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Abstract

Let t : Fp →C be a complex valued function on Fp. A classical problem in analytic
number theory is bounding the maximum

M(t) := max
0�H<p

∣∣∣ 1√
p

∑
0�n<H

t (n)

∣∣∣
of the absolute value of the incomplete sums (1/

√
p)

∑
0�n<H t (n). In this very general

context one of the most important results is the Pólya–Vinogradov bound

M(t)�
∥∥t̂
∥∥

∞ log 3p,

where t̂ : Fp →C is the normalized Fourier transform of t . In this paper we provide a lower
bound for certain incomplete Kloosterman sums, namely we prove that for any ε > 0 there
exists a large subset of a ∈ F×

p such that for kla,1,p : x �→ e((ax + x)/p) we have

M(kla,1,p)�
(

1 − ε√
2π

+ o(1)

)
log log p,

as p → ∞. Finally, we prove a result on the growth of the moments of {M(kla,1,p)}a∈F×
p
.

2020 Mathematics Subject Classification: 11L03, 11T23 (Primary);
14F20, 60F10 (Secondary).

1. Introduction

Let p be a prime number and t : Fp →C be a complex valued function on Fp. A classical
problem in analytic number theory is to bound the incomplete sums

S(t, H) := 1√
p

∑
0�n<H

t (n),

for any 0 � H < p. In this very general context, one of the most important results is the
following:

C© The Author(s), 2021. Published by Cambridge University Press on behalf of Cambridge Philosophical Society. This is an Open Access
article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1017/S030500412100030X Published online by Cambridge University Press

https://doi.org/10.1017/S030500412100030X
mailto:dante.bonolis@ist.ac.at
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S030500412100030X


564 DANTE BONOLIS

THEOREM 1·1 (Pólya–Vinogradov bound, [25, 28]). For any 1 � H < p one has

|S(t, H)|� ∥∥t̂
∥∥

∞ log 3p,

where t̂ : Fp →C is the normalised Fourier transform of t

t̂(y) := − 1√
p

∑
0�x<p

t (x)e

(
yx

p

)
,

e(z) := e2π i z , and ‖t̂‖∞ := maxx∈Fp |t̂(x)|.
Pólya and Vinogradov proved this bound only in the case where t = χ is a multiplicative

character over F×
p . On the other hand, their methods can be applyed to any periodic function

over Z (see [9, p. 2] for a proof of Theorem 1·1). Notice that this bound is non-trivial as
soon as H � ‖t̂‖∞

√
p log 3p. If one defines

M(t) := max
0�H<p

|S(t, H)|,

then the Pólya-Vinogradov bound is equivalent to

M(t)�
∥∥t̂
∥∥

∞ log 3p.

A natural question that arises in this setting is the following: given a function t : Fp →C, is
the Pólya-Vinogradov bound sharp for t? And if it is not, what is the best possible bound?

1·1. Kloosterman sums, Birch Sums and main results

The aim of this paper is to study the cases of Kloosterman sums and Birch sums. We recall
here the definitions of these two objects:

i) Kloosterman sums. For any a, b ∈ F×
p , consider

kla,b,p : x �→ e

(
ax + bx

p

)

where x denotes the inverse of x modulo p. The complete sum

Kl(a, b; p) := 1√
p

∑
1�x<p

e

(
ax + bx

p

)

is called the Kloosterman sum associated to a, b. The Riemann hypothesis for curves
over finite fields implies |Kl(a, b; p)|� 2 ( [29]).

i i) Birch sums. For any a, b ∈ F×
p , consider

bia,b,p : x �→ e

(
ax + bx3

p

)
.

The Birch sum associated to a, b is

Bi(a, b; p) := 1√
p

∑
1�x<p

e

(
ax + bx3

p

)
.

In this case as well, an application of the Riemann hypothesis for curves over finite
fields yields to the bound |Bi(a, b; p)|� 2 ( [29]).
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Kloosterman sums and Birch sums arise in many different areas of analytic number theory
such as applications of the circle method, spectral theory, the divisor problem, equidistribu-
tion questions, etc..
It is shown in [21, proposition 4·1] that M(kla,1,p) and M(bia,1,p) can be arbitrarily large
when a varies over F×

p and p goes to infinity: in fact,

lim
p→∞ max

a∈F×
p

M(kla,1,p) = lim
p→∞ max

a∈F×
p

M(bia,1,p) = ∞.

We will prove the following lower bounds:

THEOREM 1·2. Let 0 < ε < 1. For all p, there exists Sp,ε ⊂ F×
p such that:

(i) for any a ∈ Sp,ε one has

M(kla,1,p)�
(

1 − ε√
2π

+ o(1)

)
log log p;

(ii) |Sp,ε| 
ε p1− log 16
(log p)ε .

The same holds if one replaces M(kla,1,p) by M(bia,1,p).

Roughly speaking, the proof of Theorem 1·2 relies on the fact that we can simultaneously
control the sign and the size of 2(log p)1−ε Kloosterman (or Birch) sums. Indeed we will
prove

PROPOSITION 1·3. Let 0 < ε < 1. For every prime p there exists Sp,ε ⊂ F×
p such that for

any a ∈ Sp,ε and for every 1 � n � (log p)1−ε

Kl(an, 1; p)�
√

2,

and for every −(log p)1−ε � n �−1

Kl(an, 1; p)�−√
2.

Moreover |Sp,ε| 
ε p1− log 16
(log p)ε . The same is true if we replace Kl by Bi.

Actually, we are going to prove a slightly more general version of Theorem 1·2 (see next
section).

1·1·1. The growth of the even moments
In the second part of the paper, we focus our attention on the growth of the even moments

of {M(kla,1,p)}a∈F×
p

and {M(bia,1,p)}a∈F×
p

as p → ∞, obtaining:

THEOREM 1·4. There exist two absolute constant 0 < c < 1 < C such that as p → ∞
one has

(c2k + o(1))(log k)2k � 1

p − 1

∑
a∈F×

p

M(kla,1,p)
2k � ((Ck)2k + o(1))(log log p)2k,

for any fixed k � 1.
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THEOREM 1·5. There exist two absolute constant 0 < c < 1 < C such that as p → ∞
one has

(c2k + o(1))(log k)2k � 1

p − 1

∑
a∈F×

p

M(bia,1,p)
2k � (C2k + o(1))P(k),

for any fixed k � 1, where P(k) := exp(4k log log k + k log log log k + o(k)).

From Theorem 1·5 we get the following

COROLLARY 1·6. There exist two absolute constants B, b > 0 such that as A → ∞,

exp(− exp(bA))� lim inf
p→∞

1

p − 1
|{a ∈ F×

p : M(bia,1,p) > A}|� exp
(− exp

(
B A1/2−o(1)

))
.

1·2. Remarks and related works

(i) Notice that in Theorem 1·4 and 1·5 the lower bounds for the moments are identical but
the upper bounds are substantially different: namely, the upper bound in Theorem 1·4
depends on both p and k, while the one in Theorem 1·5 is stronger, since it depends
only on k. In the proof of Theorem 1·5, we use the estimate∣∣∣∣∣∣

∑
N�x�N+H

e

(
ax + x3

p

)∣∣∣∣∣∣� H 1−ε (1·1)

uniformly for any 1 < N < p, p1/2−ε/2 < H < p1/2+ε/2 and a ∈ F×
p which is a conse-

quence of the Weyl inequality ( [16, lemma 20·3]). The analogous estimate that would
be used in Theorem 1·4 (to achieve the same upper bound as in Theorem 1·5) is∣∣∣∣∣∣

∑
N�x�N+H

e

(
ax + x

p

)∣∣∣∣∣∣� H 1−ε (1·2)

uniformly for any 1 < N < p, p1/2−ε/2 < H < p1/2+ε/2 and a ∈ F×
p , but it is only con-

jectured (see for example Hooley’s R∗-assumption, [15, p· 44]). We remark that this
stronger bound for Theorem 1·4 would imply an analogous of 1·6 (obtained from
Theorem 1·5) to Kloosterman sums.

(ii) We remark that Corollary 1·6 essentially recovers [21, theorem 1·6], with a slightly
weaker upper bound. On the other hand, the techniques presented in [21] cannot pro-
vide any non trivial upper bound on the moments of the maximum of incomplete
Kloosterman sums.

(iii) In [1], it is shown that there exists a constant C > 0 such that for any 1 � A �
(2/π)(log log p − 2 log log log p − C) one has that

1

p − 1
|{a ∈ F×

p : M(bia,1,p) > A}| = exp

(
−exp

(
π A

2
+ O(1)

))
. (1·3)

This is a much more precise result than Corollary 1·6, and it is obtained by a refinement
of the argument presented in [22]. On the other hand, the argument in [1], [22] provides
only a lower bound in the case of Kloosterman sums, i.e. one can show that there exists
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a constant D > 0 such that for any 1 � A � (2/π)(log log p − 2 log log log p − D)

one has

1

p − 1
|{a ∈ F×

p : M(kla,1,p) > A}|� exp

(
−exp

(
π A

2
+ O(1)

))
. (1·4)

In particular, it seems that the upper bound in Theorem 1·4 is new. We remark that also
in [1, 22] the difference between incomplete Birch sums and incomplete Kloosterman
sums is due to the fact that the bound in (1·2) is only conjectured. Finally, we notice
that (1·3) and (1·4) imply that there exist S1

p, S2
p ⊂ F×

p such that |S1
p|, |S2

p| 
 p1− 1
log log p

and

M(Im(kla1,1,p))�
(

2

π
+ o(1)

)
log log p, M(Im(bia2,1,p))�

(
2

π
+ o(1)

)
log log p

(1·5)
for any a1 ∈ S1

p and a2 ∈ S2
p.

(iv) One should compare our result with the case of incomplete character sums. Paley
proved that the Pólya–Vinogradov bound is close to be sharp in this case; in [26] it
is shown that there exist infinitely many primes p such that

M

(( ·
p

))

 log log p,

where (·/p) is the Legendre symbol modulo p. Similar results were achieved for
non-trivial characters of any order by Granville and Soundararajan in [14], and by
Goldmakher and Lamzouri in [12] and [13]. On the other hand, Montgomery and
Vaughan ( [23]) have shown that under the Generalised Rienann Hypothesis (GRH).

M(χ) � log log p (1·6)

for any χ , which is the best possible bound up to evaluation of the constant.

1·3. Notations and statement of general versions of the main results

In this section we recall some notions regarding �-adic trace functions. For a general
introduction on this subject we refer the reader to [6]. Basic statements and references can
also be found in [7] and [11]. In what follows, p, � > 2 are distinct primes and i :Q� ↪→C

is a fixed isomorphism. Let F be a middle-extension �-adic sheaf on A
1

Fp
pure of weight 0.

For any x ∈A
1

F
(Fpn ) one defines

tF ,n(x) := i(Tr(Frpn |Fx)),

where Frpn is the geometric Frobenius automorphism of Fpn and Fx is the stalk of F at a
geometric point x over x . The function tF ,n is called the trace function attached to F over
Fpn . If there is no ambiguity, we denote by tF the trace function tF ,1. The main examples of
trace functions we should keep in mind are the following:

(i) for any f ∈ Fp[T ], consider the function x �→ e( f (T )/p); this is the trace function
attached to the Artin-Schreier sheaf Le( f/p) (see [4, chapter 6, sections 1-3]);

(ii) the Birch sums b �→ Bi(a, b; p) can be seen as the trace function attached to the sheaf
FT(Le((aT 3)/p)) ( [17, 7·13, Sp-example (2)]);
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(iii) the n–th HyperKloosterman sums: the map

x �−→ Kln(x; p) := (−1)n−1

p(n−1)/2

∑
y1,...,yn∈F×

p
y1·...·yn=x

e

(
y1 + · · · + yn

p

)
.

can be seen as the trace function attached to the Kloosterman sheaf K�n (see [18] for
the definition of such a sheaf and for its basic properties).

Definition 1·1. [7, Deinition 1·13] Let F be a middle extension �-adic sheaf on A
1

Fp
(see [17,

4·4,4·5]). The conductor of F is defined to be

c(F) := Rank(F) + | Sing(F)| +
∑

x

Swanx(F),

where:

(i) Rank(F) = dim Fx , for any x where F is lisse;

(ii) Sing(F) = {x ∈ P
1

Fp
:F is not lisse at x};

(iii) Swanx(F) for x ∈ P
1

Fp
, is the Swan conductor of F at x (see [18, chapter 1] for the

definition of the Swan conductor).

Remark 1. If F is a middle extension �-adic sheaf on A
1

Fp
of weight zero, then for any

n � 1 and x ∈ Fpn one has that |tF ,n(x)|� Rank(F)� c(F), i.e. ‖t‖∞ � c(F) ( [5, lemma
1·8·1]).

The formalism of trace functions is very powerful, mainly for the following two reasons.
Firstly, because it is very flexible: the set of trace functions is closed under some basic
operations such as sum, product, Fourier transform etc. Secondly, because once we have per-
formed an operation, we can control the conductor of the output in terms of the conductors
of the input data. Indeed, we have for example that:

(a) if F , G are middle-extension �-adic sheaf on A
1

Fp
then F ⊕ G and F ⊗ G are still

middle-extension �-adic sheaf on A
1

Fp
(see for example [11, section 3·4]). Moreover

tF⊕G,n(x) = tF ,n(x) + tG,n(x), and tF⊗G,n(x) = tF ,n(x) · tG,n(x) for any n � 1 and any
x /∈ (Sing(F) ∪ Sing(G)) ∩ Fpn . Finally, c(F ⊕ G)� c(F) + c(G), and c(F ⊗ G)�
5c(F)2c(G)2 ( [6, pp· 6-7], [7, proposition 8·2]).

(b) Let F be a middle-extension �-adic sheaf on A
1

Fp
pure of weight 0 which is irreducible

and not geometrically isomorphic to an Artin–Schreier sheaf of the form Le(aT/p) for

some a ∈ Fp. Then there exists an irreducible middle-extension �-adic sheaf on A
1

Fp

pure of weight 0, FTe(T/p)(F), such that

tFTe(T/p)(F),n(x) = 1

pn/2

∑
y∈Fpn

tF ,n(y)e(TrFpn /Fp(xy)/p)

for any n � 1 and x ∈ Fpn . Moreover, c(FTe(T/p)(F))� 10c(F)2 (see [18, chapters 5, 8]
and [7, proposition 8·2]). In what follows we will denote FTe(T/p)(F) = FT(F) since
there is not ambiguity;
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(c) let F be a middle-extension �-adic sheaf on A
1

Fp
and γ ∈ PGL2(Fp). Then the pull-

back γ ∗F is a middle-extension �-adic sheaf on A
1

Fp
. Moreover, tγ ∗F ,n(x) = tF ,n(γ (x))

for any n � 1 and any x ∈ Fpn and c(γ ∗F , n) = c(F). Concretely, if γ =
(

a b
c d

)
∈

PGL2(Fp), then tγ ∗F (x) = tF ((ax + b)/(cx + d)) for any x ∈ Fp.

Definition 1·2. [8, definition 1·2] Let p, � > 2 be two distinct primes and let r � 1 be an
integer. A middle-extension �-adic sheaf, F , is r-bountiful if

(i) F is pure of weight 0 and Rank(F)� 2,
(ii) the geometric and arithmetic monodromy groups of F satisfy Garith

F = Ggeom
F , and Ggeom

F
is either Spr (C) or SLr (C),

(iii) the projective automorphism group of F
Aut0(F) := {γ ∈ PGL2(Fp) : γ ∗F ∼=F ⊗L for some rank 1 sheaf L}

is trivial.

Definition 1·3. Let p, � > 2 be two distinct primes and let r � 1 be an integer. A family of
�-adic sheaves (Fa)a∈F×

p
is a 1-parameter family of sheaves of Sp2g-type if the following

conditions are satisfied:

(i) for any a ∈ F×
p , Fa is an irreducible middle-extension �-adic Fourier sheaf on A1

Fp

which is pointwise pure of weight 0. We denote by ta the trace function attached to Fa;
(ii) for any a ∈ F×

p , the �-adic Fourier transform FT(Fa) is an 2g-bountiful sheaf such that
Ggeom

FT(Fa) = Sp2g(C);
(iii) for every y ∈ Fp, there exists τy ∈ PGL2(Fp) such that τi �= τ j if i �= j and

t̂a(y) = t̂1(τy · a)

for any a ∈ F×
p , where t̂a(·) denotes the trace functions attached to FT(Fa).

Definition 1·4. Let � be a prime number. A family F= (Fa,p)a∈F×
p ,p is a bounded family of

1-parameter families of sheaves of Sp2g-type if the following conditions hold:

(i) for any prime number p �= �, the family (Fa,p)a∈F×
p

is an 1-parameter family of sheaves
of Sp2g-type;

(iii) there exists C � 1 such that for any p prime and a ∈ F×
p

c(Fa,p)� C.

We call the smallest C with this property the conductor of the family and denote
it by cF;

Remark 2. The last two definitions are similar to [1, definitions 9·4, 9·5]

Definition 1·5. Let F be a bounded family of 1-parameter families of Sp2g-type. For any
A > 0 we define

DF(A) := lim inf
p→∞

1

p − 1
|{a ∈ F×

p : M(ta,p) > A}|,
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where we recall that

M(ta,p) = max
0�H<p

∣∣∣ 1√
p

∑
0�n<H

ta,p(n)

∣∣∣.
Example 1·1. The following families are bounded families of 1-parameter families of Sp2-
type:

(i) the family of Artin–Schreier sheaves
(
Le( ax+x

p )

)
a∈F×

p ,p
. Indeed for any a ∈ F×

p , Le( ax+x
p )

is a middle-extension �-adic Fourier sheaf that is pointwise pure of weight 0, with
cond(Le( ax+x

p )) = 2. Moreover, FT(Le( x+x
p )) =K�2, the Kloosterman sheaf of rank 2

which is 2-bountiful ( [8, paragraph 3·2]), and

FT

(
e

(
ax + x

p

))
(y) = Kl(a + y, 1; p),

so we can take τy :=
(

1 y
0 1

)
in Definition 1·3;

(ii) the family of Artin–Schreier sheaves
(
Le( x+bx

p )

)
b∈F×

p ,p
. It is enough to argue as above

and to observe that

FT

(
e

(
x + bx

p

))
(y) = Kl(b(y + 1), 1; p),

so we can take τy :=
(

y + 1 0
0 1

)
in Definition 1·3;

(iii) fix m ∈Z. The family of Artin–Schreier sheaves
(
Le( ax+max

p )

)
a∈F×

p ,p
is a bounded family

of 1-parameter families of Sp2-type. Also in this case one argues as above and observes
that

FT

(
e

(
ax + max

p

))
(y) = Kl(my + ma, 1; p),

so we can take τy :=
(

my m
1 0

)
in Definition 1·3;

(iv) using similar arguments, one shows that the families(
Le( ax+x3

p )

)
a∈F×

p ,p
,

(
Le( x+bx3

p )

)
b∈F×

p ,p
, and

(
L

e( ax+m(xa)3

p )

)
a∈F×

p ,p

are bounded families of 1-parameter families of Sp2-type.

Then Theorem 1·2 is a consequence of the following:

THEOREM 1·7. Let 0 < ε < 1. Let F= (Fa,p)a∈F×
p ,p be a bounded family of 1-parameter

families of Sp2-type. For every prime p there exists Sp,ε ⊂ F×
p such that:

(i) for any a ∈ Sp,ε,

M(ta,p)�
(

1 − ε√
2π

+ o(1)

)
log log p;
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(ii) |Sp,ε| 
ε,CF
p1− log 16

(log p)ε .

Similarly, Theorems 1·4 and 1·5 are a consequence of:

THEOREM 1·8. Let F= (Fa,p)a∈F×
p ,p be a bounded family of 1-parameter families of

Sp2g-type. There exist two constants and 0 < c < 1 < C that depend only on cF such that
for any fixed k � 1 ,

((cg)2k + o(1))(log k)2k � 1

p − 1

∑
a∈F×

p

M(ta,p)
2k � ((Ck)2k + o(1))(log log p)2k .

If, moreover, there exists ε > 0 such that∣∣∣ ∑
N�x�N+H

ta,p(x)

∣∣∣�cF H 1−ε (1·7)

uniformly for any 1 < N < p, p1/2−ε/2 < H < p1/2+ε/2 and a ∈ F×
p , then for any fixed k � 1

one has

((cg)2k + o(1))(log k)2k � 1

p − 1

∑
a∈F×

p

M(ta,p)
2k � (C2k + o(1))P(k),

where P(k) = exp(4k log log k + k log log log k + o(k)).

We then obtain:

COROLLARY 1·9. Under the same hypothesis as Theorem 1·8, we have that:

(i) for any A > 0,

DF(A)� exp(− exp(bA)),

where b > 0 depends only on cF;
(ii) if condition (1·7) holds, there exists a constant B > 0 depending only on CF such that

for A → ∞
DF(A)� exp

(− exp
(
B A1/2−o(1)

))
.

2. Proof of Theorem 1·7
2·1. First step: Fourier expansion and Féjer Kernel

The first step is to prove a quantitative version of the Fourier expansion for
(1/

√
p)

∑
x�αp t (x).

LEMMA 2·1. Let t : Fp →C be a complex valued function on Fp. Then for any 0 < α < 1
and 1 � N � p we have

1√
p

∑
x�αp

t (x) = − 1

2π i

∑
1�|n|�N

t̂(n)

n
(1 − e(−αn)) + αt̂(0) + O

(‖t‖∞
√

p log p

N

)
,

where the implied constant is absolute.
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Remark 3. In the case where t = χ is a multiplicative character, we recover [25] (and
indeed the proof of Lemma 2·1 closely follows the one in [25]). The result in [25] has
been extensively used in many works on the maximum of incomplete character sums, such
as [2, 12–14, 23, 24, 26] among others.

Proof. Let us introduce the function


α(s) =

⎧⎪⎪⎨
⎪⎪⎩

1 if 0 < s < 2πα,

1
2 if s = 0 or s = 2πα,

0 if 2πα < s < 2π.

Then the Fourier series of 
α is


α(s) = α +
∑
n>0

sin(2παn)

πn
cos(ns) − cos(2παn − 1)

nπ
sin(ns)

= α + 1

π
T (s) − 1

π
T (s − 2πα),

where

T (x) :=
∑
n>0

sin(nx)

n
.

Observe that for any N > 1 one has

T (x) =
∑

0<n�N

sin(nx)

n
+ RN (x),

with RN (0) = RN (π), RN (2π − x) = −RN (x) and RN (x) = O(1/(N x)) for any x ∈ (0, π]
[25, equation 10]. it follows that

1√
p

∑
x�αp

t (x) = 1√
p

∑
x<p

t (x)
α

(
2πx

p

)
+ O(‖t‖∞ /

√
p)

= 1√
p

∑
x<p

t (x)

(
α + 1

π
T

(
2πx

p

)
− 1

π
T

(
2πx

p
− 2πα

))
+ O

(‖t‖∞√
p

)

= 1√
p

∑
x<p

t (x)

(
α + 1

π

∑
0<n�N

sin
(

2πnx
p

)
n

+ 1

π
RN

(
2πx

p

)

− 1

π

∑
0<n�N

sin
(

2πnx
p − 2παn

)
n

+ 1

π
RN

(
2πx

p
− 2πα

))
+ O

(‖t‖∞√
p

)

= 1√
p

∑
x<p

t (x)

⎛
⎝ 1

π

∑
0<n�N

sin
(

2πnx
p

)
n

− 1

π

∑
0<n�N

sin
(

2πnx
p − 2παn

)
n

⎞
⎠

+ αt̂(0) + O

(‖t‖∞
√

p log p

N

)
.
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On the other hand, we have

sin
(

2πnx
p

)
= e

(
nx
p

)
−e

(
− nx

p

)
2i , sin

(
2πnx

p − 2πα
)

= e
(

nx
p −αn

)
−e

(
−
(

nx
p −αn

))
2i .

Then,

1√
p

∑
x∈Fp

t (x)

⎛
⎝e

(
nx
p

)
− e

(
− nx

p

)
2i

⎞
⎠= − 1

2i
(t̂(n) − t̂(−n)),

and similarly

1√
p

∑
x∈Fp

t (x)

⎛
⎝e

(
nx
p − αn

)
− e

(
−
(

nx
p − αn

))
2i

⎞
⎠= − 1

2i
(e(−αn)t̂(n) − e(αn)t̂(−n)).

Now we use the strategy of [26], introducing the Fejér kernel:

LEMMA 2·2. For any t : Fp →C,

M(t)� max
α∈[0,1]
1�N<p

∣∣∣ 1

4π

∑
1�|n|<N

t̂(n)

n
(1 − e(−αn))

∣∣∣+ O
(∥∥t̂

∥∥
∞
)
.

Proof. The quantitative version of the Fourier transform (Lemma 2·1) leads to

1√
p

∑
x�αp

t (x) = − 1

2π i

∑
1�|n|�p

t̂(n)

n
(1 − e(−αn)) + αt̂(0) + O(1)

= − 1

2π i

∑
1�|n|<p

t̂(n)

n
(1 − e(−αn)) + O

(∥∥t̂
∥∥

∞
)
.

We now extend the outer sum to all values modulo p using the Fejér kernel: for any 1 <

N < p, we have

1

2π i

∑
1�|n|�N

t̂(n)

n
(1 − e(−αn)) = 1

2π i

∑
1�|n|�p

t̂(n)

n
(1 − e(−αn))·

∑
1<|a|�N

φ(a)

∫ 1

0
e((a − n)ϑ)dϑ + O

(∥∥t̂
∥∥

∞
)

=
∫ 1

0
A(ϑ)
N (ϑ)dϑ + O

(∥∥t̂
∥∥

∞
)
,

(2·1)

where

φ(a) := 1 − |a|
N

, 
N (ϑ) :=
∑

|a|�N

φ(a)e(aϑ) = 1

N

(
sin Nϑ

2

sin ϑ

2

)2

(2·2)
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is the Féjer Kernel, and

A(ϑ) : = 1

2π i

∑
1�|n|�p

t̂(n)

n
(1 − e(−αn))e(−ϑn) = 1

2π i

∑
1�|n|�p

t̂(n)

n
(e(−ϑn) − 1 + 1 − e(−(ϑ + α)n))

− 1

2π i

∑
1�|n|�p

t̂(n)

n
(e(−ϑn) − 1) + 1

2π i

∑
1�|n|�p

t̂(n)

n
(1 − e(−(ϑ + α)n)).

By the triangle inequality,

max
ϑ∈[0,1]

|A(ϑ)|� 2 max
α∈[0,1]

∣∣∣ 1

2π i

∑
1�|n|�p

t̂(n)

n
(1 − e(−αn))

∣∣∣
� 2 max

α∈[0,1]

∣∣∣ 1√
p

∑
x�αp

t (x)

∣∣∣+ O
(∥∥t̂

∥∥
∞
)

� 2M(t) + O
(∥∥t̂

∥∥
∞
)
.

Thus, we get

∣∣∣ 1

4π i

∑
1�|n|�N

t̂(n)

n
(1 − e(−αn))

∣∣∣� (
M(t) + O

(∥∥t̂
∥∥

∞
)) ·

∫ 1

0

N (ϑ)dϑ. (2·3)

Using the fact that
∫ 1

0 
N (ϑ)dϑ = 1, we conclude the proof.

To conclude the proof of Theorem 1·7, it is sufficient to prove the following generalisation
of Proposition 1·3:

PROPOSITION 2·3. For any prime p, let K be the trace function attached to an irreducible

2-bountiful sheaf K on A
1

Fp
. Fix 0 < ε < 1. For every 1 � |n|� (log p)1−ε, set τn ∈ PGL2(Fp)

such that τn �= τm if n �= m. Then there exists Sp,ε ⊂ F×
p such that for any a ∈ Sp,ε

K (τn · a)�
√

2

for any 1 � n � (log p)1−ε, and

K (τn · a)�−√
2

for any −(log p)1−ε � n �−1. Moreover |Sp,ε| 
ε,c(K) p1− log 16
(log p)ε .

Remark 4. Since Sp2(C) = SL2(C), when considering a 2-bountiful sheaf K there is no need
to specify the monodromy groups of K.

Assuming this Proposition, whose proof is to be found in the next section, we prove
Theorem 1·7. Applying Lemma 2·2 for t = ta,p, and using the fact that ‖t̂a,p‖∞ �
c(FT(Fa,p))� 10c(Fa,p)

2 � 10c2
F (see Remark 1 and [7, proposition 8·2]), we get
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M(ta,p) = max
α∈[0,1]

∣∣∣ 1√
p

∑
x�αp

ta,p(x)

∣∣∣
� 1

4π
max

α∈[0,1],
1�N<p

∣∣∣ ∑
1�|n|�N

t̂a,p(n)

n
(1 − e(−αn))

∣∣∣+ Oc(F)(1)

= 1

4π
max

α∈[0,1],
1�N<p

∣∣∣ ∑
1�|n|�N

t̂1,p(τn · a)

n
(1 − e(−αn))

∣∣∣+ Oc(F)(1)

� 1

4π

∣∣∣ ∑
1�|n|�(log p)1−ε

t̂1,p(τn · a)

n
(1 + (−1)n+1)

∣∣∣+ Oc(F)(1),

where the second step uses the fact that t̂a,p(n) = t̂1,p(τn · a) (property (iii) in Definition 1·3).
Applying Proposition 2·3 to K = t̂1,p, there exists Sp,ε ⊂ F×

p such that for any a ∈ Sp,ε

M(ta,p)�
2
√

2

4π

∑
1�|n|�(log p)1−ε

n≡1(2)

1

n
+ Oc(F)(1)�

(
1 − ε√

2π
+ o(1)

)
log log p,

and this concludes the proof of Theorem 1·7.

2·2. Preliminars for the proof of Proposition 2·3: Chebyshev polynomials

Consider an irreducible 2-bountiful sheaf K on A
1

Fp
, and denote the trace function attached

to it by K (·, r) = tK,r (·), where K (·) = K (·, 1) if there is no ambiguity. Combining the fact
that Ggeom

K = Garith
K = SL2(C) (property (ii) in the definition of 2-bountiful) together with

Deligne’s Equidistribution Theorem ( [18, chapter 3]), it follows that for any r � 1, and
a ∈ Fpr one has

K (a, r) = 2 cos(θ(a, r)) (2·4)

with θ(a, r) ∈ [0, π], and that when r → ∞ the angles {θ(a, r) : a ∈ Fr
p} equidistribute in

the interval [0, π] with respect to the pushforward of the Haar measure of SU2(C) ⊂ SL2(C),
which is the Sato–Tate measure μST = (2/π)

∫
sin2 dθ ( [18, chapter 13]). Moreover, for any

n � 1 one can consider the the middle-extension �-adic sheaf Symn K. Then, for any r � 1
and a ∈ Fpr one has that

tSymn K,r (a) = sin((n + 1)θ(a, r))

sin(θ(a, r))
= Un(K (a, r)),

where the angles θ(a, r) are the same as in (2·4) and U (n) ∈Z[θ] (see [18, chapters 3, 13]
for a discussion on the sheaf Symn K). In terms of representation theory, the polynomials Un

are all the irreducible characters of SU2(C). In particular, by the Peter–Weyl Theorem, these
polynomials form an orthonormal basis of L2([0, π], μST). Finally, we call a trigonometric
polynomial of degree s � 0 any Y ∈ L2([0, π], μST) of the form

Y =
s∑

j=0

y( j)U j . (2·5)

with y(s) �= 0. We refer to s as the Chebyshev degree of Y .
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Remark 5. Let f ∈ L2([0, π], μST ). We can decompose f using the orthonormal basis
{Un}n , i.e. we can write f as

f =
∑

n

anUn, (2·6)

where

an =
∫ π

0
f (θ)Un(θ)dμST.

The decomposition (2·6) is called the Chebyshev expansion of f .

Let us begin by proving some properties of the sheaf Symn(K).

LEMMA 2·4. Let K as above. For any n > 0:

(i) the geometric monodromy group of Symn(K) is given by

Ggeom
Symn(K)

∼=
{

SL2(C) if n is odd,

PSL2(C) if n is even;

(ii) the projective automorphism group

Aut0(Symn(K)) = {
γ ∈ PGL2(Fp) :γ ∗ Symn(K) ∼= Symn(K) ⊗L

for some rank 1 sheaf L}
is trivial;

(iii) the conductor of Symn(K) is bounded by

c(Symn(K))� n · c(K);
(iv) if n1 �= n2, then Symn1(K) �∼= Symn2(K) ⊗L for any rank one sheaf L.

Proof. For part (i), recall that by definition of the geometric monodromy group, Ggeom
Symn(K)

=
Symn(Ggeom

K ). Then the result follows since Ggeom
K = SL2(C) by hypothesis. For part (i i), let

γ ∈ PGL2(Fp). First observe that for any r � 1, and x ∈ Fpr we have that

tSymn(K),r (x) = sin((n + 1)θ(x, r))

sin(θ(x, r))
, tγ ∗ Symn(K),r (x) = sin((n + 1)θ(γ · x, r))

sin(θ(γ · x, r))
,

where θ(x, r) is as in (2·4). By contradiction, assume that γ ∗ Symn(K) ∼= Symn(K) ⊗L for

some rank one sheaf, and let U ⊂A
1

Fp
be a dense open set where γ ∗ Symn(K), Symn(K)

and L are all lisse. Then for any x ∈ U (Fpr ),

tγ ∗ Symn(K),r (x) = tSymn(K)⊗L,r (x) = tSymn(K),r (x) · tL,r (x).

On the other hand, γ ∗ Symn(K) and Symn(K) are pure of weight 0, and therefore L is pure
of weight 0, i.e. we have that |tL,r (x)| = 1 for any r � 1 and x ∈ U (Fpr ). It follows that for
any x ∈ U (Fpr )

|tγ ∗ Symn(K),r (x)| = |tSymn(K),r (x)|. (2·7)
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Due to the fact that K is a bountiful sheaf, an application of the Goursat–Kolchin–Ribet
criterion as stated in [8, lemma 2·4] combined with Deligne’s equidistribution Theorem ( [5,
section 3·5]) implies that the angles {(θ(x, r), θ(γ · x, r)) : x ∈ Fpr } become equidistributed
in ([0, π] × [0, π], μST ⊗ μST) as r → ∞. Now consider

�1 =
{
θ ∈ [0, π] :

∣∣∣∣sin((n + 1)θ)

sin(θ)

∣∣∣∣< 1

4

}
, �1 =

{
θ ∈ [0, π] :

∣∣∣∣sin((n + 1)θ)

sin(θ)

∣∣∣∣> 3

4

}
.

It easy to see that �1, �2 are non empty open subsets of [0, π]. Then we have that

|{x ∈ Fpr : (θ(x, r), θ(γ · x, r)) ∈ �1 × �2}|
pr

−→ μST(�1) · μST(�2) > 0,

when r → ∞. Hence, for r large enough, we can find x ∈ U (Fpr ) such that

|tSymn(K),r (x)| < 1/4, |tγ ∗ Symn(K),r (x)| > 3/4.

But this contradicts (2·7). The proof of part (iii) is included in the proof of Deligne’s
Equidistribution Theorem (see for example [18, paragraph 3·6]). For part (iv), it is enough
to observe that the sheaves Symn1(K) and Symn2(K) are irreducible (see [11, p· 155]) and
that Rank(Symn1(K)) = n1 + 1, while Rank(Symn2(K) ⊗L) = Rank(Symn2(K)) = n2 + 1.

LEMMA 2·5. Let d � 0. Let (Yi )
n
i=0 be a family of trigonometric polynomials

Yi =
deg Yi∑

j=0

yi ( j)U j

such that deg Yi � d for all i , and let (τi )
n
i=1 ∈ PGL2(Fp)

n be such that τi �= τ j for i �= j then

∣∣∣ ∑
a∈F×

p

n∏
i=0

Yi (θ(τi · a)) − p
n∏

i=0

yi(0)

∣∣∣� 10n · c(K)2d2n+2 yn√p, (2·8)

where y = maxi, j |yi ( j)|.
Proof. It is enough to study

S =
∑
a∈F×

p

n∏
i=0

Uni (K (τi · a)),

for any ni � 0, by following the proof of [8, proposition 1·1] and [27, proposition 4·1]. Let

us denote by F =⊗
i τ ∗

i Symni (K) and let U ⊂A
1

Fp
be the largest open subset on which F

is lisse. Notice that tF (a) =∏n
i=0 Uni (K (τi · a)) for any a ∈ U (Fp). Then

|S −
∑

a∈U (Fp)

n∏
i=0

Uni (K (τi · a))|�
∑

i

c(τ ∗
i Symni (K)),

since all the sheaves are pure of weight 0. On the other hand, the Grothendieck–Lefschetz
formula gives

∑
a∈U (Fp)

n∏
i=0

Uni (K (τi · a)) =
2∑

i=0

(−1)i Tr(Fr |H i
c (U,F)).
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Since F is a middle-extension sheaf (as the product of middle-extension sheaves is a middle-
extension sheaf), it follows that H 0

c (U,F) = 0. Moreover, according to parts (iii),(iv)
to Lemma 2·4 and the discussion in [8, paragraph 3·1] we have that the (n + 1)-tuple
{τ ∗

i Symni (K)}n
i=0 is a strictly U -generous in the sense of [8, defintion 2·1]. Thus, we may

use [8, theorem 2·7] to obtain

dim
(
H 2

c (U,F)
)=

n∏
i=0

Mni

where Mni := Mult(1, Symni Std) is the multiplicity of the standard representation of
SL2(C), Std, in Symni Std. On the other hand, Symni Std is irreducible for any ni , and it
is trivial if and only if ni = 0. Thus, we have that

Mni =
{

1 if ni = 0,

0 otherwise.
(2·9)

Hence,∣∣∣∣∣∣
∑

a∈U (Fp)

n∏
i=0

Uni (K (τi · a)) − p
n∏

i=0

Mni

∣∣∣∣∣∣= | Tr(Fr |H 1
c (U,F))|� dim(H 1

c (U,F))
√

p,

by the Riemann Hypothesis over finite fields ( [5]). It remains to bound dim(H 1
c (U,F)). We

start by applying the Euler-Poincaré formula, obtaining

dim(H 1
c (U,F)) = (2 − (Sing F)) Rank(F) +

∑
x∈P1

Fp

Swanx(F) + dim(H 2
c (U,F))

� (2 − (Sing F)) Rank(F) +
∑

x∈P1
Fp

Swanx(F) + 1,

by (2·9). It is shown in [7, proposition 8·2] that

Rank(F) =
∏

i

Rank
(
τ ∗

i Symni (K)
)=

∏
i

Rank (Symni (K))� max
i

(Rank (Symni (K)))
n

and that

| Sing(F)|�
∑

i

| Sing
(
τ ∗

i Symni (K)
) |� n max

i
(c (Symni (K))) .

Let us compute Swanx(F) for every x ∈ P
1

Fp
. For any i , let λi (x) be the largest break of

Symni (K) at x and let λx be the largest break of F at x . Using [18, lemma 1·3], we get that

λ(x)� max
i

λi(x).

Hence,

Swanx(F)� Rank(F) · λx(F)� max
i

(Rank(Symni (K)))n · max
i

(c(Symni (K)))
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and therefore

dim(H 1
c (U,F))� Rank(F)| Sing F | + | Sing(F)| · max

x
Swanx(F)

� 10n · (max
i

Rank(Symni (K))n · (max
i

c(Symni (K))2.

Putting it all together, we get that∣∣∣∣∣∣
∑

a∈U (Fp)

n∏
i=0

Uni (K (τi · a)) − p
n∏

i=0

Mni

∣∣∣∣∣∣= | Tr
(
Fr |H 1

c (U,F)
) |� L

√
p,

where L = 10n · (maxi Rank(Symni (K))n · (maxi c(Symni (K))2. And otherwise, if there
exists an i for which ni �= 0, we have

|S|� L
√

p.

The result then follows from the fact that

Rank(Symni (K)) = ni + 1 � 2d, and c(Symni (K))� ni c(K)� dc(K),

because ni � d for every i by assumption.

2·3. Proof of Proposition 2·3
Fix m, γ ∈N. To each a ∈ Fx

p we associate a point in [0, π]2m by defining

θ(a) = (θ(τ−m .a), · · · θ(τ−1.a), θ(τ1 · a), · · · , θ(τm · a))),

where θ(τi · a) is the angle associated to K (τi · a) accordingly with Section 2·2. Moreover,
we denote by χ 1

γ
(·) (resp. χ− 1

γ
(·)) the characteristic function of the interval [0, π/2 − π/γ ]

(resp.[π/2 + π/γ, π]). To prove Proposition 2·3, we start by approximating the values of
the product

m∏
i=1

χ 1
γ
(θ(τi · a))

m∏
i=1

χ− 1
γ
(θ(τ−i · a))

using Chebyshev polynomials. We use the same method adopted in [20, section 3]: for any
m, we find an integer L ≡ −1( mod 2γ ) and two families of trigonometric polynomials
{αL ,i }, and {βL ,i } such that for

AL

(
θ(a)

π

)
=

∏
1�|i |�m

αL ,i

(
θ(τi · a)

π

)
,

BL

(
θ(a)

π

)
=

∑
1�|i |�m

βL ,i

(
θ(τi · a)

π

)∏
j �=i

αL , j

(
θ(τi · a)

π

)
,

the following inequality holds for any a ∈ Fp

AL

(
θ(a)

π

)
− BL

(
θ(a)

π

)
�

m∏
i=1

χ 1
γ
(θ(τi · a))

m∏
i=1

χ− 1
γ
(θ(τ−i · a)). (2·10)

Moreover, this approximation satisfies the following properties.
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LEMMA 2·6. With the notations above, we have:

(i) there exist two constants L0 � 1 and c > 0 depending only on γ , such that the contri-
bution � of the constant term in the Chebyshev expansions of AL

(
θ/π

)− BL

(
θ/π

)
satisfies:

�� 1

2

(
1

2
− 1

γ

)2m

,

when L is the smallest integer such that L ≡ −1 mod 2γ and L � max(cm, L0);
(ii) All the coefficients in the Chebyshev expansion (see Remark 5) of the factors in

AL

(
θ/π

)
and all the terms in BL

(
θ/π

)
are bounded by 1.

(iii) The Chebyshev degree of the factors of AL

(
θ/π

)
and BL

(
θ/π

)
are � 2L.

Assuming this Lemma, we can easily prove Proposition 2·3. Fix γ = 1/4 in Lemma 2·6
and denote

Sp,m := {a ∈ F×
p : K (τn · a)�

√
2, K (τ−n · a)�−√

2 for any n = 1, ..., m}.
Notice that a ∈ Sp,m if and only if θ(a) ∈ [−π

2 , −π

4 ]m × [0, π

4 ]m . Let L be as in part (i) of
Lemma 2·6; then

|Sp,m | =
∑
a∈F×

p

m∏
i=1

χ 1
4
(θ(τi · a))

m∏
i=1

χ− 1
4
(θ(τ−i · a))

�
∑
a∈F×

p

(
AL

(
θ(a)

π

)
− BL

(
θ(a)

π

))

= p� + O(mc(K)2L4m+2√p)

� 1

2

(
1

4

)2m

p + O(mc(K)2L4m+2√p),

(2·11)

where in the second step we use Lemma 2·5. Also notice that:

(i) the condition τi �= τ j for i �= j is satisfied by definition of 1-parameter family;
(ii) by part (ii) of Lemma 2·6 we have that y in Lemma 2·5 is equal to 1.

Let us denote δ = 1 − ε and consider m = [(log p)δ]. By part (i) of Lemma 2·6 we know
that max(cm, L0)� L � max(2γ cm, L0). We may assume cm � L � 2γ cm, because L0 is
an absolute constant (it depends only on γ = 1/4). Then

mc(K)2L2m+2√p � 2(log p)δc(K)2(2γ c(log p)δ)4(log p)δ+2√p

= o((log p)10δ(log p)δ√p)

= o(p
1
2 +η),

(2·12)

for any η > 0. On the other hand, we have

(
1

4

)2m



(

1

4

)2(log p)δ

= e− log 16(log p)δ = e− log 16 log p
(log p)ε = p− log 16

(log p)ε .
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Thus, we obtain

|Sp,[(log p)1−ε]| 
ε p1− log 16
(log p)ε ,

as we desired.

Proof of Lemma 2·6. The proof utilises ideas from [20, lemma 3·2] and [3]. Let x :=
(x−m, . . . , x−1, x1, . . . xm) ∈ [0, 1]2m . We first construct the polynomial AL(x). Since
AL (x) =∏

1�|i |�m αL ,i (xi ), it is sufficient to define the αL ,i s:

(i) if 1 � i � m, αL ,i is a trigonometric polynomial in one variable∑
|�|�L

α̂L ,+(�)e(�x),

where the α̂L ,+(�)s are defined as in [3, (2·2), lemma 5, (2·17)] with u = 0, v = 1/2 −
1/γ ;

(ii) if −m � i � 1, αL ,i is a trigonometric polynomial in one variable∑
|�|�L

α̂L ,−(�)e(lx)

where the α̂L ,−(�)s are defined as in [3, (2·2), lemma 5, (2·17)] with u = 1/2 + 1/γ ,
v = 1.

Let us focus on the definition of B(x). Since we want BL (x) =∑
1�|i |�m

βL ,i (xi )
∏

j �=i αL , j (xi), in order to construct BL(x) it is sufficient to define βL ,i for
any 1 � |i |� m:

(i) for 1 � i � m, define

βL ,i(x) = 1
2(L+1)

⎛
⎝∑

|�|�L

(
1 − |�|

L+1

)
e(�x) +

∑
|�|�L

(
1 − |�|

L+1

)
e
(
�
(

x − 1
2 + 1

γ

)⎞⎠

= 1
2(L+1)

⎛
⎝2 +

∑
1���L

(
1 − �

L+1

) (
cos

(
π� − 2π�

γ

)

+ sin
(
π� + 2π�

γ

)
+ 1

)
cos(2π�x)

)
;

(ii) for −m � i � 1, define

βL ,i(x) = 1
2(L+1)

⎛
⎝∑

|�|�L

(
1 − |�|

L+1

)
e
(
�
(

x − 1
2 − 1

γ

))
+

∑
|�|�L

(
1 − |�|

L+1

)
e(�(x − 1)

⎞
⎠

= 1
2(L+1)

⎛
⎝2 +

∑
1���L

(
1 − �

L+1

) (
cos

(
−π� − 2π�

γ

)

+ sin
(
−π� − 2π�

γ

)
+ 1

)
cos(2π�x)

)
.
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Remember that the nth coefficients in the Chebychev expansions of αL ,i and βL ,i are given by∫ π

0
αL ,i

(
θ

π

)
Un(θ)dμst and

∫ π

0
βL ,i

(
θ

π

)
Un(θ)dμst

respectively; then part (iii) immediately follows, since the above integrals vanish when n >

2L . In [3, lemma 5] it is shown that 0 � αL ,i(x)� 1 for x ∈ [0, 1]. On the other hand, one
has that 0 � |βL ,i(x)|� 1 for any i and for any x ∈ [0, 1] by definition. Using the Cauchy-
Schwarz inequality, we have

∣∣∣ ∫ π

0
αL ,i

(
θ

π

)
Un(θ)dμst

∣∣∣2 � ∫ π

0
|αL ,i

(
θ

π

)
|2dμst ·

∫ π

0
|Un(θ)|2dμst � 1,

and the same argument can be used for βL ,i , which proves part (ii). It remains to prove part
(i). For any trigonometric polynomial Y , the constant term of its Chebyshev expansion is
given by ∫ π

0
Y (θ)dμst .

so we have that � in part (i) is given by

� =
(∫ π

0
αL ,1

(
θ

π

)
dμst

)m (∫ π

0
αL ,−1

(
θ

π

)
dμst

)m

− m
∫ π

0
βL ,1

(
θ

π

)
dμst

(∫ π

0
αL ,1

(
θ

π

)
dμst

)m−1 (∫ π

0
αL ,−1

(
θ

π

)
dμst

)m

− m
∫ π

0
βL ,−1

(
θ

π

)
dμst

(∫ π

0
αL ,1

(
θ

π

)
dμst

)m (∫ π

0
αL ,−

(
θ

π

)
dμst

)m−1

.

Using the definition of βL ,±1 we get∫ π

0
βL ,±1(

θ

π
)dμst = 1

L + 1
,

so we can write � as

� =
(∫ π

0
αL ,1

(
θ

π

)
dμst

)m (∫ π

0
αL ,−1

(
θ

π

)
dμst

)m

− m

L + 1

(∫ π

0
αL ,1

(
θ

π

)
dμst

)m−1 (∫ π

0
αL ,−1

(
θ

π

)
dμst

)m

− m

L + 1

(∫ π

0
αL ,1

(
θ

π

)
dμst

)m (∫ π

0
αL ,−1

(
θ

π

)
dμst

)m−1

.

Notice that αL ,±1 → χ± 1
γ

in L2([0, 1]) L → ∞. Moreover, from [3, (2·6)] one has

|χ± 1
γ
(x) − αL ,±1(x)|� |βL ,±1(x)| 0 � x � 1.

From the Fourier expansion of βL ,±1(x),

||βL ,±1||2L2 �
8 + 3L

(2L + 2)2
−→ 0.
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Thus,

∫ π

0
αL ,1±

(
θ

π

)
dμst −→

∫ π

0
χ± 1

γ

(
θ

π

)
dμst = 1

2
− 1

γ
+

sin

(
π

γ

)
cos

(
π

γ

)
π

.

This implies that there exists L0, such that
∫ π

0 αL ,1±
( θ

π

)
dμst � 1/2 − 1/γ . Hence,

��
(

1

2
− 1

γ

)2m−2
((

1

2
− 1

γ

)2

− 3m

L + 1

)
. (2·13)

If we assume further that L + 1 � 6m (1/2 − 1/γ )−2, we obtain

�� 1

2

(
1

2
− 1

γ

)2m

(2·14)

as desired.

3. Moments: proof of Theorem 1·8
3·1. An auxiliary lemma

The following Lemma will be instrumental to the proof of Theorem 1·8.

LEMMA 3·1. Assume the notation of Theorem 1·8, and let 0 � α < β � 1. Then for every
k � 2 there exist two constants C1, C2 � 1 depending only on cF, such that

1

p − 1

∑
a∈F×

p

∣∣∣ 1√
p

∑
αp<x�βp

ta,p(x)

∣∣∣2k
� C2k

1 (log k)2k (β − α)
2k

log k + C2k
2 p− 1

2 (log p)2k .

Proof. We start by applying Lemma 2·1 to obtain

1√
p

∑
αp<x�βp

ta,p = 1

2π i

∑
1�|n|�p/2

t̂a,p(n)

n
(1 − e((β − α)n))e(αn)

+ (β − α)t̂a,p(0) + O(1).

To simplify the notation, define for any −p/2 � n � p/2

cn := (1 − e((β − α)n))e(αn)

n
,

so we can write the above equation as

1√
p

∑
αp<x�βp

ta,p(x) = 1

2π i

∑
1<|n|<p/2

t̂a,p(n)cn + (β − α)t̂a,p(0) + O(1).
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By the triangle inequality,

1

p − 1

∑
a∈F×

a

∣∣∣ 1√
p

∑
αp<x�βp

ta,p(x)

∣∣∣2k
� 1

(p − 1)π2k

∑
a∈F×

p

∣∣∣ ∑
1<|n|<p/2

t̂a,p(n)cn

∣∣∣2k

+ O
(
24k + 24k(β − α)2kc2k

F

)
= 1

(p − 1)π2k

∑
a∈F×

p

∣∣∣ ∑
1<|n|<p/2

t̂1,p(τn · a)cn

∣∣∣2k

+ O
(
24k + 24k(β − α)2kc2k

F

)
,

(3·1)

where in the first inequality we use the fact that ‖t̂a,p‖∞ � c(FT(Fa,p))� 10c(Fa,p)
2 � 10c2

F

(see Remark 1 and [7, proposition 8·2]). Moreover, since we are assuming that Ggeom
F1,p

=
Garith

F1,p
= Sp2g(C), it follows that t̂1,p(τy · a) ∈ Tr(USp2g(C)) = [−2g, 2g], i.e. t̂a,p is a real

function for any p and a ∈ F×
p . Let us bound the first term in the right-hand side of (3·1).

Expanding the 2kth power we get

∑
a∈F×

p

∑
n1

· · ·
∑

nk

∑
l1

· · ·
∑

lk

k∏
i=1

t̂1,p(τni · a)t̂1,p(τli · a)cni cli .

Arguing as in Lemma 2·5, we obtain that

∣∣∣ ∑
a∈F×

p

k∏
i=1

t̂1,p(τni · a)t̂1,p(τli · a) − m(τ n,l)p
∣∣∣� δ2k

1

√
p,

where the constant δ1 depends only on cF, τ n,l := (τn1, . . . τnk , τl1, . . . , τln ), and

m(τ n,l) =
∏

τ∈τ n,l

mult1(Std⊗mτ ),

where mτ is the multiplicity of τ in the tuple τn,l and Std is the standard representation of
Sp2g(C) ( [8, corollary 1·7]). Notice that m(τ n,l) �= 0 if and only if mτ is even for any τ

occurring in τ n,l ( [8, corollary 1·6]). From this we get

∑
a∈F×

p

∣∣∣ ∑
1<|n|<p/2

t̂a,p(n)cn

∣∣∣2k
� A + B,

where

A = p
∣∣∣∑

n,l

cn1 · ... · cnk cl1 · ... · clk m(τ n,l)

∣∣∣,
and

B =
∣∣∣√pδ2k

1

∑
n,l

cn1 · ... · cnk cl1 · ... · clk

∣∣∣.
Let us first bound B:

B �√
pδ2k

1

∑
n,l

|cn1 | · ... · |cnk ||cl1 | · ... · |clk | =
√

pδ2k
1

(∑
n

|cn|
)2k

.
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On the other hand

|cn|� 2 min

(
1

n
, (β − α)π

)
� 2

n
,

hence B �√
pC2k

2 (log p)2k for some C2 > 0 depending only on cF. To bound A, we can
proceed as follows: by definition, m(τ n,l)� γ 2k

1 for some γ1 depending only on cF. Thus,

A � γ 2k
1 p

∑
m

∑
(m1··· ,m2k )∈ν(m)

cm1 · · · cm2k , (3·2)

where ν(m) := {(m1, . . . , m2k) : m1 · · · m2k = m any mi appears an even number of times}.
On the other hand, for any (m1, ..., m2k) ∈ ν(m) we have that

cm1 · · · cm2k � 22k min

(
1

m
, ((β − α)π)2k

)
=: c(m).

Let us focus our attention on the size of |ν(m)|. First observe that by definition, ν(m) = 0
when m is not a square. Moreover, for any (m1, . . . , m2k) ∈ ν(m2), we can find two sets
S1, S2 ⊂ {1, ..., 2k} such that

|S1| = |S2| = k, S1 ∩ S2 = ∅, m =
∏
i∈S1

mi =
∏
j∈S2

m j .

Hence,

|ν(m2)|�
(

2k

k

)
dk(m)2,

where dk(m) := |{(m1, . . . , mk) : m1 · · · mk = m}|. Inserting this into (3·2) we get

A � γ 2k
1

(
2k

k

)
p
∑

m

dk(m)2c
(
m2

)

� γ 2k
1

(
2k

k

)
p
∑
m�p

dk(m)2c
(
m2

)+ Ok,ε (pε) .

It is shown in [2, lemma 4·1, pp. 437-438] that

∑
m�p

dk(m)2c(m2)� 2k(log k)2k

(
π

β − α

)− 2k
log k

which conclude the proof.

3·2. Proof of Theorem 1·8
We are finally ready to prove Theorem 1·8

Proof of Theorem 1·8. Let us start with the lower bound. By Lemma 2·2 for t = ta,p, N = k
and α = 1/2, we have that

M(ta,p)�
1

2π

∣∣∣ ∑
1�n�k
n=1(2)

t̂1,p(τn · a)

n

∣∣∣+ Oc(F)(1) (3·3)
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for any p large enough and a ∈ F×
p . By definition of a 1-parameter family of Sp2g-

type, the sheaf FT(F1,p) is a bountiful sheaf of Sp2g-type. This implies that the sheaves
FT(F1,p), τ ∗

−1 FT(F1,p), . . . , τ ∗
−k FT(F1,p), τ ∗

k FT(F1,p) satisfy the Goursat–Kolchin–Ribet
criterion ( [19, chapter 1·8]). Thus combining [8, lemma 2·4] with Deligne’s equidistibution
Theorem, we obtain that the sequence{

t̂1,p(τ1 · a), t̂1,p(τ−1 · a), ..., t̂1,p(τ−k · a), t̂1,p(τk · a)
}

a∈Fp

become equidistributed in (
∏2k

i=1[−2g, 2g], μ⊗2k
USp2g(C)) as p → ∞, where μUSp2g(C) is the

pushforward of the Haar measure of USp2g(C) ⊂ Sp2g(C) (notice that [−2g, 2g] =
Tr(USp2g(C))). Now if we define

Sk,p = {a ∈ F×
p :t̂1,p(τi · a) >

√
2g ∀0 < i < k,

t̂1,p(τ−i · a) < −√
2g ∀0 < i < k},

we get that

M(ta,p)�
(

g√
2π

+ o(1)

)
log k

for any a ∈ Sk,p. Hence,

1

p − 1

∑
a∈F×

p

M
(
ta,p

)2k � 1

p − 1

∑
a∈Sk,p

M
(
ta,p

)2k �
(

cg√
2π

+ o(1)

)2k

(log k)2k,

where c = μUSp2g(C)((
√

2g, 2g]) 
 1. Let us now prove the upper bound. For any a ∈ F×
p let

Na,p be the smallest integer such that

M(ta,p) =
∣∣∣ 1√

p

∑
x�Na,p

ta,p(x)

∣∣∣.
At this point we would like to apply Lemma 3·1 but the Na,p’s might be very different from
one another. To go around this issue, following the strategy of [24] and [2], we will use the
Rademacher–Menchov trick: first of all expand Na,p/p in base 2

Na,p

p
=

∞∑
j=1

a j 2
− j a j ∈ {0, 1},

and let Na,p(L p)/p be the truncation of this series at the summand of power L p. Then we
have

M(ta,p)�
∣∣∣ 1√

p

∑
x�Na,p(L p)

ta,p(x)

∣∣∣+ E
(
a, p.L p

)
,

where

E(a, p, L p) =
∣∣∣ 1√

p

∑
Na,p(L p)<x�Na,p

ta,p(x)

∣∣∣.
https://doi.org/10.1017/S030500412100030X Published online by Cambridge University Press

https://doi.org/10.1017/S030500412100030X


On the size of the maximum of incomplete Kloosterman sums 587

Notice that the number of summands in E(a, p.L p) is � p/2L p . An application of the Hölder
inequality leads to

M(ta,p)
2k � 22k

⎛
⎝∑

l�L p

1

l
2kγ

2k−1

⎞
⎠

2k−1 ⎛
⎝∑

l�L p

l2kγ
∣∣∣ 1√

p

∑
Na,p(l)<x�Na,p(l+1)

ta,p(x)

∣∣∣2k

⎞
⎠

+ 22k E
(
a, p, L p

)2k
.

Observe first that Na,p(l + 1)� Na,p(l) + p2−(l+1). Moreover, there are 2l−1 possibilities for
the value of Na,p(l), so

M(ta,p)
2k � 22k

⎛
⎝∑

l�L p

1

l
2kγ

2k−1

⎞
⎠

2k−1 ⎛
⎝∑

l�L p

l2kγ
∑

0�m�2l−1

∣∣∣ 1√
p

∑
p m

2l <x�p( m
2l +2−(l+1))

ta,p(x)

∣∣∣2k

⎞
⎠

+ 22k E(a, p, L p)
2k .

We can now apply Lemma 3·1 and choose γ = 3/2 to obtain

1

p − 1

∑
a∈F×

p

M(ta,p)
2k � 22k

⎛
⎝∑

l�L p

1

l
3k

2k−1

⎞
⎠

2k−1 ⎛
⎝∑

l�L p

l3k2l
(
γ 2k(log k)2k2− kl

log k

+ δ2k p− 1
2 (log p)2k

)⎞⎠+ 22k

p − 1

∑
a∈F×

p

E
(
a, p, L p

)2k
.

Choosing L p := log2

(
p

1
2

(log p)8k

)
, we get

(2δ)2k

⎛
⎝∑

l�L p

1

l
3k

2k−1

⎞
⎠

2k−1 ∑
l�L p

l3k2l p− 1
2 (log p)2k �k (log p)8k2L p p− 1

2

�k 1,

where in the first step we are using the fact that

∑
l

1

l
3k

2k−1

� 1.

Moreover, using the following inequality from [2, theorem 1·1, p. 440]∑
l�L p

l3k2l2− kl
log k � exp(3k log log k + O(k)),

we get

(2γ )2k(log k)2k

⎛
⎝∑

l�L p

1

l
2k

2k−1

⎞
⎠

2k−1 ∑
l�L p

l2k2l2− kl
log k �k 1.
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On the other hand, since the length of E(a, p, L p) is at most p/2L p = p
1
2 (log p)8k , an

application of [9, theorem 1·1] leads to

|E(a, p, L p)|� 4cF log
(
4e8(log p)8k

)
.

Then

1

p − 1

∑
a∈F×

p

E
(
a, p, L p

)2k � (Ck)k(log log p)2k,

and this completes the proof of the first part of the Theorem. Now let us assume that∣∣∣ ∑
N�x�N+H

ta,p(x)

∣∣∣�cF H 1−ε (3·4)

holds uniformly for any 1 < N < p, p1/2−ε/2 < H < p1/2+ε/2 and a ∈ F×
p . Starting again from

1

p − 1

∑
a∈F×

p

M(ta,p)
2k �22k

⎛
⎝∑

l�L p

1

l
2γ k

2k−1

⎞
⎠

2k−1 ⎛
⎝∑

l�L p

l2kγ 2l
(
γ 2k(log k)2k2− kl

log k

+ δ2k p− 1
2 (log p)2k

⎞
⎠
⎞
⎠+ 22k

p − 1

∑
a∈F×

p

E
(
a, p, L p

)2k
,

we choose L p = (1 − ε)/2 log2 p, and obtain by (3·4) that there exists some ε′ > 0 such that

E
(
a, p, L p

)2k =
∣∣∣ 1√

p

∑
Na,p(L p)<x�Na,p

ta,p(x)

∣∣∣2k �cF p−ε′

for any p and any a ∈ F×
p . Hence,

1

p − 1

∑
a∈F×

p

E
(
a, p, L p

)2k �cF p−ε′
.

Moreover,

p− 1
2 (δ log p)2k

⎛
⎝∑

l�L p

l2kγ 2l

⎞
⎠� p− 1

2 (δ log p)2k

⎛
⎝∑

l�L p

L4k
p 2l

⎞
⎠

�k,cF p− 1
2 (log p)2k2L p

� p−ε/2(log p)2k .

Putting it all together, we get

1

p − 1

∑
a∈F×

p

M(ta,p)
2k � (2γ log k)2k

⎛
⎝∑

l�L p

1

l
2γ k

2k−1

⎞
⎠

2k−1 ⎛
⎝∑

l�L p

l2kγ 2l2− kl
log k

⎞
⎠

+ Ok,cF(p−ε′′
)
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for some ε′′ > 0. On the other hand, [2, theorem 1·1 p. 440] implies that

∑
l�L p

1

l
2γ k

2k−1

� (γ − 1)1−2k,
∑
l�L p

l2kγ 2l2− kl
log k � exp(2kγ log log k + O(k)).

Hence, by choosing γ = 1 + 1/ log log k we obtain the desired result.

We conclude with the proof of Corollary 1·9.

Proof of Corollary 1·9. For part (i), observe that it follows from the proof of the lower bound
of Theorem 1·8 that any element a in the set

Sh,p =
{

a ∈ F×
p : t̂1,p(τi · a) >

√
2g ∀0 < i < h,

t̂1,p(τ−i · a) < −√
2g ∀0 < i < h

}
satisfies that M(ta,p) > (r/(

√
2π) + o(1)) log h. Moreover we have that |Sh,p| > c2h for

some absolute constant 0 < c < 1. Choosing h = exp((g/(
√

2π) + o(1))−1 · A) we get

DF(A)� |Sexp((g/(
√

2π)+o(1))−1·A),p|.
The proof of (ii) is exactly the same as in [2, theorem 1·3].
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