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ILLUMINATION OF CONVEX BODIES WITH
MANY SYMMETRIES

KONSTANTIN TIKHOMIROV

Abstract. Let n > C for a large universal constant C > 0 and let B be a convex
body in Rn such that for any (x1, x2, . . . , xn) ∈ B, any choice of signs ε1, ε2, . . . ,

εn ∈ {−1, 1} and for any permutation σ on n elements, we have (ε1xσ(1), ε2xσ(2),
. . . , εn xσ(n)) ∈ B. We show that if B is not a cube, then B can be illuminated by
strictly less than 2n sources of light. This confirms the Hadwiger–Gohberg–Markus
illumination conjecture for unit balls of 1-symmetric norms in Rn for all sufficiently
large n.

§1. Introduction. Let B be a convex body (i.e., a compact convex set
with non-empty interior) in Rn . The well-known problem of Hadwiger [7],
independently formulated by Gohberg and Markus, is to find the least number
of smaller homothetic copies of B sufficient to cover B. An equivalent question
is to determine the smallest number I(B) of points in Rn

\B (“light sources”)
sufficient to illuminate B [8]. Here, we say that a collection of points {p1, p2,

. . . , pm} illuminates B if for any point x on the boundary of B there is a point pi
such that the line passing through pi and x intersects the interior of B at a point
not between pi and x . We refer to [6, Ch. VI], [1, Ch. 3] and [4] for history of
the question.

Following Boltyanski (see, in particular, [6, p. 256]), we say that a boundary
point x ∈ B is illuminated in a direction y ∈ Rn

\{0} if there is ε > 0 such that
the point x + εy belongs to the interior of B. The entire body B is illuminated
in directions {y1, y2, . . . , ym

} if for every boundary point x ∈ B there is i 6 m
such that x is illuminated in the direction yi . The smallest number of directions
sufficient to illuminate B is equal to I(B) (see [6, Theorem 34.3]).

It can be easily checked that the illumination number of an n-dimensional
parallelotope is equal to 2n . The Hadwiger–Gohberg–Markus illumination
conjecture asserts that for any n-dimensional convex body B different from
a parallelotope, I(B) < 2n . We refer to [1, Ch. 3] and [4] for a list of results,
confirming the conjecture in some special cases. Here, let us mention a result of
Martini for so-called belt polytopes [10] and their extension to belt bodies due
to Boltyanskiı̆ [5]; a paper of Schramm [13] dealing with bodies of constant
width and their generalization to fat spindle bodies by Bezdek [2]; and a
result of Bezdek and Bisztriczky [3] for dual cyclic polytopes. For arbitrary
convex bodies, the best-known upper bound follows from Rogers’ covering
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theorem [12]:

I(B) 6 (n log n + n log log n + 5n)
Voln(B − B)

Voln(B)
, (1)

where B − B denotes the Minkowski difference and Voln(·) is the standard
Lebesgue volume in Rn (see, for example, [4, Corollary 2.11] or
[1, Corollary 3.4.2]).

The aforementioned results of Schramm [13] and Bezdek [2] are based on a
probabilistic argument in which directions of illumination are chosen uniformly
independently on the sphere Sn−1 (see also [11]). Further, in the recent note [9],
it was shown that the general bound (1) can be recovered by illuminating the
body B with independently distributed sources of light. It was suggested in [9]
that randomized models of that type can be helpful and may contribute towards
solving the illumination problem.

In this note, we further develop the approach from [2, 9, 13] by applying it to
convex bodies with many symmetries. Let n > 2. We denote by Cn the set of all
convex bodies B in Rn having the following properties:
(1) (ε1x1, ε2x2, . . . , εnxn) ∈ B for any (x1, x2, . . . , xn) ∈ B and any choice of

signs εi ∈ {−1, 1}; and
(2) (xσ(1), xσ(2), . . . , xσ(n)) ∈ B for any (x1, x2, . . . , xn) ∈ B and any

permutation σ on n elements.
Note that the Minkowski functionals of convex bodies from Cn are

1-symmetric norms in Rn (with respect to the standard basis) and, conversely,
the closed unit ball of any 1-symmetric norm in Rn belongs to Cn . The main
result of this note is the following.

THEOREM 1. There is a universal constant C > 0 with the following
property: let n > C and let B ∈ Cn . Assume that B is not a cube. Then
I(B) < 2n .

Let us make some remarks. In the paper [13] of Schramm, it was proved
that, given a group G of orthogonal transformations of Rn which is generated by
reflections through hyperplanes and acts irreducibly on Rn (i.e., has no non-
trivial invariant subspaces) and a strictly convex body B invariant under the
action of G, we have I(B) = n + 1. The group of orthogonal transformations
generated by permutations of the standard basis vectors and reflections with
respect to coordinate hyperplanes acts irreducibly on Rn . Hence, the result of
Schramm implies that for any strictly convex body B ∈ Cn , we have I(B) =
n + 1. However, the theorem of Schramm gives no information about polytopes
and, more generally, bodies which are not strictly convex.

The proof of Theorem 1 is split into two parts. In the first part (§3), we
illuminate bodies B ∈ Cn with a small distance to the cube (to be defined below),
using purely deterministic arguments. In the second part (§4), we construct a
special set of random directions which illuminate any given B ∈ Cn with a
“large” distance to the cube.
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§2. Preliminaries. Let us start with notation and basic definitions. Given a
finite set I , we denote its cardinality by |I |. For any natural number k, we write
[k] instead of {1, 2, . . . , k}. For a real number r , brc denotes the largest integer
not exceeding r and dre denotes the smallest integer greater than or equal to r .

Let n be a natural number. For a vector x = (x1, x2, . . . , xn) ∈ Rn , let

I x
0 := {i 6 n : xi = 0}.

The standard basis vectors in Rn will be denoted by e1, e2, . . . , en and the
standard inner product by 〈·, ·〉. The maximum (`n

∞) norm in Rn will be denoted
by ‖ · ‖∞. Given a convex body B in Rn , by ∂B we denote its boundary and by
int(B) its interior. If 0 ∈ int(B), then the Minkowski functional ‖ · ‖B on Rn is
defined by

‖y‖B := inf{λ > 0 : y ∈ λB}, y ∈ Rn.

Further, for a convex body B in Rn and a point x ∈ ∂B, let the Gauss image
ν(B, x) be the set of all outer normal unit vectors for supporting hyperplanes
at x . In other words, ν(B, x) is the set of all vectors v ∈ Sn−1 such that
〈v, y − x〉 6 0 for all y ∈ B. We omit the proof of the next lemma (see, for
example, [13, Lemma 4] for an equivalent statement).

LEMMA 2. Given a convex body B in Rn (n > 2), a direction y ∈ Rn
\{0}

illuminates x ∈ ∂B if and only if 〈y, v〉 < 0 for all v ∈ ν(B, x).

Let n > 2 and let the class Cn be defined as in the Introduction. It is easy
to see that, given a body B ∈ Cn and a vector (x1, x2, . . . , xn) ∈ B, we have
(α1x1, α2x2, . . . , αnxn) ∈ B for any αi ∈ [−1, 1]. Hence, the following holds.

LEMMA 3. For any B ∈ Cn (n > 2), any (x1, x2, . . . , xn) ∈ ∂B and (v1, v2,

. . . , vn) ∈ ν(B, x), we have xivi > 0 for all i 6 n.

Again, the proof of Lemma 3 is straightforward, and we omit it.

LEMMA 4. Let B ∈ Cn (n > 2) and let x = (x1, x2, . . . , xn) ∈ ∂B.
Then for all i, j 6 n such that |xi | > |x j |, we have |vi | > |v j | for any (v1,

v2, . . . , vn) ∈ ν(B, x).

Proof. Assume the opposite: let B ∈ Cn , a vector x = (x1, x2, . . . , xn) ∈ ∂B
and v = (v1, v2, . . . , vn) ∈ ν(B, x) be such that for some i, j 6 n we have
|xi | > |x j | and |vi | < |v j |. Obviously,

H := {z ∈ Rn
: 〈z, v〉 = 〈x, v〉}

is a supporting hyperplane for B. Let εi , ε j ∈ {−1, 1} be such that εi xiv j ,

ε j x jvi > 0, and denote

y :=
∑

k 6=i, j

xkek + εi xi e j + ε j x j ei .
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Then

〈y, v〉 = 〈x, v〉 + |xiv j | + |x jvi | − xivi − x jv j

= |〈x, v〉| + (|xi | − |x j |)(|v j | − |vi |)

> |〈x, v〉|.

Thus, y cannot belong to B, contradicting the definition of the class Cn . �

Given two convex bodies B and B̃ in Cn , we define the distance d(B, B̃)
between B and B̃ as

d(B, B̃) = inf{λ > 1 : B ⊂ r B̃ ⊂ λB for some r > 0}.

In particular, d(B, [−1, 1]n) is equal to the ratio ‖e1 + e2 + · · · + en‖B/‖e1‖B .
Note that d(B, B̃) is different from the Banach–Mazur distance between convex
bodies.

§3. Illumination of convex bodies with a small distance to the cube. In this
section, we consider the problem of illuminating a set B ∈ Cn with a small
distance to the cube. Here, our construction is purely deterministic. We prove
the following.

PROPOSITION 5. Let B ∈ Cn (n > 2) with 1 6= d(B, [−1, 1]n) < 2. Then at
least one of the following is true:
(1) B can be illuminated in directions

{(ε1, ε2, . . . , εn) ∈ {−1, 1}n : ∃i 6 n − 1 with εi = −1}
∪ {e1 + e2 + · · · + en−1};

(2) B can be illuminated in directions

({−1, 1}n−1
× {0}) ∪ {±en}.

Note that the first set in the above statement has cardinality 2n
− 1 and the

second 2n−1
+ 2. The proposition is obtained as an easy corollary of Lemmas 7

and 8 given below. But, first, let us prove the following.

LEMMA 6. Let B ∈ Cn (n > 2) and let x = (x1, x2, . . . , xn) ∈ ∂B. Further,
let y ∈ {−1, 0, 1}n be a vector such that (1) I y

0 ⊂ I x
0 and (2) for any i 6 n such

that xi 6= 0, we have yi = −sign(xi ). Finally, assume that x is not illuminated
in the direction y. Then necessarily∥∥∥∥ ∑

i∈[n]\I y
0

ei

∥∥∥∥
B
>

2
‖x‖∞

.
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Proof. In view of Lemma 2, the fact that y = (y1, y2, . . . , yn) does not
illuminate x means that there is a vector v = (v1, v2, . . . , vn) ∈ ν(B, x) such
that 〈y, v〉 > 0. By the definition of y and by Lemma 3, we have∑

i∈[n]\I x
0

yivi = −
∑

i∈[n]\I x
0

|vi |.

Thus, the condition 〈y, v〉 > 0 implies that∑
i∈I x

0 \I
y
0

yivi >
∑

i∈[n]\I x
0

|vi |.

Clearly,
H := {z ∈ Rn

: 〈z, v〉 = 〈x, v〉}

is a supporting hyperplane for B. On the other hand, we have〈 ∑
i∈[n]\I x

0

(−yi )ei +
∑

i∈I x
0 \I

y
0

yi ei , v

〉
> 2

∑
i∈[n]\I x

0

|vi | >
2〈x, v〉
‖x‖∞

.

Hence, the ‖ ·‖B-norm of the vector
∑

i∈[n]\I x
0
(−yi )ei +

∑
i∈I x

0 \I
y
0

yi ei is at least
2/‖x‖∞. The result follows. �

LEMMA 7. Let B ∈ Cn (n > 2) be such that 1 6= d(B, [−1, 1]n) < 2. Then
at least one of the following is true:
(1) B can be illuminated in directions

T1 := {(ε1, ε2, . . . , εn) ∈ {−1, 1}n : ∃i 6 n − 1 with εi = −1}
∪ {e1 + e2 + · · · + en−1};

(2) ‖ei + e j‖B > ‖ei‖B , i 6= j .

Proof. Without loss of generality, we can assume that ‖ei‖B = 1 (note that
this implies that B ⊂ [−1, 1]n , i.e., ‖ · ‖B > ‖ · ‖∞). Assume that the first
condition is not satisfied. Thus, there is a vector x ∈ ∂B which is not illuminated
in directions from T1. Consider three possibilities:

(a) I x
0 6= ∅. Then we can find a vector y ∈ T1 such that I y

0 ⊂ I x
0 and

yi = −sign(xi ) for all i 6 n with xi 6= 0. By Lemma 6, we have∥∥∥∥ n∑
i=1

ei

∥∥∥∥
B
>

2
‖x‖∞

> 2,

contradicting the assumption d(B, [−1, 1]n) < 2.
(b) I x

0 = ∅ and |xn| 6 |xi | for all i 6 n. We define y = (y1, y2, . . . , yn) by
yi := −sign(xi ) (i 6 n−1); yn := 0 if yi = 1 for all i 6 n−1 oryn := −sign(xn),
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otherwise. It is not difficult to see that y ∈ T1. Hence, the direction y does not
illuminate x and, by Lemma 2, there is v = (v1, v2, . . . , vn) ∈ ν(B, x) such that
〈y, v〉 > 0. In view of Lemma 3 and the definition of y, this implies that vi = 0
for all i 6 n − 1 (and vn = ±1), whence

H := {z ∈ Rn
: 〈z, en〉 = |xn|}

is a supporting hyperplane of B. On the other hand, en ∈ B by our assumption,
implying that |xn| > 1. Thus, |x1|, |x2|, . . . , |xn| > 1 and x ∈ ∂B. But this
contradicts the condition B ⊂ [−1, 1]n , B 6= [−1, 1]n .

(c) I x
0 = ∅ and there is j 6 n − 1 such that |x j | 6 |xi | for all i 6 n

(clearly, j does not have to be unique). Define a vector y = (y1, y2, . . . , yn) by
yi := −sign(xi ) (i 6= j); y j := −1. Again, y ∈ T1. Hence, there is v = (v1,

v2, . . . , vn) ∈ ν(B, x) such that 〈y, v〉 > 0. This implies, in view of Lemma 3,
that

0 6=
n∑

i=1

|vi | 6 2|v j |. (2)

On the other hand, in view of Lemma 4, we have |v j | 6 |vi | for all i 6 n such
that |xi | > |x j |. The last two conditions can be simultaneously fulfilled only if
the set

J := {i 6 n : |xi | > |x j |}

has cardinality at most 1. The case J = ∅ (when all coordinates of x are equal
by absolute value) was covered in part (b). Thus, we only need to consider the
situation |J | = 1. Assume that k 6 n is such that |xk | > |x j |. Then, by (2) and
Lemma 4, we have |vk | = |v j | and vi = 0 for all i 6= k, j . Hence,

H := {z = (z1, z2, . . . , zn) ∈ Rn
: zk + z j = |xk | + |x j |}

is a supporting hyperplane for B. At the same time, 1 = ‖x‖B > ‖xkek‖B =

|xk | > |x j |, whence |xk | + |x j | < 2. This implies that ek + e j /∈ B, i.e., ‖ek +

e j‖B > 1. �

LEMMA 8. Let B ∈ Cn (n > 2) and assume that ‖ei + e j‖B > ‖ei‖B , i 6= j .
Then B can be illuminated in directions

T2 := ({−1, 1}n−1
× {0}) ∪ {±en}.

Proof. We will assume that ‖ei‖B = 1. Let x = (x1, x2, . . . , xn) ∈ ∂B.
Consider two cases.

(a) |xn| > |xi | for all i 6 n− 1. In view of Lemmas 3 and 4, for any v = (v1,

v2, . . . , vn) ∈ ν(B, x), we have vn 6= 0 and sign(vn) = sign(xn). Hence, x is
illuminated by the vector −sign(xn)en ∈ T2.

(b) There is j 6 n − 1 such that |x j | > |xi | for all i 6 n. Define y = (y1, y2,

. . . , yn) as yi := −sign(xi ) for all i 6 n − 1, and yn := 0. Obviously, y ∈ T2.
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If y illuminates x , then we are done. Otherwise, by Lemmas 2 and 3, for some
v = (v1, v2, . . . , vn) ∈ ν(B, x), we have

0 6 〈y, v〉 = −
n−1∑
i=1

|vi |.

Hence, v = ±en and the hyperplane

H := {z ∈ Rn
: 〈z, en〉 = |xn|}

is supporting for B, whence ‖xnen‖B = 1. On the other hand, in view of the
assumptions of the lemma, ‖x‖B > ‖x j e j + xnen‖B > ‖xnen‖B . We get that
‖x‖B > 1, contradicting the choice of x . �

§4. Randomized illumination of convex bodies far from the cube. Assume
that n > 2. Let X be an n-dimensional random vector with independent
and identically distributed coordinates taking values +1 and −1 with equal
probability 1/2. Further, let {X`}∞`=1 be copies of X . Next, for any m 6 n,
let P(m) be the random coordinate projection in Rn of rank m, such that the
image of P(m) is uniformly distributed on the set of all coordinate subspaces
of dimension m. In other words, for any sequence i1 < i2 < · · · < im 6 n,
we have Im P(m) = span{ei1, ei2, . . . , eim } with probability

(n
m

)−1. Let also P(m)`

(` = 1, 2, . . .) be copies of P(m). Additionally, we require that all the X` and
P(m)` (` = 1, 2, . . . ;m 6 n) be jointly independent. Now, for every k 6 dn/2e,
we define a random (multi)set of vectors

Sk := {P
(2k−1)
` (X`)}b2

n/n2
c

`=1 . (3)

The cardinality b2n/n2
c has no special meaning; we only need the condition∣∣∣∣dn/2e⋃

k=1

Sk

∣∣∣∣ < 2n−1

together with the requirement that the individual sets Sk are “sufficiently large”.

LEMMA 9. There is a universal constant C > 0 such that, given n > C and
any natural number k 6 dn/2e, the event

Ek := {For any y = (y1, y2, . . . , yn) ∈ {−1, 0, 1}n with |I y
0 | = n − k there is

` 6 2n/n2 such that P(2k−1)
` (y) = y and X`i = yi for all i ∈ [n]\I y

0 }

has probability at least 1− exp(−2n).

Proof. We shall assume that n is large. Fix any natural number k 6 dn/2e.
Clearly, there are precisely

(n
k

)
2k vectors in {−1, 0, 1}n whose supports have
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cardinality k. Hence, it is sufficient to show that for any fixed y ∈ {−1, 0, 1}n

with |I y
0 | = n − k, the probability of the event

Ey := {There is ` 6 2n/n2 such that P(2k−1)
` (y) = y and

X`i = yi for all i ∈ [n]\I y
0 }

is at least 1− 2−k exp(−2n)
(n

k

)−1.
Take any ` 6 2n/n2. Obviously,

P{X`i = yi for all i ∈ [n]\I y
0 } = 2−k .

Next, in view of the definition of the projection P(2k−1)
` , we have

P{P(2k−1)
` (y) = y} =

(
n − k
k − 1

)(
n

2k − 1

)−1

.

Using Stirling’s approximation, the last expression can be estimated as follows:(
n − k
k − 1

)(
n

2k − 1

)−1

=
(n − k)!(2k − 1)!

(k − 1)!n!

>
1
n
(n − k)!(2k)!

k!n!

>
1

2n
(n − k)n−k+1/2(2k)2k+1/2

kk+1/2nn+1/2

>
4k

2n2

(
1−

k
n

)n−k( k
n

)k

.

Now, since P(2k−1)
` and X` are independent, we get

P{P(2k−1)
` (y) = y and X`i = yi for all i ∈ [n]\I y

0 } >
2k

2n2

(
1−

k
n

)n−k( k
n

)k

.

It is not difficult to check that the function f (t) := 2t (1 − t)1−t t t , defined for
t ∈ [0, 1], takes its minimum at t = 1/3. Hence,

2k

2n2

(
1−

k
n

)n−k( k
n

)k

=
1

2n2 f (k/n)n >
1

2n2 f (1/3)n =
1

2n2

(
2
3

)n

.

Finally, we get

1− P(Ey) =

b2n/n2
c∏

`=1

P{P(2k−1)
` (y) 6= y or X`i 6= yi for some i ∈ [n]\I y

0 }

6

(
1−

1
2n2

(
2
3

)n)b2n/n2
c

� 2−k exp(−2n)
(

n
k

)−1

,

provided that n is sufficiently large. The result follows. �
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Now we can prove the following result, which, together with Proposition 5,
gives the estimate I(B) < 2n for any B ∈ Cn with d(B, [−1, 1]n) 6= 1.

PROPOSITION 10. There is a universal constant C > 0 with the following
property: let n > C, B ∈ Cn and assume that d(B, [−1, 1]n) > 2. Define

T := {−1, 1}n−1
× {0}.

Then, with probability at least 1 − exp(−n), the set B can be illuminated in
directions

T ∪
dn/2e⋃
k=1

Sk,

where the random sets Sk are defined by (3).

Proof. Without loss of generality, we may assume that ‖ei‖B = 1. First,
we show that any vector x ∈ ∂B with |{i 6 n : |xi | = ‖x‖∞}| > dn/2e
can be illuminated in a direction from T . Indeed, for any such vector x , since
d(B, [−1, 1]n) > 2 and by the definition of the class Cn and Lemma 4, we
necessarily have

‖x‖B

‖x‖∞
>

∥∥∥∥dn/2e+1∑
i=1

ei

∥∥∥∥
B
>

1
2
‖2e1 + e2 + e3 + · · · + en‖B

>
1
2
‖e1 + e2 + · · · + en‖B > 1.

So, ‖x‖B > ‖x‖∞, whence for any v ∈ ν(B, x) we have |I v0 | 6 n − 2 and,
in particular, v 6= ±en . Now pick a vector y = (y1, y2, . . . , yn) ∈ T such that
yi = −sign(xi ) for all i ∈ [n − 1]\I x

0 . For any v ∈ ν(B, x), we have

〈y, v〉 6 −
∑

i∈[n−1]\I x
0

|vi | +
∑

j∈I x
0 \{n}

|v j |.

By Lemma 4, for any i ∈ [n − 1]\I x
0 and j ∈ I x

0 \{n}, we have |vi | > |v j |.
Together with the obvious estimate |[n − 1]\I x

0 | > |I
x
0 \{n}| and the condition

v 6= ±en , this implies that 〈y, v〉 < 0, i.e., x is illuminated in the direction y.
Let events Ek be defined as in Lemma 9 and denote

E :=
dn/2e⋂
k=1

Ek .

In view of Lemma 9, P(E) > 1− exp(−n), provided that n is sufficiently large.
For the rest of the proof, we fix realizations x` and p(2k−1)

` of vectors X` and
projections P(2k−1)

` (` = 1, 2, . . . ; k 6 dn/2e), respectively, from the event E .
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Take any x ∈ ∂B which is not illuminated in directions from T . By the above
argument, the set

J x
:= {i 6 n : |xi | = ‖x‖∞}

has cardinality at most dn/2e. Take k := |J x
|. Then, applying the definition

of E to the vector y := −
∑

i∈J x sign(xi )ei , we get that there is ` 6 2n/n2

such that 〈x`, ei 〉 = −sign(xi ) for all i ∈ Jx and the image of p(2k−1)
` contains

span{ei }i∈Jx . Denote ỹ := p(2k−1)
` (x`). We will show that x is illuminated in the

direction ỹ. Indeed, take any v = (v1, v2, . . . , vn) ∈ ν(B, x). Then

〈ỹ, v〉 6 −
∑
i∈Jx

|vi | +
∑

i∈[n]\(Jx∪I ỹ
0 )

|vi |.

Note that by Lemma 4, we have |vi | 6 |v j | for all i ∈ [n]\Jx and j ∈ Jx . Further,
by the construction of ỹ, we have |[n]\(Jx ∪ I ỹ

0 )| = k − 1 < |Jx |. Hence, 〈ỹ, v〉
is strictly negative. It remains to apply Lemma 2.

Thus, the convex body B is illuminated by the union of directions T ∪⋃dn/2e
k=1 Sk with probability at least 1− exp(−n), and the proof is complete. �

Remark 1. For the sake of keeping the presentation transparent, we did not
attempt to compute the lower bound for the dimension n for which the proof
starts to work. Neither did we try to decrease the cardinality of the illuminating
set. It is natural to ask whether the above argument can be generalized to deal
with “1-unconditional” bodies, i.e., convex bodies symmetric with respect to
coordinate hyperplanes. Unfortunately, our proof seems to use the permutation
invariance in a crucial way, and some essential new ingredients are needed.
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