
174 THE MATHEMATICAL GAZETTE

Problem Corner
Solutions are invited to the following problems.  They should be

addressed to Nick Lord at Tonbridge School, Tonbridge, Kent TN9 1JP

(e-mail: njl@tonbridge-school.org) and should arrive not later than 10
August 2018.

Proposals for problems are equally welcome.  They should also be sent
to Nick Lord at the above address and should be accompanied by solutions
and any relevant background information.

102.A  (Stan Dolan)
For some values of  it is possible to find numbers which:m

• have  digits;m
• are divisible by ;m
• have no subsequence divisible by .m

Prove that the sum of the digits of such a number is divisible by .m
[A subsequence of a number is formed by deleting some, but not all, of

its digits, with leading zeros not being allowed.  Examples of numbers
satisfying the above properties are 252, 8000006 and
2011111111111111111.]

102.B  (Prithwijit De)
Evaluate the following integrals:

(a)  ∫
 π/2

0

dx
(sin3 x + cos3 x)2;

(b)  ∫
 π/2

0

x
sin3 x + cos3 x

 dx;

(c)  ∫
 π/2

0
cos x ln (sin3 x + cos3 x)  dx.

102.C  (Peter Shiu)
Let  be an irrational number.  Show that there are infinitely

many Pythagorean triples  with  such that 
0 < α < 1

(a, b, c) a2 + b2 = c2

0 <
a
b

− α <
7
c

.
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102.D  (Michael Fox)
This problem is about spheres with collinear centres and a common

tangent line.  The line  passes through given points  and
and it is the locus .  The centre of sphere  is the origin.  Its radius
is 1, and it touches  at the point where .  For all natural numbers ,
the centre of sphere  is , its radius is  and it touches  at

.  Each  touches  externally, with .

� (0,  0,  1) (1, m,  1)
(t, mt,  1) S0

� t = 0 n
Sn (cn,  0,  0) rn �

(tn,  mtn,  1) Sn Sn − 1 cn > cn − 1

In any order, show that:
(a) if  is an integer, then so are all the ,  and ;2m2 rn tn cn

(b) the , ,  are integer polynomials in ;rn tn cn m2

(c) if , then .m = sinh u rn = cosh 2nu
Finally, in (c), express  and  in terms of hyperbolic functions.tn cn

Solutions and comments on 101.E, 101.F, 101.G, 101.H (July 2017).

101.E  (Marcel �������)
The triangle  has inradius  and circumradius .  The excircle

touching side  has centre  and radius  with  and  similarly
defined.  Prove that

ABC r R
BC Ia ra Ib, rb Ic, rc

IaB cos 1
2B

rb + rc
+

IbC cos 1
2C

ra + rc
+

IcA cos 1
2A

rb + ra
≤

3
2

R (2R − r)
r

.

There was a variety of interesting approaches to this intriguing
geometrical inequality: the one that follows was given by Peter Nüesch.  It
employs the following identities with the standard triangle notation,
including  for semiperimeter and  for area.s �

(1)   (A standard piece of trigonometry.)ra = IaB cos 1
2B

(2)   

(This follows from the relation  proved in the
solution to Problem 101.A in the November 2017 Gazette, p. 548.  For

∑ 1
s − a

=
r + 4R

rs
∑ab = s2 + r2 + 4rR

∑ 1
s − a

=
1

(s − a)(s − b)(s − c) ∑(s − a)(s − b) =
1

r2s (∑ab − s2)
=

r2 + 4rR
r2s

, as required .)

(3) ∑ a2

rb + rc
= 4R − 2r

∑ a2

rb + rc
=

1
� ∑a(s − b)(s − c), rb =

�
s − b

, etc.(For  using 
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=
(s − a)(s − b)(s − c)

� ∑( s
s − a

− 1)
= r (r2 + 4Rr

r2
− 3), using (2)

= 4R − 2r.)
By (1), the inequality in 101.E is equivalent to

(∑ ra

rb + rc
)2

≤
9R (2R − r)

4r
.

Cauchy-Schwarz gives

(∑ ra

rb + rc
)2

= (∑ ra

a
 · 

a2

rb + rc
)2

≤ ∑ r2
a

a2
 ∑ a2

rb + rc

= (4R − 2r) ∑ r2
a

a2
  … (∗) , by (3).

Then, using , we havera =
�

s − a
ra

a
=

�
a (s − a)

=
�

(s − a) (s − b + s − c)

≤
�

2 (s − a) (s − b) (s − c)
=

1
2

s
s − a

,

by the AM-GM inequality and Heron's formula.
Finally, from (*) and using (2)

(∑ ra

rb + rc
)2

≤ (4R − 2r)
s
4 ∑ 1

s − a
=

(2R − r) (r + 4R)
2r

≤
9R (2R − r)

4r
, by Euler's inequality  r ≤

R
2

.

As several solvers observed, there is equality throughout if, and only if,
triangle  is equilateral.ABC

Correct solutions were received from: M. Bataille, S. Dolan, M. G. Elliott, J. A. Mundie,
P. Nüesch, V. Schindler and the proposer Marcel ��������
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101.F  (Stan Dolan)
Given any triangle , show how to construct three Cevians such that

the four shaded triangles in the diagram have equal areas.
ABC

A

B C

Answer:  The three Cevians divide each side in the ratio , where  is
the golden ratio.

φ : 1 φ

The most popular solutions to this attractive problem assumed
symmetry (with the three Cevians dividing the sides in the same ratio).
Michael Fox's solution below caught my eye for the care with which he
showed that this has to be the case.

1

1

1

A

B CD

E

F

L
K

M

(1) (1)

y

x

z

(x)
(y)

FIGURE 1

The Cevians , ,  of  meet to form , where  is not
on , and so on, cyclically, as in Figure 1.  Given that the areas ,

,  and  are equal, we are to construct ,  and .

AD BE CF �ABC �KLM K
AD AME

BKF CLD KLM D E F
Let ,  and ,

and consider s , . Since  and  are straight lines, the
angles at  in the triangles are equal. And since the areas of the triangles are

equal, it follows that , i.e. .  Hence

is similar to , implying , whence , giving
.  Cyclic interchanges then give

, and .

BD : DC = 1 : x CE : EA = 1 : y AF : FB = 1 : z
� AME LMK AML EMK

M

AM.ME = KM.ML
AM
KM

=
EM
LM

�AMK

�EML ∠MAK = ∠MLE AK // EL
CL : LK = CE : EA = 1 : y
AM : ML = 1 : z BK : KM = 1 : x
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We can link the values of ,  and  by applying Menelaus' theorem to

 and transversal .  We find that , i.e.

.  Thus , so . It follows similarly

that  and .  Eliminating  between the last two

expressions gives , and removing  gives , whence

. The positive root of this is equal to .
Cyclic interchange, which is easier than substitution, gives .  We

can also verify that , i.e. , so that  divides

 in the golden ratio.

x y z
�BKC DLM

BM
MK

.
KL
LC

.
CD
DB

= −1
1 + x

x
.
y
1

.
x
1

= 1 y (1 + x) = 1 y =
1

1 + x
z =

1
1 + y

x =
1

1 + z
z

x =
1 + y
2 + y

y x =
2 + x
3 + 2x

x2 + x − 1 = 0 1
2 ( 5 − 1) ≈ 0.618

x = y = z
BD
BC

=
DC
BD

(= φ) BD2 = BC.DC D

BC
A

B CD

E

F

P

Q

R

S

FIGURE 2

There is a simple construction shown in Figure 2.
Let  be the midpoint of , and  perpendicular to  with

.  Then , on , is such that ; and , on , is such
that .  If now  is the reflection of  in , then  and  are
respectively parallel to  and .

P BC CQ BC
CQ = CP R BQ QR = QC D BC

BD = BR S D P SE SF
BA CA

Suppose , then .  Let , then we have
 so .  Thus ,

as required. Clearly  and  divide the corresponding sides in the required
ratios.

BC = 2� CQ = � BR = x
(x + � )2 = (2� )2 + � 2 x2 = (2� )2 − 2�x = 2� (2� − x) BD2 = BC.DC

E F
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The quadratic  also has a negative root, for which the
Cevians lie outside , and the equal sub-triangles , ,  and

 overlap. Still , but there is an extra property: , ,
are the respective midpoints of , ,  (see Figure 3).

x2 + x − 1 = 0
ABC AME BKF CLD

KLM BD2 = BC.DC K L M
BE CF AD

A

B
CD

E

F

K

L

M

FIGURE 3

As several respondents observed, we can also generate the solution for
an arbitrary triangle by an affine transformation of the equilateral case.
Here, verifying that three Cevians dividing the sides in the golden ratio

 satisfies the requirements of 101.F makes a very nice addition to the
collection of problems featuring the golden ratio.
φ : 1

Correct solutions were received from: M. G. Elliott, M. Fox, G. Howlett, T. Kecker, C. Starr
(2 solutions), G. Strickland (2 solutions) and the proposer Stan Dolan�

101.G  (Dao Thanh Oai)
Let  be a triangle and let  be a circle in the plane of  such that

two circles through  touch  at ; two circles through  touch
at  and two circles through  touch  at .

ABC Γ ABC
B, C Γ A1, A2 C, A Γ

B1, B2 A, B Γ C1, C2

Show that the three lines , ,  are concurrent.A1A2 B1B2 C1C2

Proving this neat geometrical result attracted a wide range of analytical
and synthetic methods.  Of the latter, Li Zhou's succinct argument (based on
the Figure below) follows: 

Let  be the circumcircle of , and  be the radical axis of  and .
Suppose that  intersects , ,  at , , , respectively. Let  be the

Ω ABC x Γ Ω
x BC CA AB D E F O
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centre of , and , ,  be the dashed circles with , ,  as
diameters, respectively. Then  is the radical centre of , , and the two
circles through ,  and tangent to .  Thus  is the radical axis of
with . Likewise,  and  are the radical axes of  with  and
respectively. Since the midpoints of , ,  lie on a line parallel to ,

, ,  concur at a second point  on . Finally, since , ,
are the respective images of , ,  under the inversion in , they concur
at , the image of  under the inversion in .

Γ ΓA ΓB ΓC OD OE OF
D Γ Ω

B C Γ A1A2 Γ
ΓA B1B2 C1C2 Γ ΓA ΓB

OD OE OF x
ΓA ΓB ΓC P x A1A2 B1B2 C1C2

ΓA ΓB ΓC Γ
Q P Γ

A1

A2

B1

B2

C1

Ω

Γ

C2

A

B C
D

E

F
P

x

O
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101.H  (Mehtaab Sawhney)
Find the smallest positive integer  such that the following inequality

holds for all non-negative real numbers .
k
a, b, c

(a − b)(a − 2b)(ka − c) + (b − c)(b − 2c)(kb − a) + (c − a)(c − 2a)(kc − b) ≥ 0.

Answer: The smallest positive integer is .k = 12
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Solvers clearly relished this unusual cyclic inequality challenge.
Appropriate choices of  establish that .  For example, ,

,  gives  (and the choices , ,

; , ,  also suffice).

a, b, c k ≥ 12 a = 7

b = 4 c = 0 k ≥
504
43

= 11.72 a = 5 b = 3

c = 0 a = 9 b = 5 c = 0
The main challenge is to establish that the inequality holds when

 and solvers displayed a variety of different approaches to
accomplish this, including Graham Howlett whose neat solution follows.
k = 12

When , the left-hand side of the inequality, , expands
to give

k = 12 f (a, b, c)

f (a, b, c) = 12 ∑ a3 − 38 ∑ a2b + 23 ∑ ab2 + 9abc

where the summations are cyclic.  Since  may be cyclically permuted,
we may suppose  in what follows.

a, b, c
c ≤ a, b

If , thenc = 0

f (a, b,  0) = 12a3 − 38a2b + 23ab2 + 12b3

= 12a (a −
7b
4 )2

+ 4b (a −
55b
32 )2

+
47

256
b3

so that  for non-negative .f (a, b,  0) ≥ 0 a, b

If , then  where ,

 with .  But 

c > 0 f (a, b, c) = c3f (u + 1, v + 1,  1) u =
a
c

− 1

v =
b
c

− 1 u, v ≥ 0

f (u + 1, v + 1,  1) = 21(u2 − uv + v2) + (12u3 − 38u2v + 23uv2 + 12v3)
= 21[(u − v)2 + uv] + f (u, v,  0)

where the first bracketed expression is clearly non-negative and
 by the  case above.f (u, v,  0) ≥ 0 c = 0

Several solvers noted that, if positive real values of  are allowed,
numerical methods show that (for example) , ,
gives the minimum .

k
a = 1.7488 b = 1 c = 0

k ≈ 11.721

Correct solutions were received from: M. Bataille, S. Dolan, M. G. Elliott, GCHQ Problem
Solving Group, G. Howlett, T. Kecker and the proposer Mehtaab Sawhney.

10.1017/mag.2018.35 N.J.L.
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