, 024
(64 − 𝜇)2𝑟 + 5𝑟 − 1

8
(64 − 𝜇)𝑟

=
5

512
32 × 32 × (𝐻 ch1(𝐹))2

𝐻2 ch0(𝐹)𝐻2 + 18𝑟 − 16 × 𝐻 ch1(𝐹)
𝐻2 ch0 (𝐹)

× ch0 (𝐹)

=
5
8
(𝐻 ch1(𝐹))2

𝐻2 ch0 (𝐹)
+ 18 ch0 (𝐹) − 16

𝐻 ch1(𝐹)
𝐻2 ch0 (𝐹)

ch0(𝐹).

This implies

ch2 (𝐹)
𝐻2 ch0 (𝐹)

≤ 5
8

(
𝐻 ch1 (𝐹)
𝐻2 ch0(𝐹)

)2
− 1

8
.

This satisfies the bound of the proposition.
Therefore, if 𝐻 ch1 (𝐹 )

𝐻 2 rk(𝐹 ) ∈ (0, 1), then we have the bound of the proposition. �

Corollary 5.3. Let F be a torsion-free 𝜇𝐻 -slope stable sheaf on 𝑆′. Then the numerical character of F
satisfies the bound of Proposition 5.2.

Proof. This is because if F is 𝜇𝐻 -slope stable, then it is 𝜈𝛼,0,𝐻 -stable for 𝛼 large enough. �

Corollary 5.4. The bound in Proposition 5.2 is also true for 𝑋2,4, where we replace ch2 (𝐹), 𝐻 ch1(𝐹)
and 𝐻2 rk(𝐹) by 𝐻 ch2(𝐹), 𝐻2 ch1(𝐹) and 𝐻3 rk(𝐹).

We get the following bound, which is a little weaker but easier for calculation.

Theorem 5.5. On 𝑋2,4, let F be a slope semistable sheaf in Coh(𝑋2,4) (or 𝜈𝛼,0,𝐻 -tilt semistable object
for 𝛼 > 0, or Brill–Noether semistable). Suppose 𝐻 2 ch1 (𝐹 )

𝐻 3 rk(𝐹 ) ∈ [−1, 1]. Then

𝐻 ch2(𝐹)
𝐻3 rk(𝐹)

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1
2

���𝐻 2 ch1 (𝐹 )
𝐻 3 rk(𝐹 )

��� if
���𝐻 2 ch1 (𝐹 )

𝐻 3 rk(𝐹 )

��� ∈ [0, 1
5 ]

7
16

���𝐻 2 ch1 (𝐹 )
𝐻 3 rk(𝐹 )

��� − 3
16 if

���𝐻 2 ch1 (𝐹 )
𝐻 3 rk(𝐹 )

��� ∈ [ 1
5 ,

1
2 ]

9
16

���𝐻 2 ch1 (𝐹 )
𝐻 3 rk(𝐹 )

��� − 1
4 if

���𝐻 2 ch1 (𝐹 )
𝐻 3 rk(𝐹 )

��� ∈ [ 1
2 ,

4
5 ]

51
44

���𝐻 2 ch1 (𝐹 )
𝐻 3 rk(𝐹 )

��� − 8
11 if

���𝐻 2 ch1 (𝐹 )
𝐻 3 rk(𝐹 )

��� ∈ [ 4
5 ,

10
11 ]

21
11

���𝐻 2 ch1 (𝐹 )
𝐻 3 rk(𝐹 )

��� − 31
22 if

���𝐻 2 ch1 (𝐹 )
𝐻 3 rk(𝐹 )

��� ∈ [ 10
11 , 1]

(5.2)

The equality can only hold when
���𝐻 2 ch1 (𝐹 )

𝐻 3 rk(𝐹 )

��� ∈ {0, 1
5 ,

1
2 ,

4
5 ,

1
4 ,

10
11 , 1}. Moreover, when

���𝐻 2 ch1 (𝐹 )
𝐻 3 rk(𝐹 )

��� ∈ [0, 1
5 ],

𝐻 ch2 (𝐹 )
𝐻 3 rk(𝐹 ) ≤

(
𝐻 2 ch1 (𝐹 )
𝐻 3 rk(𝐹 )

)2
−
���𝐻 2 ch1 (𝐹 )

𝐻 3 rk(𝐹 )

��� holds; when
���𝐻 2 ch1 (𝐹 )

𝐻 3 rk(𝐹 )

��� ∈ [ 1
5 ,

1
4 ],

𝐻 ch2 (𝐹 )
𝐻 3 rk(𝐹 ) ≤ 9

32

���𝐻 2 ch1 (𝐹 )
𝐻 3 rk(𝐹 )

��� − 5
32

holds; when
���𝐻 2 ch1 (𝐹 )

𝐻 3 rk(𝐹 )

��� ∈ [ 1
5 ,

1
2 ],

𝐻 ch2 (𝐹 )
𝐻 3 rk(𝐹 ) ≤ 5

8

(
𝐻 2 ch1 (𝐹 )
𝐻 3 rk(𝐹 )

)2
− 1

8 holds and when
���𝐻 2 ch1 (𝐹 )

𝐻 3 rk(𝐹 )

��� ∈ [
√

13−1
3 , 1],

𝐻 ch2 (𝐹 )
𝐻 3 rk(𝐹 ) ≤

(
𝐻 2 ch1 (𝐹 )
𝐻 3 rk(𝐹 )

)2
− 1

2 holds.

Remark 5.6. As in [Li19a], the method in this paper is expected to apply to other cases. A possible
scheme is the following: One can start with a projective Calabi–Yau threefold X with ample divisor H,
and consider a generic member 𝑌 ∈ |2𝐻 | (or higher multiple of H), and a generic curve 𝐶 ∈ |2𝐻𝑌 |
(and still possible for a higher multiple of 𝐻𝑌 ). The essence is to have a good Bogomolov–Gieseker
inequality for Y. To do this, one can embed C inside a K3 surface of Picard rank 1 (the method here)
or a del Pezzo surface (as in [Li19a, Kos22]), or more generally any surface for which a good Γ-curve
is known. To get a good Γ-curve for a surface, one can repeatedly use the method in this paper and in
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[Li19a]. In particular, we expect that one can prove the Bogomolov–Gieseker inequality for 𝑋3,3 ⊂ P5,
the complete interesection of two generic cubics, by first restricting to the surface 𝑆2,3,3, and then using
the link provided by the curve 𝐶2,2,3,3 to the Bogomolov–Gieseker inequality of 𝑆2,2,3. Applying the
method with the curve 𝑆2,2,3 ⊃ 𝐶2,2,2,3 ⊂ 𝑆2,2,2, we get the Bogomolov–Gieseker inequality for 𝑆2,2,3.
Like the last remark in [Li19a], each deformation type needs a lot of calculation.
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