
Moduli 1, e8 (2024) 1–38
doi:10.1112/mod.2024.4

GV and GW invariants via the enhanced movable

cone

NavidNabijou and MichaelWemyss

Abstract

Given any smooth germ of a 3-fold flopping contraction, we first give a combinatorial
characterisation of which Gopakumar–Vafa (GV) invariants are non-zero, by prescrib-
ing multiplicities to the walls in the movable cone. On the Gromov–Witten (GW) side,
this allows us to describe, and even draw, the critical locus of the associated quan-
tum potential. We prove that the critical locus is the infinite hyperplane arrangement
of Iyama and the second author and, moreover, that the quantum potential can be
reconstructed from a finite fundamental domain. We then iterate, obtaining a com-
binatorial description of the matrix that controls the transformation of the non-zero
GV invariants under a flop. There are three main ingredients and applications: (1) a
construction of flops from simultaneous resolution via cosets, which describes how the
dual graph changes; (2) a closed formula, which describes the change in dimension of
the contraction algebra under flop; and (3) a direct and explicit isomorphism between
quantum cohomologies of different crepant resolutions, giving a Coxeter-style, visual
proof of the Crepant Transformation Conjecture for isolated cDV singularities.
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1. Introduction

Many key results in algebraic geometry can be established using topological and combinatorial
descriptions of a given variety or of its degenerations and deformations. However, even with a
clear combinatorial model on such a degeneration or deformation, determining which properties
of the original variety can be controlled by combinatorics is still, in general, a difficult question.

This article considers arbitrary, smooth 3-fold flopping contractions, which form a funda-
mental building block of the minimal model programme. Our main point is that as far as their
enumerative geometry is concerned, all such flopping contractions are combinatorial, provided
we are content with describing only the shape of the enumerative invariants, rather than their
precise values. This qualitative perspective allows us to extract, and prove rather easily, many
fundamental results. We determine which curve classes give rise to non-zero invariants, and then
we control how these invariants transform under flop, in a visually pleasing and satisfyingly
combinatorial manner. Along the way it is necessary to enhance existing geometric structures,
such as the movable cone.

1.1 Gopakumar–Vafa: finite arrangements

Let f : X→ SpecR be a crepant resolution of a 3-fold isolated cDV singularity, which is, equiv-
alently, a germ of a smooth 3-fold flopping contraction. The morphism f contracts a finite
collection {Ci ⊆X | i∈ Ic} of complete curves to a point, and these freely generate the group of
algebraic curve classes

A1(X) = 〈Ci | i∈ Ic〉Z.
Given β∈A1(X), Katz defines an associated Gopakumar–Vafa (GV) invariant [Kat08]

nβ = nβ(X)∈Z≥0,
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which we recall in Section 3.1. It is an important invariant of flopping contractions, with close
connections to other known invariants [DW16, Tod15].

Our first result determines those β for which nβ �= 0. The description is direct and combi-
natorial, encoded in the associated finite hyperplane arrangement HI of Iyama and the second
author’s work [IW]. The chambers in HI are precisely the ample cones of the different birational
models, so we can identify HI with the movable cone. It turns out that the GV invariants are,
to first approximation, encoded by the walls of this cone. There is, however, a slight catch:
combinatorially , the walls carry multiplicities, and this data is not part of the definition of the
movable cone. This multiplicity, which is new information (see Remark 5.6), turns out to be the
key to determining whether nβ �= 0.

As is standard, and as recalled in Section 2.2, slicing X→ SpecR by a generic hyperplane
section gives rise to a partial crepant resolution of an ADE surface singularity. From this slicing
we thus obtain the Dynkin diagram Δ of the ADE surface singularity, together with a subset I
of nodes: the full minimal resolution dominates the partial resolution, and I are the curves that
are contracted by this morphism.

Example 1.1. As the running example, consider a two-curve smooth 3-fold flop for which the
corresponding Dynkin data is , where by convention I equals the six black nodes. The
Dynkin data gives rise to a finite intersection arrangement HI ⊆R|Δ|−|I| =R2 [IW, Section 3].
One method of calculating HI is to first restrict all 120 positive roots of E8 to the subset
Ic =Δ \ I, and thus obtain the set

{01, 11, 21, 42, 31, 41, 10, 20, 30}.
These so-called restricted roots give rise to hyperplanes in the dual space, where, for exam-
ple, 42 gives rise to the hyperplane 4x+ 2y= 0. The output is thus the following hyperplane
arrangement, which we emphasise is constructed entirely from I⊆Δ.

x

y

1

1

2 11 3

Restricted Root

01
11

21, 42
31
41

10, 20, 30

(1.A)

Note that the restricted root 42 gives rise to the hyperplane 2(2x+ y) = 0, so the blue diagonal
2x+ y= 0 line carries the list [1, 2] of multiplicities. We write 2 beside the blue line to emphasise
this fact. Similarly, the line x= 0 carries the list [1, 2, 3] of multiplicities, as a consequence of 20
and 30.

Returning to general flopping contractions X→ SpecR, since by construction the nodes
in Δ\I can be identified with the curves in X, after some natural identifications, HI (with
multiplicities) can be viewed inside PicX⊗R. So can the movable cone. After ignoring the
multiplicities, HI is equal to the movable cone [Pin83, Wem18].
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The following is our first main result. It describes the non-zero GV invariants in an elementary
combinatorial way, and it asserts that it is the hyperplanes of HI, counted with multiplicity, that
control the non-zero GV invariants.

Theorem 1.2 (3.1). For β∈A1(X), the GV invariant nβ is non-zero if and only if β is a
restricted root.

The theme of this article is that the shape of the enumerative geometry of X is controlled,
in a very visual way, from this finite amount of initial data.

1.2 Gromov–Witten: infinite arrangements

Given any subset I of a Dynkin diagram, the finite arrangement HI of the previous subsection
has an infinite cousin Haff

I . Given a restricted root β= (βi)i∈Ic , the hyperplane
∑

i∈Ic βixi = 0,
which appears in the finite arrangement, gets translated over the integers Z, to give an infinite
family ∑

i∈Ic

βixi ∈Z. (1.B)

Repeating this over every restricted root results in an infinite arrangement of affine hyperplanes,
written Haff

I . Note that multiplicities on hyperplanes of HI result in more translations, as if, say,
2β= (2βi) is also a restricted root; then its translations give rise to the family

∑
2βixi ∈Z, i.e.

to
∑
βixi ∈ 1

2Z. This is larger than (1.B).
In the running Example 1.1, taking all the relevant translations of (1.A) results in the

following Haff
I .

x

y
(1.C)

Returning to a general flopping contraction X→ SpecR, the next main result relates the
Gromov–Witten (GW) theory of X to the associated infinite arrangement Haff

I . The GW invari-
ants are virtual degrees of moduli spaces of stable maps and provide a system of curve counts
equivalent to the more enumerative GV invariants via multiple cover formulae. The GW invari-
ants form the structure constants for the quantum cohomology algebra, but for our purposes
it is more convenient to package this information in a generating function, called the quantum
potential (see Section 3.2 for details). Combining Theorem 1.2 and the multiple cover formulae
gives the second main result.

Theorem 1.3 (3.4). Let X→ SpecR be a smooth 3-fold flopping contraction. The pole locus of
the quantum potential is the complexification of the infinite arrangement Haff

I .
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By [HW23], the complement of the complexified arrangement Haff
I forms the base of the

Bridgeland stability covering map, for a natural, compactly supported subcategory of the derived
category of X. Theorem 1.3 therefore connects quantum-cohomological Frobenius manifolds and
spaces of stability conditions, a phenomenon that has been observed in other contexts [Bri06,
IQ23, McA].

1.3 Flops via simultaneous resolution

To track the change of GV/GW invariants under iterated flops requires us to first rework some
of the theory of simultaneous resolutions, which may be of independent interest. Our new con-
tribution is to use the wall-crossing formula from [IW], which indexes chambers of the movable
cone by certain cosets, to construct iterated flops from simultaneous (partial) resolutions, and
to explain how the dual graph changes under flop. This completes the work of Reid [Rei83],
Pinkham [Pin83], and Katz–Morrison [KM92] in the 80s and 90s, rounding off a circle of ideas
going back to Brieskorn [Bri68].

For any Kleinian singularity C2/G, consider the corresponding Dynkin diagram Δ, root space
h, and Weyl group W . As is standard, C2/G admits a versal deformation SpecV over the base
hC/W . For any subset I⊆Δ, consider the parabolic subgroup WI := 〈si | i∈ I〉, and take the
pullback to obtain

SpecVI SpecV

hC/WI hC/W .

gI

When I= ∅, the parabolic WI = 1, and in this case, classically SpecV∅ admits a simultaneous
resolution.

As is now standard, to describe smooth 3-fold flops requires singular surface geometry, so
the ability to consider I �= ∅ is crucial. By [KM92], for each I there is a preferred, or a standard,
simultaneous partial resolution hI : YI→ SpecVI (see Section 2.4). Further, by loc. cit. all smooth
flops can be constructed via appropriate classifying maps μ : Disc→ hC/WI from the formal disc
to hC/WI for some I, giving the following cartesian diagram

X YI

SpecR SpecVI SpecV

Disc hC/WI hC/W .

hI

gI

μ

Given X→ SpecR, the question is how to construct the flop at a given curve from the classifying
map μ. This was solved in the case I= ∅ by Reid [Rei83], but the general case is harder, since the
subset I changes under flop. Pinkham [Pin83] counts only the number of simultaneous resolutions.

We solve this problem by appealing to the wall-crossing combinatorics of [IW]. The key point
is that when I �= ∅, chambers in the movable cone are indexed by cosets, not by elements of the
Weyl group. For any subset Γ⊆Δ, let WΓ ⊆W , denote the parabolic subgroup generated by
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reflections dual to the elements of Γ, and let �Γ ∈WΓ denote the longest element. For any curve
Ci ⊆X, set wi = �I�I∪{i} ∈W . Then there is a unique subset ωi(I)⊆Δ, described explicitly in
Section 4, for which WIwi =wiWωi(I).

Theorem 1.4 (4.4). Post-composing μ with w−1
i : hC/WI→ hC/Wωi(I) and taking the pullback

constructs the flop X+
i → SpecR of the curve Ci ⊂X. In particular

1. ωi(I) is the dual graph of the exceptional locus of X+
i → SpecR.

2. All other crepant resolutions can be obtained from the fixed μ by post-composing with
x−1 : hC/WI→ hC/WK and pulling back along YK, as the pair (x,K) ranges over the (finite)
indexing set Cham(Δ, I) described in Notation 2.2.

We describe the above in detail in Section 4, but we emphasise here that everything is formed
intrinsically from the Dynkin data, once X→ SpecR, and thus μ is fixed.

1.4 Tracking fundamental regions

With the above in mind, tracking the change in GV/GW invariants under all possible flops
becomes easy, and satisfyingly visual. In our running Example 1.1, each of the 12 crepant resolu-
tions Xi→ SpecR admits a fundamental region in (1.C). As a calibration, the fixed X→ SpecR
corresponds to the unit box in the purple axes

x

y
(1.D)

The other 12 chambers in the movable cone generate similar fundamental regions as in (1.D),
and this is illustrated in Figure 1.

Reassuringly, flopping a single curve turns out to correspond to the neighbouring region.
Although Figure 1 illustrates only the two-curve flop in the running Example 1.1, similar things
happen in full generality (see Section 5). The following is our third main result, which controls
how GV invariants transform under iterated flops. As for the notation, set X+

i to be the scheme
obtained from X after flopping only a single curve Ci, and, further, write nβ,X for the GV
invariant of curve class β in X. In what follows Mi is an explicit invertible matrix, defined in
(5.A), that can be easily built using Dynkin combinatorics.

Theorem 1.5 (5.4). With the notation as above,

nβ,X+
i
=

{
nβ,X if β∈ZCi

nMiβ,X else.

In other words, the set of GV invariants is exactly the same before and after the flop; they
are just re-indexed by the change of basis Mi. Example 5.5 illustrates this re-indexing in the case
of the running Example 1.1.
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Figure 1. The 12 fundamental regions corresponding to the 12 crepant resolutions.

1.5 Applications

The above results have a series of corollaries. The first is a direct and explicit proof of the
Crepant Transformation Conjecture for germs of 3-fold flopping contractions. Indeed, combining
Theorems 1.3 and 1.5 allows us to easily extract the following, which recovers the main result
of [LR01]. We remark here that our simplified approach also gives more refined information in
the form of the explicit matrix Ni = (M−1

i )�, which identifies the quantum potentials. Our proof
also avoids the use of symplectic cuts, thus side-stepping the associated technical difficulties.

Corollary 1.6 (5.13). Under the identification of the Novikov parameters given by the explicit
matrix Mi of Theorem 1.5, the quantum potentials of X and X+

i coincide, up to a correction
term that does not depend on the Novikov parameters, namely

Φ
X

+
i

r (γ1, γ2, γ3)−ΦX
r (Niγ1,Niγ2,Niγ3) =−(γ1 ·C+

i )(γ2 ·C+
i )(γ3 ·C+

i )
∑
k≥1

k3nkCi,X. (1.E)

Here, Ni : H
2(X+

i ;C)→H2(X;C) is the dual of M−1
i . The above identification holds after a

specific analytic continuation in the quantum parameters.

The correction terms on the right-hand side arise due to the non-compactness of X (see
Remarks 3.7 and 5.14). The key point is that the quantum potential of X+

i can be effectively
reconstructed from the quantum potential of X. Thus, whilst the GW invariants themselves are
not combinatorial, their transformation across the flop is combinatorial, which is why we obtain
such an elementary proof; compare [LR01] and [McL20].

The explicit matrix Ni turns out to have many different incarnations: it arises naturally as
the image in K-theory of Bridgeland’s flop functor, but, more interestingly, it can be calculated
using very simple Dynkin-style combinatorics (see Remark 5.12). However, simply by iterating
and multiplying matrices, it is possible to obtain a direct isomorphism between the generating
functions of any two crepant resolutions of SpecR.

The second corollary is algebraic. The flopping contraction X→ SpecR has an associated
contraction, algebra Acon [DW16, DW19], and it is known by Hua–Toda [HT18] for single curves
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and by Toda [Tod18] in general (see A.4), the dimension of the contraction algebra is determined
as the weighted sum of GV invariants

dimC Aconv =
∑

β∈A1(X)

nβ(β · 1)2

where β · 1 is the sum of the entries of β. For any curve Ci ⊆X; the contraction algebra can
be intrinsically mutated to obtain νiAcon; and this is the contraction algebra for the flop X+

i →
SpecR.

It is known [Dug15, Aug20b] that Acon and νiAcon are derived equivalent via a two-term tilt-
ing complex, but what is surprising here is that their dimension transforms in a very elementary
manner, dictated by the K-theory of that derived equivalence.

Corollary 1.7 (5.16). Under mutation at vertex i,

dimC νiAcon =
∑

β∈A1(X)

nβ( (M
−1
i β) · 1)2

where Mi is the explicit matrix in Corollary 1.5.

The above is remarkable: it says that not only are there just finitely many algebras in the
derived equivalence class of the finite dimensional algebra Acon (by [Aug20a]), but that further-
more, the dimensions of all the other algebras can be easily obtained combinatorially from the
first. The proof of Corollary 1.7 is slightly subtle, since it is not a priori clear that the GV invari-
ants defined by Toda are the same as the GV invariants defined here, but this is all discussed in
Appendix A.

Conventions.

All cDV singularities and related algebraic geometry take place over C. Vector spaces will be
over R, unless stated otherwise, and the complexification of a vector space V will be written VC.

2. Root theory, deformations and perturbations

Fix an isolated 3-fold cDV singularity SpecR with a crepant resolution f : X→ SpecR. There is
a finite collection of exceptional complete curves in X, contracted to a point p∈ SpecR, such that
f restricts to an isomorphism on the complement. In other words, f : X→ SpecR is a germ of a
smooth 3-fold flopping contraction, and, conversely, every such germ arises in this way [Rei83].

2.1 Elephants

The pullback along f of a general hyperplane section through p∈ SpecR is a partial crepant
resolution of an ADE surface singularity, the so-called general elephant [Rei83, (1.14)]

XY

C2/G =∼ SpecR/g SpecR.
(2.A)

Let Δ be the Dynkin diagram associated to C2/G, and let the composition

Z→ Y →C2/G

8
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be the full minimal resolution. By the McKay correspondence, the exceptional curves Ci ⊆Z are
indexed by the nodes i∈Δ. We write

I⊆Δ

for the subset indexing those curves Ci ⊆Z, which are contracted by the morphism Z→ Y , so
the complement Ic =Δ \ I indexes the curves that survive. In particular,

{Ci | i∈ Ic}
forms the set of exceptional curves in both Y and X, and the group A1(Y ) =A1(X) is freely
generated by their cycle classes.

Notation 2.1. Write Y = YI for the partial resolution of C2/G obtained from the full minimal
resolution Z by blowing down the curves in I.

The geometry of X will be studied by viewing it as the total space of a one-parameter
deformation of YI. This requires detailed control over the associated root theory, which we
establish in the following subsections.

2.2 Root theory

For any Dynkin diagram Δ, let h be the R-vector space based on the set of simple roots {αi |
i∈Δ} so that

h=
⊕
i∈Δ

Rαi,

and write Θ= h� for the dual. The Weyl group W acts naturally on both h and Θ. For every
positive root α∈ h, write Dα ⊆ h for the perpendicular hyperplane, and write Hα ⊆Θ for the
dual hyperplane.

Notation 2.2. For any subset I⊆Δ, consider the following data:

1. The complement Ic =Δ \ I.
2. The parabolic subgroup WI := 〈si | i∈ I〉 ⊆W .

3. The R-vector space hI obtained as the quotient of h by the R-subspace spanned by {αi | i∈
I}. The associated quotient map will be written

πI : h→ hI.

Note that hI has basis {πI(αi) | i∈ Ic} and may be identified with the subspace of h based
on {αi | i∈ Ic}.

4. The restricted positive roots are represented by hI, which are precisely the non-zero images
of positive roots under πI.

5. For ϑi ∈R with i∈Δ, write (ϑi) =
∑

i∈Δ ϑiα
�
i , and consider

ΘI := {(ϑi)∈Θ | ϑi = 0 for all i∈ I} ⊆Θ.

The reflecting hyperplanes in Θ intersect ΘI, and in this way, ΘI inherits the structure of
a finite hyperplane arrangement. Note that ΘI has basis {α�

i | i∈ Ic}. Of course, hI and ΘI

are dual, and both have dimension |Ic|.
6. The set Cham(Δ, I) indexes chambers of ΘI [IW, 1.8]. Combinatorially, Cham(Δ, I) can be

defined as the set of all pairs (x,K) with x∈W and K⊆Δ for which WIx= xWK and
length(x) =min{length(y) | y ∈ xWK}.

9
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For a given restricted positive root β∈ hI, there are in general many different positive roots
α∈ h such that πI(α) =β. The following result controls the possible lifts and is a very mild
generalisation of [BKL01, Lemma 2.4]. It is used in the proof of Theorem 2.6, which in turn is
used to relate enumerative invariants to hyperplane arrangements in Section 3.

Lemma 2.3. For any ADE Dynkin diagram Δ and any subset I⊆Δ, let α,α′ ∈ h be positive
roots such that πI(α), πI(α

′)∈ hI are non-zero. Then the following are equivalent:

1. πI(α) = πI(α
′).

2. α and α′ are identified under the action of WI on h.

3. Dα and Dα′ are identified under the action of WI on h.

Proof. Since I is fixed, to ease notation, set π= πI.
(1)⇒(2) This is the only difficult part, and it proceeds by case analysis. Consider first the

An root system, where the positive roots are precisely the connected chains of 1s on the Dynkin
graph

αij := 0 . . . 0 1 . . .1 0 . . . 0 (1≤ i≤ j ≤ n).
i j

By definition of the action of W on h, the reflection si acts by

si(αij) =αi+1 j for i < j, (2.B)

which has the effect of replacing the leftmost 1 with a 0. Similarly sj(αij) =αi j−1 for i < j,
which has the effect of replacing the rightmost 1 with a 0.

Suppose now that we are given positive roots αij and αkl, and assume without loss of general-
ity that i≤ k. Since π(α) = π(α′) is non-zero, the two chains of 1s must overlap, and any position
at which they do not overlap must be indexed by an element of I. By iteratively applying (2.B),
we can shorten both αij and αkl using only elements of WI and force them to line up on the
left, at the leftmost element belonging to the overlap. They can similarly be forced to line up on
the right as well, proving the claim.

The case Dn for n≥ 4 is similar in spirit, albeit more involved. As usual, write α1, . . . ,αn

for the simple roots; then the positive roots are given by the following linear combinations. Note
that the support of each is a connected subset of the Dynkin graph.

q 1≤ i≤ j ≤ n− 2,
α
pq
ij := 0 . . . 0 1 . . .1 0 . . . 0 p p, q ∈ {0, 1},

i j (p, q) �= (0, 0)⇒ j = n− 2

1
βij := 0 . . . 0 1 . . .1 2 . . . 2 1 1≤ i < j ≤ n− 2

i j

In addition, the collection αpq
ij includes two special cases αn−1 and αn, which we interpret as

(p, q) = (1, 0) and (p, q) = (0, 1), with the string of 1s between i and j being empty.
For every 1≤ i≤ n, the reflection si acts on the coefficient in the ith position by negating it

and then by adding the sum of the coefficients in adjacent positions. The coefficients in all other
positions are left unchanged.

Consider now positive roots α,α′, with π(α) = π(α′) �= 0. We work through the different
cases. The first case is α=αpq

ij and α′ =αrs
kl . If (p, q) �= (r, s), then we can use the reflections

sn−1, sn to transform α,α′ until (p, q) = (r, s). For instance, if (p, q) = (0, 1) and (r, s) = (0, 0),
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then, since π(α) = π(α′), we must have n∈ I. Applying sn ∈WI to α replaces (p, q) = (0, 1),
with (p, q) = (0, 0). The other cases are similar, so we may assume that (p, q) = (r, s). Given
this, we follow the strategy in the An case. The only difference is when j = n− 2 and l < n− 2,
in which case (p, q) = (r, s) = (0, 0) since the chain of 1s is connected. Then sn−2 ∈WI and
sn−2(α

00
i n−2) =α

00
i n−3. This, and all other situations, then simply mirror the An proof.

The next case is α=αpq
ij and α′ =βkl. If i≤ k then necessarily j ≥ k since otherwise the

supports do not overlap. In particular si, si+1, . . . , sk−1 ∈WI which gives

(sk−1 ◦ · · · ◦ si)(αpq
ij ) =α

pq
kj .

Similarly if i≥ k we use sk ◦ · · · ◦ si−1 to achieve the same transformation. For the next step,
notice that sj+1, . . . , sn−2 ∈WI, and applying these left-to-right gives

(sn−2 ◦ · · · ◦ sj+1)(α
pq
kj) =α

pq
k n−2.

As in the previous case, if (p, q) �= (1, 1) then we may use the reflections sn−1, sn to transform
α
pq
k n−2 into α11

k n−2. Now, going back from right-to-left gives the required

(sl ◦ · · · ◦ sn−2)(α
11
k n−2) =βkl.

The next case is α=βij and α′ =βkl, where without loss of generality i≥ k. But then
si−1, . . . , sk ∈WI which is applied directly to give (sk ◦ · · · ◦ si−1)(βij) =βkj . If j ≥ l, then
sj−1, . . . , sl ∈WI, and (sl ◦ · · · ◦ sj−1)(βkj) =βkl. The case j ≤ l is similar.

This completes the proof for Dn, except for some special cases involving αn−1 and αn. These
are more elementary, and so are left to the reader.

The remaining cases E6, E7, E8 encompass finitely many possibilities. It is possible to verify
these by hand, but it is also possible to employ computer algebra [BCP97]. Source code is
available from the authors upon request. This completes the proof of (1)⇒(2).

(2)⇒(1) This holds since applying elements of WI to a given positive root cannot change the
coefficients associated to elements of Ic.

(2)⇒(3) If s∈W and v ∈ h then s(Dv) =Ds(v) since s preserves the Cartan pairing. In particular
this applies when v=α is a positive root and s(v) =α′ is its image.

(3)⇒(2) Suppose there is an element s∈WI such that s(Dα) =Dα′ . We then have Dα′ =Ds(α)

and since both α′ and s(α) are roots it follows that s(α) equals either α′ or −α′. We claim that
s(α) must be a positive root, thus ruling out the latter possibility. If s= si for some i∈ I, then
si permutes the set of positive roots excluding αi. But certainly α �=αi since π(α) �= 0, so si(α)
must be a positive root. The argument for general s follows by induction, since π(α) = π(si(α))
for any α and any si with i∈ I. �

2.3 Hyperplane arrangements: finite and infinite

To the above data of a Dynkin diagram Δ and a subset I⊆Δ it is possible to associate two
hyperplane arrangements encoding the set of restricted positive roots: one finite and one infinite
[IW]. Recalling Notation 2.2, both arrangements live inside ΘI

∼=R|Ic|.
The real vector space hI is dual to ΘI, and so for each restricted root 0 �=β= πI(α)∈ hI we

may consider the dual hyperplane

Hβ := {(ϑi) |
∑

βiϑi = 0} ⊆ΘI.

11
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Since there are only finitely many restricted roots, the collection of Hβ forms a finite hyperplane
arrangement in ΘI, which we refer to as the finite linear arrangement , namely

HI := {Hβ |β is a restricted positive root} . (2.C)

The above list includes repetitions, whenever two restricted roots are proportional. As in
Example 1.1, we remember these repetitions by attaching a finite list of multiplicities to each
hyperplane. We refer to this data as the enhanced finite arrangement .

Remark 2.4. In the setting of Section 2.1, HI is the set of walls in the movable cone of X [Pin83,
Wem18]. However, the movable cone does not remember multiplicities.

To define the infinite arrangement, for each restricted positive root β, consider the infinite
disjoint union of affine hyperplanes in ΘI defined by

Haff
β =

{
(ϑi) |

∑
i∈Ic

βiϑi = z for some z ∈Z
}

.

The infinite affine arrangement Haff
I is then defined to be

Haff
I :=

⋃
β

Haff
β . (2.D)

There is an inclusion HI ⊆Haff
I , as HI can be recovered from Haff

I as the subset of hyperplanes
which pass through the origin. On the other hand to construct Haff

I from the finite arrangement
HI it is necessary to remember the multiplicities, since Haff

2β �=Haff
β .

2.4 Simultaneous partial resolution

The enumerative geometry of the 3-fold X will be studied by replacing X with a generic per-
turbation, a strategy employed by many authors [Mor96, Wil99, BKL01]. In the first instance
this will allow us to qualitatively characterise the GV invariants, and extract the poles of the
quantum product. However the real strength in this approach, and indeed our new contribution,
is to use the wall crossing formula from [IW] to construct iterated flops via simultaneous (partial)
resolution. This iteration step is harder, and so will be delayed until Section 4.

In this subsection we simply recall the necessary background and set notation, largely
following [BKL01, Section 2], together with [Bri68, Pin83, Fri86, KM92].

2.4.1 Simultaneous resolution. With notation as in Section 2.2, given any Kleinian singular-
ity C2/G with associated Dynkin diagram Δ, consider the complex vector space hC =

⊕
i∈Δ Cαi,

based by the simple roots. Write SpecV for a versal deformation of C2/G, then as is very well
known, base changing with respect to the Weyl group

SpecW SpecV

hC hC/W

gives SpecW→ hC, which admits a simultaneous resolution. Since dimW≥ 3, there are in fact
many such simultaneous resolutions, since minimal models are not unique.

In [KM92, Theorem 1] Katz–Morrison construct a particular simultaneous resolution, from
a particular SpecV→ hC/W , for which positive roots and their hyperplanes control those curve
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classes that survive under deformation [KM92, Theorem 1(c)]. We will recap this result in greater
generality in Theorem 2.6 below, but for now write Z→ SpecW for this preferred resolution.
Katz–Morrison refer to their particular choice of Z as the standard simultaneous resolution
[KM92, Section 6].

2.4.2 Simultaneous partial resolution. Given any subset I⊆Δ, consider the standard simul-
taneous resolution Z→ SpecW from Section 2.4.1. As explained in [KM92, above Theorem 3]
following [Pin83] it is possible to blow down Z at the curves in I and take the quotient by WI

to obtain YI, which sits in the following commutative diagram

Z

Y
†
I

YI

SpecW SpecVI SpecV

hC hC/WI hC/W

gI

hI

(2.E)

with all squares cartesian. By construction, the fibre (hI ◦ gI)−1(0) is the partial resolution of
C2/G obtained from the full minimal resolution by blowing down the curves in I. Namely,
recalling Notation 2.1, (hI ◦ gI)−1(0) = YI.

In a similar way as in Section 2.4.1, the middle morphism hI : SpecVI→ hC/WI admits
simultaneous partial resolutions. Again these are not unique, however we will refer to the choice
YI→ SpecVI constructed above as the standard simultaneous partial resolution associated to
I. From our perspective, the point is that YI is precisely the partial simultaneous resolution for
which Theorem 2.6 below holds.

2.5 Surface deformations via simultaneous partial resolution

Fix a subset I⊆Δ and consider the composition

sI = hI ◦ gI : YI→ hC/WI

from (2.E). This is a versal deformation of the surface YI.

Definition 2.5. The standard discriminant locus

DI ⊆ hC/WI

is the set of points p∈ hC/WI such that the fibre s−1
I (p) contains a complete curve.

There is a similar definition of a discriminant locus associated to any simultaneous partial
resolution: the word standard in Definition 2.5 emphasises the choice made in (2.E). The following
discussion draws heavily on [KM92, Theorem 1] as used in [BKL01, Proposition 2.2], while also
incorporating Lemma 2.3 above to relate the resulting combinatorics to the enhanced movable
cone.
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To set notation, recall that Dα ⊆ h is the hyperplane perpendicular to α, and let Dα,C ⊆ hC
denote its complexification. Recall from Notation 2.2 that for I⊆Δ there is a quotient map
πI : h→ hI, where the vector space hI has basis {πI(αi) | i∈ Ic}, and that there is a natural
identification

hI ∼=A1(YI)R (2.F)

πI(αi) �→Ci.

Every restricted positive root πI(α)∈ hI has non-negative integer coefficients, and so may be
interpreted as a curve class πI(α) =β∈A1(YI).

Theorem 2.6 (Katz–Morrison). For any subset I⊆Δ, the following statements hold.

1. The standard discriminant locus DI ⊆ hC/WI from Definition 2.5 decomposes as

DI =
⋃

πI(α) �=0

Dα,C/WI

where the union is over all positive roots α such that πI(α) �= 0. The irreducible components
Dα,C/WI ⊆DI are indexed by the restricted positive roots πI(α).

2. For p∈Dα,C/WI the fibre s−1
I (p) is a deformation of YI containing a complete curve of

class β := πI(α). If in addition p does not belong to any other component of DI, then this
is the only complete curve in s−1

I (p).

3. If β∈A1(YI) is not a restricted positive root, then there are no deformations of YI

containing a complete curve of class β.

Proof. (1) If I= ∅ then by [KM92, Theorem 1(3)] (see also [BKL01, Proposition 2.2]) there is a
decomposition of the standard discriminant locus

D∅ =
⋃
α

Dα,C ⊆ hC

where the union is over all positive roots α. The analogous decomposition for general I follows
by considering the standard simultaneous resolution Z of the standard simultaneous partial
resolution YI from 2.4

Z YI

hC hC/WI.

tI sI

φI

The map Z→ YI is given by blowing down Z at the curves in I and then taking the quotient by
WI.

Fixing a point p∈ hC, it follows that the fibre s−1
I (φI(p)) contains a complete curve if and

only if the fibre t−1
I (p) contains a complete curve which is not blown down. Again by [KM92,

Theorem 1(3)], the fibre t−1
I (p) contains a complete curve if and only if p∈Dα,C for some pos-

itive root α, and this curve is not blown down if and only if πI(α) �= 0. This produces the
desired decomposition of DI. It then follows from Lemma 2.3 that the components Dα,C/WI

are indexed by the restricted positive roots πI(α), i.e. Dα,C/WI =Dα′,C/WI if and only if
πI(α) = πI(α

′).
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(2)(3) First recall what it means for a curve in s−1
I (p) to have class β∈A1(YI). The inclusion

of the central fibre i0 : s
−1
I (0) = YI ↪→ YI induces an isomorphism

i0� : A1(YI)
∼−→A1(YI).

Now consider an arbitrary fibre s−1
I (p) with inclusion ip : s

−1
I (p) ↪→ YI. If C⊆ s−1

I (p) is a com-
plete curve, then C has class β∈A1(YI) if ip�C= i0�β. The same definition applies to the full
simultaneous resolution Z. Both (2) and (3) are known for Z by loc. cit., and the general case
follows by tracking curve classes from Z to YI. �

Remark 2.7. Consider classes β,β′ ∈A1(YI) which are proportional but distinct, i.e. kβ= k′β′

for some distinct integers k, k′ ≥ 1. If both β,β′ are restricted positive roots, then the lifts α,α′

will not be proportional, by the root system axioms. In particular, the corresponding components
of the standard discriminant locusDI will be distinct. Every component of the discriminant locus
therefore corresponds to a unique curve class β. This is in contrast to the components of the
hyperplane arrangement HI ⊆ΘI from Section 2.3.

Remark 2.8. The description of the standard discriminant locus DI in Theorem 2.6 is a union
over positive roots α∈ h such that πI(α) �= 0. The complementary union of hyperplane quotients

EI =
⋃

πI(α)=0

Dα,C/WI

parametrise points p∈ hC/WI such that the fibre s−1
I (p) is singular. Clearly

D∅/WI =DI ∪ EI.

For a generic point p∈ EI, the fibre s
−1
I (p) contains a single A1 singularity. The locus EI will play

a less central role than DI. The translation between our notation and that of [BKL01, Section
2] is as follows: DI =Dcurv, EI =Dsing and DI ∪ EI =D.

2.6 3-fold perturbations via surface deformations

Given the flopping contraction X→ SpecR, a choice of local equation for the hypersurface
SpecR/g⊆ SpecR produces a flat family SpecR→Disc over a formal disc, with central fibre an
ADE surface singularity. By composition this produces a flat family X→Disc with central fibre
the partial resolution Y ∼= YI of the ADE singularity [Rei83]. This exhibits X, respectively SpecR,
as the total space of a one-parameter deformation of the surface YI, respectively SpecR/g. These
deformations are induced by an associated classifying map

μ : Disc→ hC/WI

where hC/WI is as described in the previous subsection, and the contraction X→ SpecR is
obtained from the simultaneous partial resolution of Section 2.4 by base change

X YI

SpecR SpecVI

Disc hC/WI.

f gI

hI

μ
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The central fibre of SpecR→Disc is the ADE singularity corresponding to Δ, so μ(0) = 0.
On the other hand, since X contains no complete curves outside of Y the map μ does not intersect
the discriminant locus away from the origin, so μ−1(DI) = μ

−1(0) = 0.
As in [BKL01, below Lemma 2.7] there exists a one-parameter perturbation of μ

(μt)t∈[0,ε] : Disc× [0, ε]→ hC/WI

such that μ0 = μ and for t �= 0 the following transversality condition is satisfied

μt intersects DI ∪ EI transversely and away from codimension two strata (2.G)

where EI is defined in Remark 2.8. Furthermore, making ε smaller if necessary, we can assume
that μ−1

t (DI) is bounded away from the boundary of Disc.
The spaces Xt �=0 give generic perturbations of the target X0 =X. The following is well-known,

and will be used to reduce the enumerative geometry of Xt, locally, to that of the Atiyah flop.

Lemma 2.9. For any t �= 0, the total space Xt of the family of surfaces associated to μt is a
smooth 3-fold. Further, every complete curve in Xt is isolated, smooth, and rational, with normal
bundle isomorphic to OP1(−1)⊕OP1(−1).
Proof. This is essentially [BKL01, Proposition 2.2], which itself is extracted from the proof of
[KM92, Theorem 1]. �

Write X for the 4-dimensional total space of the entire family (μt)t. Then as explained in
[Wil92, Section 3], pulling back along inclusions of fibres induces isomorphisms

H2(YI;Z)
∼=←−H2(X;Z)

∼=←−H2(X;Z)
∼=−→H2(Xt;Z) (2.H)

for any t. Any class L in H2(X,Z)∼=Pic(X) thus induces an invertible sheaf L on X with L|X0
=L.

Similarly, pushing forward curve classes along the inclusion of fibres induces isomorphisms

A1(YI)
∼=−→A1(X)

∼=−→A1(X)
∼=←−A1(Xt) (2.I)

for any t. Given β∈A1(X) we abuse notation and let β∈A1(Xt) denote the image of β under
the composition of the natural isomorphisms above. Further, combining (2.I) and (2.F) it makes
sense to ask when curve classes are restricted roots.

Corollary 2.10. Fix t �= 0 and β∈A1(X) non-zero. Then the following statements hold:

1. If β is not a restricted positive root, i.e. there does not exist a positive root α with πI(α) =β,
then there is no complete curve in Xt of class β.

2. If β is a restricted positive root, with πI(α) =β, then the number of complete curves in Xt

of class β is equal to |μ−1
t (Dα,C/WI)| and is always ≥ 1.

Proof. This follows from Theorem 2.6, the only new claim being that |μ−1
t (Dα,C/WI)| ≥ 1. We

observed above that μ(0) = 0. Since μ= μ0 and 0∈Dα,C/WI for every positive root α, it follows
that |μ−1

0 (Dα,C/WI)| ≥ 1 for every positive root α. This quantity does not change under a small
perturbation of μ0 to μt. �

3. Curve counting and hyperplane arrangements

The previous section established strong control over generic perturbations of the target geometry
X. This section exploits this, and describes the qualitative structure of the systems of enumerative
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invariants attached to X. We show that these are intimately related to the combinatorial hyper-
plane arrangements from Section 2.3, with the infinite affine arrangement in particular giving
the pole locus of the so-called quantum potential.

3.1 Gopakumar–Vafa

Curve counting invariants of X will be defined using the perturbed target Xt (for some fixed t �= 0)
constructed in Section 2.6. Given a curve class β∈A1(X) the associated genus-zero Gopakumar–
Vafa (GV) invariant

nβ = nβ,X ∈Z≥0

is defined as the number of complete curves in Xt of class β. By Corollary 2.10 this is zero if β
is not a restricted positive root, and otherwise is equal to the number of intersection points of
μt with the appropriate component of the discriminant locus, i.e.

nβ =
∣∣μ−1

t (Dα,C/WI)
∣∣ (3.A)

where α is any positive root with πI(α) =β. This number is independent of the choice of small
perturbation μt.

In what follows, for a curve class β consider the dual hyperplane Hβ ⊆ΘI.

Corollary 3.1. If β∈A1(X) then nβ is non-zero if and only if β is a restricted positive root,
equivalently if and only if Hβ belongs to the enhanced finite arrangement HI.

Proof. This follows immediately from Corollary 2.10, together with the definition of enhanced
finite arrangement in Section 2.3. �

Note that Hβ and H2β should be considered as different hyperplanes in the enhanced finite
arrangement. See also the discussion in Section 2.3, and Remark 2.7.

Remark 3.2. It follows from Corollary 3.1 that there are only finitely many non-zero GV invari-
ants. There is already a known range outside of which the GV invariants are guaranteed to
vanish. Indeed, every simple root i∈Δ has an associated length δi, given by the coefficient of
αi in the maximal root, and writing β=ΣimiCi it is known that nβ = 0 unless mi ≤ δi for all i.
However, this bound is far from sharp, while Corollary 3.1 provides a precise characterisation.

3.2 Gromov–Witten

We refer to [CK99, Section 7] for an introduction to Gromov–Witten theory. For every non-zero
curve class β∈A1(X) there is an associated genus-zero Gromov–Witten (GW) invariant

Nβ =Nβ,X ∈Q
defined as the virtual degree of the corresponding moduli space of stable maps to X. By defor-
mation invariance this coincides with the virtual degree of the moduli space of stable maps to
Xt for t �= 0, as constructed in Section 2.6.

The latter space decomposes as a disjoint union of spaces of stable maps to P1, and apply-
ing the Aspinwall–Morrison multiple cover formula [AM93, Voi96] for the local invariants of
OP1(−1)⊕OP1(−1) gives the following relationship between the GW invariants and the GV
invariants from Section 3.1, namely

Nβ =
∑
d|β

nβ/d

d3
. (3.B)
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More generally, given k≥ 0 and homogeneous classes γ1, . . . , γk ∈H�(X;C), the associated GW
invariant with cohomological insertions at marked points is defined to be

〈γ1, . . . , γk〉X0,k,β :=

∫
[M0,k(X,β)]virt

k∏
i=1

ev�iγi

and provides a virtual count of rational curves in X of class β passing through the cycles
γ1, . . . , γk. Note that in particular Nβ = 〈〉X0,0,β. Since X is a Calabi–Yau 3-fold, the invariant
vanishes unless the input data satisfies the dimension constraint

k∑
i=1

deg γi = 2k. (3.C)

The cohomology of X is well-understood, see e.g. [Cai05, 5.2]. In particular

H0(X;C) =C · 1, H1(X;C) = 0, H2(X;C) = PicX⊗C.

Moreover, as we work in the complete local setting, by e.g. [VdB04, 3.4.4] PicX is dual to the
group A1(X) of curve classes, since there is a basis of divisor classes PicX= 〈Di | i∈ Ic〉Z which
satisfies Di ·Cj = δij .

Given a GW invariant 〈γ1, . . . , γk〉X0,k,β, if any γi = 1 then the invariant vanishes by the

string equation. It follows from (3.C) that the invariant vanishes unless each γi ∈H2(X;C). But
then the γi are divisors, and the k-pointed invariants with divisorial insertions are related to the
0-pointed invariants by the divisor equation

〈Dj1 , . . . , Djk〉X0,k,β =

(
k∏

i=1

Dji ·β
)
Nβ.

In this way, the non-zero GW invariants are controlled entirely by the Nβ, which by (3.B) are
controlled entirely by the GV invariants nβ. The latter constitutes a finite list of numbers.

3.3 Quantum cohomology

As is well known, the GW invariants form the structure constants for quantum cohomology. The
information defining quantum cohomology is equivalent to the quantum potential , defined in our
setting as

ΦX
t (γ1, γ2, γ3) :=

∑
β∈A1(X)

β�=0

∑
k≥0

1

k!
〈γ1, γ2, γ3, t, . . . , t〉X0,k+3,β. (3.D)

Here we exclude the case β= 0 from the sum, since for non-compact X such invariants are not
defined (see Remark 3.7). We view (3.D) as a family of multilinear maps

ΦX
t : H�(X;C)⊗3→C

parametrised by the formal variable t∈H�(X;C). By the earlier dimension arguments, we see
that the quantum potential only depends on the component of t in the H2(X;C) direction. Thus
we may assume t∈H2(X;C) and write

t= (ti)i∈Ic =
∑
i∈Ic

tiDi.
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The parameter space for the quantum potential is thus co-ordinatised by the ti. An alternative
co-ordinate system is given by the Novikov parameters, defined by

qi := exp(ti).

The following result resembles expressions appearing in earlier work [Mor96, Wil92], but is more
explicit, being given in terms of canonical bases for H2(X;C) and A1(X). This refined information
will allow us in Corollary 3.4 to pinpoint the non-vanishing terms using Dynkin combinatorics
and, in Corollary 5.13, to track the change in quantum potential under iterated flops.

Theorem 3.3. The quantum potential has a natural analytic continuation over the parameter
space, given as a finite sum of terms indexed by the non-vanishing GV invariants

ΦX
t (γ1, γ2, γ3) =

∑
β=(mi)

nβ(γ1 ·β)(γ2 ·β)(γ3 ·β)
∏

i∈Ic q
mi

i

1−∏i∈Ic q
mi

i

. (3.E)

The sum is over non-zero curve classes

β= (mi)i∈Ic =
∑

miCi ∈A1(X).

Each term is a cubic polynomial in the input variables, multiplied by a specific rational function
in the Novikov parameters and weighted by the GV invariant nβ. We will also use the term
‘quantum potential’ to refer to this analytic continuation.

Proof. Write the formal parameter t and the curve class β as sums

t=
∑
i∈Ic

tiDi, β=
∑
i∈Ic

miCi.

Applying the divisor equation together with the multiple cover formula (3.B) then gives

ΦX
t (γ1, γ2, γ3) =

∑
β

∑
k≥0

1

k!
〈γ1, γ2, γ3, t, . . . , t〉X0,k+3,β

=
∑
β

〈γ1, γ2, γ3〉X0,3,β
(∑

k≥0

(t·β)k

k!

)

=
∑
β

Nβ(γ1 ·β)(γ2 ·β)(γ3 ·β) exp
(∑

i∈Ic

miti

)

=
∑
β

nβ

∑
d≥1

1

d3
(γ1 · dβ)(γ2 · dβ)(γ3 · dβ) exp

(∑
i∈Ic

dmiti

)

=
∑
β

nβ(γ1 ·β)(γ2 ·β)(γ3 ·β)
∑
d≥1

exp

(∑
i∈Ic

miti

)d

=
∑
β

nβ(γ1 ·β)(γ2 ·β)(γ3 ·β)
∑
d≥1

(Πi∈Icqmi

i )d.

Note that this sum is finite, since nβ = 0 for all but finitely many β (Corollary 3.1). For fixed
inputs (γ1, γ2, γ3), the above is a formal power series in the Novikov parameters. It is the Taylor
series for the following rational function, expanded about the point (qi)i = (0, . . . , 0), equivalently
(ti)i = (−∞, . . . ,−∞),
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ΦX
t (γ1, γ2, γ3) =

∑
β

nβ(γ1 ·β)(γ2 ·β)(γ3 ·β)
∏

i∈Ic q
mi

i

1−∏i∈Ic q
mi

i

.

This expression provides a natural analytic continuation of the quantum potential beyond the
radius of convergence {|qi|< 1 | i∈ Ic}. �

Recall that after combining (2.I) with (2.F), we can ask which curve classes are restricted
roots.

Corollary 3.4. Under the uniformly rescaled co-ordinates pi := ti/2π
√−1 on H2(X;C), the

pole locus of the quantum potential is given by⋃
β=(mi)

{∑
i∈Ic mipi ∈Z

}
where the union is over all restricted positive roots β. This is precisely the complexification of
Haff

I under the natural identification H2(X;R)∼=ΘI dual to (2.F).

Proof. The pole locus of (3.E) is the union of loci in the parameter space given by∏
i∈Ic

qmi

i = 1 ⇔
∑
i∈Ic

miti ∈ 2π
√−1 ·Z ⇔

∑
i∈Ic

mipi ∈Z,

where β= (mi)i∈Ic =
∑

miCi is such that nβ is non-zero. The first statement then follows from
Corollary 3.1, since nβ is non-zero if and only if β is a restricted positive root. The second is an
immediate consequence of the definition of Haff

I in (2.D). �

Example 3.5. For a single-curve flop with , the complexification of Haff
I is

R

iR

−1 0 1
4

1
3

1
2

2
3

3
4

1

extended to infinity in both directions. The non-zero GV invariants are nkC for 1≤ k≤ 4.

Example 3.6. In the running Example 1.1, namely, a two-curve flop with , the
complexification of Haff

I is the complexification of the real arrangement in (1.C).

Remark 3.7. The definition of the quantum cohomology algebra requires a perfect pairing on
cohomology in order to raise indices, but since X is non-compact here, such a pairing does
not exist. This technical issue is often circumvented by localising to a torus-fixed locus which is
compact; see e.g. [BG08, CIJ18]. Since our geometries do not always carry a suitable torus action,
instead we simply equate ‘quantum cohomology’ with the data of the quantum potential (3.D), as
this is consistent with other approaches [LR01]. In cases where a natural quantum cohomology
algebra can be defined, our results apply equally well to that algebra. The only modification
required is to reinstate the β= 0 terms in the quantum potential that encode the given perfect
pairing.
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4. Flops via simultaneous partial resolutions

This section constructs flops and describes how their dual graph changes, via simultaneous partial
resolutions, completing the work of Pinkham [Pin83]. As a consequence we obtain an explicit
change-of-basis matrix, which in Section 5.1 is used to track the change of GV invariants under
iterated flop.

The construction requires some more Dynkin notation, so for a subset I⊆Δ, j ∈ I and i∈ Ic,
write

I+ i= I∪ {i} and I− j = I \ {j}.
Further, to every Dynkin diagram Γ is an associated Dynkin involution, which we will denote
ιΓ. For Type An and E6, this is the obvious reflection, for E7 and E8 it is trivial, and for Dn the
behaviour depends on the parity of n; see e.g. [IW, (1.2.B)]. If Γ is a disjoint union of Dynkin
diagrams, then ιΓ by definition acts separately on each component. Further, if Δ is ADE and if
Γ is a subset of Δ, then automatically the subgraph Γ is a disjoint union of ADE diagrams, so
there is an associated ιΓ.

Notation 4.1 ([IW, 1.16)]. For i∈ Ic, the wall crossing ωi(I) is defined by the rule

ωi(I) := I+ i− ιI+i(i)⊆Δ.

Example 4.2. Consider the running Example 1.1, namely, , where by convention, I equals
the six black dots. There are two choices for i∈ Ic, namely, the two pink nodes. Let i be the
rightmost. Then I+ i equals the black dots in the following:

I + i =

The black dots form A1 ×A6, so applying the Dynkin involution ιI+i illustrated, we see that
ιI+i(i) is the top node. Thus, for this choice of i,

ωi(I) = I + i − ιI+i(i) = .

Consider now the fixed flopping contraction X→ SpecR, which slices under (2.A) to give
YI→C2/G. Pick a flopping curve Ci in X. This corresponds to a choice of i∈ Ic, so we can
form ωi(I). In what follows, consider �I�I+i, where �I and �I+i are the longest elements in the
parabolic subgroups WI and WI+i, respectively.

Lemma 4.3. The left action by �I�I+i induces an isomorphism hC/Wωi(I)→ hC/WI.

Proof. Writing w= �I�I+i, the point is that wWωi(I) =WIw (see e.g. [IW, 1.20(1)(a)]). The
action by w is an isomorphism hC→ hC, and under this isomorphism, any orbit (Wωi(I))p gets
sent to w(Wωi(I))p= (WI)wp, which is an orbit under WI. �

In what follows, we will always consider left actions. When labelling arrows in commutative
diagrams, we will often write e.g. �I�I+i· to denote the morphism given by left multiplication by
�I�I+i.

Note that �ωi(I)�I+i�I�I+i = 1 [IW, 1.2(3)], and thus �ωi(I)�I+i : hC/WI→ hC/Wωi(I) is the
inverse map. Recall the notation in (2.E). Using the universal property of the pullback gives
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a non-obvious isomorphism between VI and Vωi(I), which sits in the following commutative
diagram:

SpecVωi(I) SpecV

hC/Wωi(I) hC/W

SpecVI SpecV

hC/WI hC/W

�I�I+i·

∼

Now let YI, respectively Yωi(I), be the standard simultaneous resolution associated to I, respec-
tively ωi(I). As explained in Section 2.6, X can be obtained from μ : Disc→ hC/WI by pulling
back YI. Hence, setting ν= (�ωi(I)�I+i) ◦ μ= (�I�I+i)

−1 ◦ μ and pulling back to Yωi(I) constructs

a variety X+
i sitting within the following commutative diagram:

X+
i

Yωi(I)

SpecR′ SpecVωi(I) SpecV

Disc hC/Wωi(I) hC/Wν

X YI

SpecR SpecVI SpecV

Disc hC/WI hC/W
μ

�I�I+i·

∼∼ (4.A)

Composing the map X+
i → SpecR′ with the isomorphism SpecR′→ SpecR yielding a morphism

X+
i → SpecR.

Theorem 4.4. With notation as above, X+
i → SpecR is the flop of X at the curve Ci. In

particular, the following statements hold:

1. ωi(I)⊆Δ is the Dynkin data associated to the flopping contraction X+
i → SpecR.

2. All other crepant resolutions of SpecR can be obtained from the fixed μ by post-composing
with x−1 : hC/WI→ hC/WK and pulling back along YK, as the pair (x,K) ranges over the
(finite) indexing set Cham(Δ, I) of Notation 2.2.

Proof. Since the exceptional locus of gI : YI→ SpecVI has codimension two, Cl(VI)∼=Cl(YI).
But YI is smooth, so the latter is isomorphic to Pic(YI), which in turn is isomorphic to Z|Ic|

based on divisors dual to the |Ic| curves above the origin. Choosing this basis, we may write
Cl(VI)∼=

⊕
j∈Ic Ze�j , and, further, by definition YI is obtained by blowing up any element in the

characteristic cone

CI := {(zj) | zj > 0 for all j} ⊆
⊕
j∈Ic

Ze�j .
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Applying a similar analysis to the standard simultaneous resolution Z→ SpecW, we have
Cl(W)∼=⊕j∈Δ Ze�j , and since by construction YI is obtained from Z by simultaneously blowing
down curves, it is clear that

Cl(VI) Cl(W)

⊕
j∈Ic Ze�

j

⊕
j∈Δ Ze�

j

∼ ∼ (4.B)

where the bottom morphism is the obvious inclusion induced by the inclusion Ic ⊆Δ. There is a
natural identification of Cl(VI), respectively Cl(WI), with the lattice inside ΘI, respectively Θ.

By the universal property of the pullback, the action of any sj ∈W on hC induces an
automorphism of W.

SpecW SpecV

hC hC/W

SpecW SpecV

hC hC/W

sj ·

∼

The effect on homology of Z is via the Weyl reflection sj on roots [Rei83], and thus the action
on Cl(W) is the dual, namely, the action of the Weyl reflection sj on coroots.

Composing these sj , we can consider the action of �I�I+i. We already know that the bottom-
right square in (4.A) commutes, and hence the bottom two squares in the following are well
defined and commute.

SpecW SpecVωi(I) SpecV

hC hC/Wωi(I) hC/W

SpecW SpecVI SpecV

hC hC/WI hC/W

�I�I+i·

∼

�I�I+i·

∼

The universal property of pullbacks give the induced isomorphisms in the top squares. The top-
left square induces the following bottom commutative square on class groups, and the top square
is obtained by applying (4.B) to both I and to ωi(I).

⊕
j∈Δ Ze�

j

⊕
j∈ωi(I)c

Ze�
j

Cl(W) Cl(Vωi(I))

i1

⊕
j∈Δ Ze�

j

⊕
j∈Ic Ze�

j

Cl(W) Cl(VI)

i2

�I�I+i·�I�I+i·

�I�I+i·
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In the above diagram, every non-hooked arrow is an isomorphism. By construction, the dotted
arrow takes the characteristic cone

Cωi(I) := {(zj) | zj > 0 for all j} ⊆
⊕

j∈ωi(I)c

Ze�j

of Yωi(I) to the region �I�I+iCωi(I) ⊆
⊕

j∈Ic Ze�j . Since �I�I+i acts via the action on coroots, this
matches the conventions in [IW, Section 3]. It thus immediately follows from [IW 1.20(1)(d)]
that �I�I+iCωi(I) and CI are neighbouring regions, adjacent via the wall zi = 0.

We next restrict this information to 3-folds. As in (4.A), consider the following commutative
diagram.

X+
i

Yωi(I)

SpecR′ SpecVωi(I)

Disc hC/Wωi(I)ν

X YI

SpecR SpecVI

Disc hC/WI

μ
�I�I+i·

∼∼ (4.C)

As explained by Pinkham [Pin83], Cl(R)∼=Cl(VI), and further Cl(VI)∼=
⊕

j∈Ic Ze�j as explained
above. Hence Cl(R)∼=⊕j∈Ic Ze�j , and under this choice of basis X is obtained as the blowup of the

characteristic cone CI. The same analysis holds for X+
i , which is the blowup of the characteristic

cone Cωi(I) under the choice of basis Cl(R′)∼=⊕j∈ωi(I)c
Ze�j induced from Cl(R′)∼=Cl(Vωi(I)).

Pulling across the middle horizontal plane in (4.C) it thus follows that the map X+
i → SpecR

is obtained by blowing up the region �I�I+iCωi(I) in Cl(R)∼=⊕j∈Ic Ze�j . Since these are neigh-
bouring regions, separated by the codimension one wall e�i = 0, it is implicit in [Pin83] (see also
[Wem18]) that Xi→ SpecR is the flop at the curve Ci. Since X+

i is obtained from Yωi(I) via
pullback, the statement on Dynkin data follows.

The final statement about all other crepant resolutions follows by iterating over all possible
simple flops. Indeed, the finite indexing set Cham(Δ, I) is precisely the combinatorial object
which indexes all the chambers [IW, Section 1], and each chamber (x,K) can be obtained from
(1, I) by iteratively applying the wall crossing rule [IW, 1.20(2)]. �

5. Applications

As before, consider a smooth 3-fold flopping contraction X→ SpecR. The main applications of
the previous sections are to GV and GW invariants, the Crepant Transformation Conjecture,
and to the associated contraction algebras.

5.1 Tracking GV invariants under flop

The benefit of Theorem 4.4 is that both X and a flop X+
i can be perturbed using essentially

the same classifying map, and thus their curve invariants can be easily compared. This requires
three combinatorial results.
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Lemma 5.1. �I�I+i : h→ h induces an isomorphism Mi : hωi(I)→ hI.

Proof. Set w= �I�I+i then it suffices to prove that w· restricts to an isomorphism between the
subspace spanned by {αj | j ∈ωi(I)} and the subspace spanned by {αj | j ∈ I}. To see this, recall
that �Γαi =−αιΓ(i) for all Dynkin Γ and all i∈ Γ, where ιΓ is the Dynkin involution on Γ.

For all j ∈ωi(I)⊆ I+ i, it follows that �I�I+iαj =−�IαιI+i(j). Now ιI+i : ωi(I)→ I is a
bijection. Indeed, ιI+i : I+ i→ I+ i is a bijection, sending ιI+i(i) to i, and so removing these
elements gives the claimed bijection. Hence for all j ∈ωi(I), it follows that ιI+i(j)∈ I and so
�IαιI+i(j) =−αιIιI+i(j). Combining gives �I�I+iαj =αιIιI+i(j) for all j ∈ωi(I). Since ιIιI+i(j)∈ I,
this proves the claim. �

WriteMi for the induced isomorphism in Lemma 5.1, so that the following diagrams commute.

h h

hωi(I) hI

�I�I+i·

π
i(I) πI

Mi

h h

hI hωi(I)

�
i(I)

�I+i·

πI π
i(I)

M−1
i

(5.A)

In essence, the bases of hωi(I) and hI really differ at only one element. Indeed, setting
ej = πI(αj), then {ej | j �∈ I} is a basis for hI. On the other hand, for hωi(I) we abuse nota-
tion, setting ej = πωi(I)(αj) whenever j /∈ I+ i, and ei = πωi(I)(αιI+i(i)). Then {ej , ei | j /∈ I+ i}
is a basis for hωi(I).

Lemma 5.2. For i∈ Ic the action of Mi is given in terms of the above bases as

ek �→
{
ek + λkei if k /∈ I+ i

−ei if k= i

for some λk ∈Z≥0.

Proof. In (5.A), given any
∑

aiαi, since �I�I+i consists only of reflections si with i∈ I+ i, the
map �I�I+i cannot change the coefficient of any aj with j /∈ I+ i. The claim that the induced map
Mi sends ek �→ ek + λkei if k /∈ I+ i follows. We next claim that λk is positive. In the decomposi-
tion of �I�I+iαk into simple roots, there is at least some positive coefficient (namely, the coefficient
of αk, which is 1). Hence, all coefficients must be positive, in particular, the coefficient of αιI+i(i).
But under the induced map, this coefficient is what gives λk in the claim.

Now, as in Lemma 5.1, for all Dynkin Γ and all i∈ Γ, �Γαi =−αιΓ(i). Thus since ιI+i(i)∈ I+ i,
it follows that

Miei
(5.A)
= πI(�I�I+iαιI+i(i)) = πI(−�Iαi) = πI(−αi) =−ei,

where we have used the facts that �I changes coefficients only in I and that πI forgets these. �

Corollary 5.3. If β∈ hωi(I) is a restricted root, the following hold.

1. If β∈Zei, say β= zei, then Mi · (zei) =−zei.
2. If β /∈Zei, then all entries of Mi ·β are positive.

Proof. The first part is an immediate consequence of the k= i case in Lemma 5.2. For the
second part, by Lemma 5.2 the only coefficient of β=

∑
μiei that can change under Mi is the

coefficient on ei. Hence, provided there is some other positive coefficient μk, this survives under
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Mi, so Mi ·β has at least one positive entry. Now, by assumption, β is a restricted root, say,
πωi(I)(α) =β,. Under (5.A), w ·α is a root restricting to Mi ·β, and this root w ·α must contain
at least one positive coefficient, since Mi ·β does. Hence, all must be positive. In particular, all
entries of Mi ·β must also be positive. �

The following is one of our main results. In order to obtain a unified statement, set |Mi ·β|
to be the curve class obtained from Mi ·β by making every coefficient positive.

Theorem 5.4. With the notation as above, for any curve class β∈A1(X
+
i )
∼= hωi(I),

nβ,X+
i
=

{
nβ,X if β∈Zei =ZC+

i

nMi·β,X else

= n |Mi·β|,X.

Proof. With respect to the notation in (4.A), perturbing μ to μt gives, by composition, a
perturbation of ν to νt.

Set w= �I�I+i. Then for any positive root α for which πωi(I)(α) =β,

nβ,X+
i
=
∣∣ν−1

t (Dα,C/Wωi(I))
∣∣ (

by (3.A) applied to X+
i

)
=
∣∣μ−1

t (Dw·α,C/WI)
∣∣ . (since ν= (w·)−1 ◦ μ)

Now by (5.A) we have πI(w ·α) =Mi ◦ πωi(I)(α) =Mi ·β, so w ·α is a lift of Mi ·β, albeit not
necessarily a positive one.

Case 1. If β /∈ZC+
i , then by Corollary 5.3 all entries of Mi ·β are positive, and further

as argued in the proof, w ·α is a positive root restricting to Mi ·β. (3.A) then implies that
|μ−1

t (Dw·α,C/WI)|= nMi·β,X.
Case 2. If β∈ZC+

i , then by Corollary 5.3, Mi ·β=−β. Arguing as above, it follows that
w ·α is negative root restricting to Mi ·β=−β, and thus −w ·α is positive root restricting to
β. But negating a root does not affect the hyperplane, and combining this fact with (3.A), it
follows that

|μ−1
t (Dw·α,C/WI)|= |μ−1

t (D−w·α,C/WI)|= nβ,X.

This covers both cases. For the final equality, note in case 1 that |Mi ·β|=Mi ·β since all
coefficients are already positive, and in case 2 note that |Mi ·β|= | −β|=β. �

Example 5.5. Consider the running Example 1.1. Then after flop of the right pink curve, by
Theorem 4.4 and Example 4.2 we obtain . Hence, the restricted roots and thus the
curve classes giving non-zero GV invariants, on the flopped space X+

i , are as follows, where the
hyperplanes are drawn in Θωi(I):

x

y

1

3
11

2
1

Restricted Root

01
11, 22, 33

43
32

21, 42
10
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Write 1 for the leftmost pink node, 2 for the orange node, and 2′ for the rightmost pink node
(in I). Under this wall crossing, �I�I+i is very large; however the morphism

Mi : hωi(I)→ hI

is easily described: in the notation of Lemma 5.2, λ1 = 1 and thus Mi sends μ1e1 + μ2e2 �→
μ1e1 + (μ1 − μ2)e2′ . Under the dual transformation between the hyperplane arrangements in
Example 1.1 and here, the pictures are drawn so that hyperplanes are sent to hyperplanes in
such a way that the colours are preserved.

Indeed, Mi sends 01 �→ 0−1, with all other restricted roots being permuted; e.g. 31 �→ 32. In
particular, by Theorem 5.4, the GV invariants on X+

i can be obtained from the GV invariants
on X as follows:

GV on X+
i GV on X

01 01
10 11

21, 42 21, 42
32 31
43 41

11, 22, 33 10, 20, 30

Remark 5.6. As explained in the introduction, the finite arrangement HI equals the movable
cone. The multiplicities of the restricted roots are assigned to each wall, and this enhancement
is required in order to describe the curve-counting invariants. It is possible, albeit not a priori
obvious, to enhance the movable cone without Dynkin combinatorics. Given a chamber corre-
sponding to some crepant resolution X†→ SpecR, say, then the multiplicities on the walls of
that chamber turn out to correspond to the lengths of all the individual single-curve contrac-
tions obtained from X†. The issue with this method is that, whilst it explains walls, it does not
explain hyperplanes: it is not so clear that every chamber touching the hyperplane containing
the said wall should be enriched with the same scheme-theoretic length. This geometric fact falls
out from our approach.

5.2 Tracking fundamental regions

The previous subsection tracked GV invariants from X to X+
i . As with the movable cone, it is

possible to fix X and track all other crepant resolutions back to X.
As notation, recall that the fixed X→ SpecR has an associated ΘI in Notation 2.2, and recall

from (5.A) that there is a map M−1
i : hI→ hωi(I). Write

Ni : Θωi(I)→ΘI

for the dual. Below, ΘI will be temporarily be written ΘX, to allow for the flexibility of
considering another crepant resolution Y→ SpecR, which has associated ΘY.

Definition 5.7. Let Y→ SpecR be a crepant resolution. Consider a chain of flops, each flopping
a single irreducible curve, that links Y to X, and the resulting maps

ΘY

Ni1−−→ . . .
Nit−−→ΘX.

The composition will be called the comparison map and will be written N : ΘY→ΘX.
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By [HW23, 4.8], the comparison map N is independent of the choice of chain of flops.

Definition 5.8. Given a crepant resolution Y→ SpecR, the fundamental region FundY of ΘY

is defined as the intersection of the infinite hyperplane arrangement inside ΘY, with the unit
box {(ϑi) | 0≤ ϑi ≤ 1 for all i}.
Proposition 5.9. For any crepant resolution Y→ SpecR, N(FundY) generates ΘI via transla-
tion. Furthermore, two N(FundX1

) and N(FundX2
) share a codimensional wall if and only if X1

and X2 are connected by a flop at a single curve.

Proof. Since the axes belong to the finite hyperplane arrangement in ΘY and the definition of
the infinite arrangement involves translating this finite collection of hyperplanes over Z or at
worst 1

kZ (see Subsections 1.2 and 2.3), it is clear that the fundamental region FundY generates
the arrangement in ΘY. The first statement then follows, since N is known to preserve the
infinite arrangements [IW, Section 9]. Since the only codimensional wall that the fundamental
regions can share belong to the finite arrangement, the last statement is really a statement on
the movable cone, which is e.g. [Wem18, Sections 5–6]. �

Example 5.10. Write Y→ SpecR for the crepant resolution obtained after flop in Example 5.5.
Then the region N(FundY) is illustrated below, where for clarity we have illustrated the images
of the x and y co-ordinates in Example 5.5 under the map N.

Nx

Ny

It is visually clear that both FundX in (1.D) and N(FundY) above individually generate Haff
I , via

translation, and that FundX and N(FundY) are different.

Remark 5.11. The above example gives a visual proof of the Crepant Transformation Conjecture
of Section 5.3. The regions FundX and N(FundY) are different. But they generate the same object,
namely, Haff

I , which by Corollary 3.4 is the pole locus of the GW quantum potential. Thus,
although the curve invariants of X and Y, captured in the fundamental regions, are technically
different, after a change in variables (namely, N), they can be compared, where they generate
the same object.

Remark 5.12. The matrix Ni appears via moduli tracking in the HomMMP [Wem18, 5.4]
and via the K-theory of contraction algebras [AW22, 2.4]. In contrast, Mi from (5.A) is
the dual, and it arises from the change in dimension vector [Wem18, 5.4], or in the K-
theory of projective modules [HW23, 3.2]. For more details, see [AW22, 2.4] and references
therein.
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5.3 Crepant transformation conjecture

We make no attempt at a comprehensive summary of the Crepant Transformation Conjecture
(CTC) and instead refer the reader to [CR13, CIJ18, BG09, Lee11]. For a pair of smooth
varieties related via a sequence of flops, the conjecture asserts that their quantum potentials
should coincide, under a suitable identification of (co)homologies and analytic continuation in
the Novikov parameters. There has been extensive work on this conjecture within both algebraic
and symplectic geometry [LR01, McL20, LLW10, LLW16a, LLW16b, LLQW16].

Here we prove the CTC for germs of isolated 3-fold flops, as a direct application of the
expression for the quantum potential in Theorem 3.3, together with the construction of flops via
simultaneous partial resolutions in Theorem 4.4. This gives the first algebraic-geometric proof
of the CTC for flops of arbitrary type (for recent symplectic developments; see [McL20]).

As before, consider a curve Ci ⊆X, and let X+
i be the flop of X at Ci. Recall that the following

vector spaces are based on the sets of exceptional curves:

hI,C =A1(X)C = 〈Cj | j ∈ Ic〉C, hωi(I),C =A1(X
+
i )C =

〈
Cj ,C

+
i | j /∈ I+ i

〉
C
.

where as in Lemma 5.2, we abuse notation by denoting the flopped curve C+
i instead of C+

ιI+i(i)
.

As explained in Section 5.1, there is an explicit transformation matrix

Mi : A1

(
X+
i

)
C
→A1(X)C.

This is the complexification of the matrix Mi from earlier, but we use the same symbol. Let Ni

be the matrix dual to M−1
i , which can be viewed as the linear map

Ni : H
2
(
X+
i ;C

)→H2(X;C)

with the property that Niγ ·β= γ ·M−1
i β for γ∈H2(X+

i ;C) and β∈A1(X)C. We notate the
Novikov co-ordinates on the parameter spaces for the quantum potentials by

{qj | j ∈ Ic} on A1(X)C,
{rj | j ∈ Ic} on A1(X

+
i )C.

The matrix M−1
i defines a monomial co-ordinate transformation relating the two sets of

Novikov parameters. Writing monomials as

qβ :=
∏
j∈Ic

q
mj

j , rβ :=
∏
j∈Ic

r
mj

j

this is given by the equation

qβ = rM
−1
i β. (5.B)

By Lemma 5.2, qi = r−1
i whereas every other qj is a monomial in the rj with non-negative

coefficients.
Lastly, recall the quantum potentials of X and X+

i from Section 3.3, which to ease notation
will be written Φ and Φ+, namely,

Φq(γ1, γ2, γ3) := ΦX
q (γ1, γ2, γ3),

Φ+
r (γ1, γ2, γ3) := Φ

X
+
i

r (γ1, γ2, γ3).

The equation (5.B) will be used to express the quantum potential of X in the variables r, and
this will be denoted Φr(γ1, γ2, γ3).

Corollary 5.13 (Crepant Transformation Conjecture). On the r parameter space, the quan-
tum potentials of X and X+

i coincide, up to the following explicit term, which does not depend
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on the Novikov parameters

Φ+
r (γ1, γ2, γ3)−Φr(Niγ1,Niγ2,Niγ3) =−(γ1 ·C+

i )(γ2 ·C+
i )(γ3 ·C+

i )
∑
k≥1

k3nkCi,X. (5.C)

More precisely, the pole loci are transformed into each other via (5.B), and away from these,
the analytic continuations constructed in Theorem 3.3 coincide.

Remark 5.14. The quantum potentials of X and X+
i have no constant terms in their respective

Novikov parameters, due to the absence of a perfect pairing on cohomology (see Remark 3.7).
However, the change of parameters (5.B) introduces constant terms into Φr(γ1, γ2, γ3), which
form the right-hand side of (5.C). It follows that the quantum potentials agree once these
extraneous constant terms are removed from Φr(γ1, γ2, γ3). In particular, Φ+ can be effectively
reconstructed from Φ. In situations where an ordinary cup product can be defined, the additional
terms on the right-hand side account for the defect between the cup products on X and X+

i ; see
e.g. [Mor96, Subsection 4.3 and Equation (4.4)].

Remark 5.15. The expansion points for the quantum potentials differ, as

(rj)j∈Ic = (0, . . . , 0) ⇔ (qj)j∈Ic = (0, . . . , 0,∞, 0, . . . , 0),

with ∞ in the ith position. Thus, the term Φr(Niγ1,Niγ2,Niγ3) is analytically continued
from qi = 0 to qi =∞, the analytic continuation occurring precisely in the Novikov parameter
corresponding to the flopped curv

Proof of 5.13. We explicitly match both sides, using our knowledge of the structure of the
quantum potentials (Theorem 3.3) and the behaviour of the GV invariants under the flop
(Theorem 5.4).

Separating curve classes according to whether or not they are a multiple of Ci, the quantum
potential for X may be written as the sum of contributions

Φq(Niγ1,Niγ2,Niγ3) =Gq(Niγ1,Niγ2,Niγ3) +Hq(Niγ1,Niγ2,Niγ3),

where

Gq(Niγ1,Niγ2,Niγ3) =
∑
k≥1

nkCi,X (Niγ1 · kCi)(Niγ2 · kCi)(Niγ3 · kCi)
qki

1− qki

Hq(Niγ1,Niγ2,Niγ3) =
∑

β∈A1(X)
β�=kCi

nβ,X (Niγ1 ·β)(Niγ2 ·β)(Niγ3 ·β) qβ

1− qβ
.

Similarly, write the quantum potential of X+
i as

Φ+
r (γ1, γ2, γ3) =G+

r (γ1, γ2, γ3) +H+
r (γ1, γ2, γ3),

where

G+
r (γ1, γ2, γ3) =

∑
k≥1

nkC+
i ,X+

i
(γ1 · kC+

i )(γ2 · kC+
i )(γ3 · kC+

i )
rki

1− rki

H+
r (γ1, γ2, γ3) =

∑
β∈A1(X)
β�=kCi

nβ,X+
i
(γ1 ·β)(γ2 ·β)(γ3 ·β) rβ

1− rβ
.
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We begin with the G terms. Using (5.B) to change variables from q to r gives

Gr(Niγ1,Niγ2,Niγ3) =
∑
k≥1

nkCi,X (Niγ1 · kCi)(Niγ2 · kCi)(Niγ3 · kCi)
r−k
i

1− r−k
i

= (γ1 ·C+
i )(γ2 ·C+

i )(γ3 ·C+
i )
∑
k≥1

k3nkCi,X
1

1− rki
.

where the second equality follows from Niγ ·Ci = γ ·M−1
i Ci =−γ ·C+

i and the equality

r−k
i

1− r−k
i

=
1

rki − 1
.

Using nkCi,X = nkC+
i ,X+

i
by Theorem 5.4, the difference G+

r (γ1, γ2, γ3)−Gr(Niγ1,Niγ2,Niγ3)
is equal to

(γ1 ·C+
i )(γ2 ·C+

i )(γ3 ·C+
i )
∑
k≥1

k3nkCi,X

(
rki

1− rki
− 1

1− rki

)

=− (γ1 ·C+
i )(γ2 ·C+

i )(γ3 ·C+
i )
∑
k≥1

k3nkCi,X.

We next examine the H terms. Note that for β∈A1(X), we have β∈ZCi if and only if
M−1

i β∈ZC+
i . Consequently,

Hr(Niγ1,Niγ2,Niγ3) =
∑

β∈A1(X)
β�=kCi

nβ,X (Niγ1 ·β)(Niγ2 ·β)(Niγ3 ·β) rM
−1
i β

1− rM
−1
i β

=
∑

β∈A1(X
+
i )

β�=kC+
i

nMiβ,X (Niγ1 ·Miβ)(Niγ2 ·Miβ)(Niγ3 ·Miβ)
rβ

1− rβ

=
∑

β∈A1(X
+
i )

β�=kC+
i

nβ,X+
i
(γ1 ·β)(γ2 ·β)(γ3 ·β) rβ

1− rβ

=H+
r (γ1, γ2, γ3).

where the penultimate equality holds since Niγ ·Miβ= γ ·M−1
i Miβ= γ ·β and nMiβ,X = nβ,X+

i

again by Theorem 5.4. Combining the comparison of the G terms with the comparison of the H
terms gives (5.C), as required. �

5.4 The contraction algebra under flop

The flopping contraction X→ SpecR has an associated contraction algebra Acon, defined using
noncommutative deformation theory [DW16, DW19]. After flopping a single curve Ci to obtain
X+
i → SpecR, noncommutative deformation theory associates to this another contraction alge-

bra, written νiAcon. The algebra νiAcon can be intrinsically obtained from Acon via a certain
mutation procedure, and in fact Acon and νiAcon are derived equivalent [Aug20b]. Both Acon

and νiAcon are finite dimensional algebras [DW16, 2.13].
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Fix the GV invariants nβ associated to X→ SpecR, and then Toda’s dimension formula (see
A.4) asserts that

dimC Acon =
∑

β∈A1(X)

nβ(β · 1)2

In many, but not all, cases, the dimension of Acon is in fact enough to recover the nβ. The next
result asserts that the numbers nβ associated to Acon, together with the matrix M−1

i , completely
determine the dimension of νiAcon.

Corollary 5.16. Under mutation at vertex i, equivalently flop at Ci,

dimC νiAcon =
∑

β∈A1(X)

nβ( (M
−1
i β) · 1)2

where Mi is the explicit matrix in (5.A).

Proof. Combining previous results, it follows that

dimC νiAcon =
∑

γ∈A1(X
+
i )

nγ(γ · 1)2 (by A.4)

=
∑

β∈A1(X)

nβ

( |M−1
i β| · 1

)2
(γ= |M−1

i β| in Theorem 5.4)

=
∑

β∈A1(X)

nβ

(
(M−1

i β) · 1
)2

(by Corollary 5.3)

where the point is that by Corollary 5.3, the sign issue doesn’t matter once we square. �

In particular, it is possible to compute the dimension of νiAcon without first having to present
it.

Example 5.17. As in [SW23], consider the cA2 example Rk =
C[[u,v,x,y]]

uv−xy(xk+y) for k≥ 1 and the specific

crepant resolution X→ SpecRk described in [SW23, 3.1], obtained first by blowing up (u, y) and
then (u, x). In this case, as explained in [SW23, Subsection 6.2] Acon can be presented as

a

b

(ab)ka = 0 = b(ab)k.

We can immediately read off the GV invariants, namely, n1,0 = 1, n0,1 = 1, and n1,1 = k. Thus
dimC Acon = n1,0 · (1 + 0)2 + n0,1 · (0 + 1)2 + n1,1 · (1 + 1)2, which equals 1 + 1+ 4k= 4k+ 2.

We now flop the right-hand curve. In this Type A example, M−1
i sends (1, 0) �→ (1, 1), (1, 1) �→

(1, 0) and (0, 1) �→ (0,−1). Thus, by Corollary 5.16,

dimC νiAcon = n1,0 · (1 + 1)2 + n0,1 · (0 + 1)2 + n1,1 · (0− 1)2,

which equals 4 + 1+ k= k+ 5. In particular, νiAcon �Acon provided that k≥ 2.

Appendix A. Toda’s dimension formula

This appendix contains a proof of the general form of Toda’s dimension formula, which relates
the dimension of the contraction algebra to a weighted sum of GV invariants. This formula first
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appeared in [Tod15] for single-curve flops, then in [Tod18] in general. Alas, the GV invariants
in [Tod18] are defined with respect to moduli spaces of the contraction algebra, and not via
perturbation as done here (Subsection 3.1), and furthermore [Tod18, Subsection 4.4] contains
no proof. As such, we briefly sketch the argument to convince the reader (and ourselves!) that
the formula contains nothing specific to single-curve flops.

As notation, let f : X→ SpecR be a smooth 3-fold flopping contraction, with contraction
algebra Acon. Write V for the Van den Bergh tilting bundle on X [VdB04] which generates zero
perverse sheaves, and set A=EndX(V).

Lemma A.1. RHomA(Acon,A)∼=M[−3] for some Acon-bimodule M for which dimC M=
dimC Acon.

Proof. First, by CY duality

ExtiA(Acon,A)∼=Ext3−i
A (A,Acon)

�,

which is zero unless i= 3, when it equals HomA(A,Acon)
� ∼= (Acon)

�. In particular, it follows that
the cohomology of RHomA(Acon,A) is concentrated in a single degree (namely, three), where as
a vector space it has dimension dimC Acon. Truncating in the category of bimodules then yields
the result. �

Remark A.2. M ∼=Acon as Acon-bimodules [Aug20b, 2.6], but we will not need this fact.

In what follows, set B :=A⊗Aop , so that B-modules are the same as A-bimodules. The
following is then [Tod15, 2.3] adapted to our setting.

Corollary A.3. RHomA(Acon,A)⊗L
B (V� �V)∼= G[−2] for some G∈ cohX×X which admits

a filtration

0 = G0 ⊂ . . .⊂ GdimC Acon
= G

such that each Gt/Gt−1 is isomorphic to OCi
(−1)�OCj

(−1) for some i, j with 1≤ i, j ≤ n.

Proof. As notation, let T0, T1, . . . , Tn be the simple left A-modules, and S0, S1, . . . , Sn be the sim-
ple right A-modules. All have dimension one, as a vector space, and by convention T0 (respectively
S0) is the only simple which is not an Acon-module.

Now M from Lemma A.1 is a finite dimensional B-module, so it is filtered by finite dimensional
simples. But these all have the form Ti ⊗C Sj for some 0≤ i, j ≤ n (see e.g. [[EGH+11], 3.10.2]).
Since M is an Acon-bimodule, i= 0 or j = 0 is not possible. Hence M admits a filtration with
quotients all of the form Ti ⊗C Sj where i, j �= 0. The length of the filtration must be dimC Acon,
since each Ti ⊗C Sj is one-dimensional.

Now, as observed by Toda [Tod15]

RHomX×X(V
� �V,OCi

(−1)�OCj
(−1)[−2])

∼=RHomX(V
�,OCi

(−1)[1])⊗C RHomX(V,OCj
(−1))[−3]

∼=Ti ⊗C Sj [−3] (by [VdB04, 3.5.6, 3.5.7]))

Since RHomA(Acon,A)∼=M[−3], applying the inverse functor −⊗L
B V� �V and inducting along

the filtration of M[−3] gives the result. �
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Now as explained in Section 2.6, there exists a flat deformation

X

SpecR

T

g

for some Zariski open neighbourhood T of 0∈A1, such that

• the central fibre g0 : X0→ SpecR0 is isomorphic to f : X→ SpecR.

• all other fibres gt : Xt→ SpecRt are flopping contractions with exceptional locus a disjoint
union of (−1,−1)-curves.
Regarding the flopping curves C1, . . . ,Cn of f as curves in the central fibre of X→ T , and

thus as a curve in X, then the GV invariant nβ is defined in Section 3.1 to be the number of
gt-exceptional (−1,−1)-curves C such that for every line bundle L on X,

deg(L|C) =β · ( deg(L|C1
), . . . , deg(L|Cn

)) :=

n∑
i=1

βi deg(L|Ci
).

Here we are using the identification (2.H) of line bundles on each fibre of X→ T with line bundles
on the total space X.

Theorem A.4 (Toda). If X→ SpecR is a smooth 3-fold flopping contraction, then

dimC Acon =
∑

β∈A1(X)

nβ(β · 1)2

where the nβ are the GV invariants defined as in Section 3.1.

Proof. The proof very closely follows the single-curve strategy in [Tod15], and so we only outline
the parts where some care is required.

The 4-fold g : X→ SpecR is a flopping contraction, and so by [Che02, Section 6] g admits
a flop X+→ SpecR and a derived equivalence Db(X)→Db(X+). Flopping back gives another
equivalence Db(X+)→Db(X), and thus the composition gives rise to an autoequivalence

ψ : Db(cohX)→Db(cohX)

with FM kernel P∈Db(X×T X), say. Define Pt = Lj�t P, where jt is the inclusion Xt ×Xt→
X×T X.

On one hand, for t= 0, as in [Tod15, (18)] the restriction of ψ to the zero fibre results in the
NC twist functor of [DW16], so by uniqueness of FM kernels

P0
∼=Cone(F0[−2]→OΔX0

)

where F0 = G in Corollary A.3.
On the other hand, for t �= 0, the birational map from Xt to Xt is the composition of the flops

of all the curves in that fibre. Since all the curves have normal bundle (−1,−1), the restriction of
ψ to the neighbouring fibre Xt results in composition of the corresponding (classical) spherical
twists. Grouping the curves in Xt together via their curve class, namely {Cβ,i | 1≤ i≤ nβ}β,
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then again as in [Tod15, (19)], uniqueness of FM kernels yields

Pt
∼=Cone(Ft[−2]→OΔXt

)

where Ft ∈ cohXt ×Xt is the sheaf now defined by

Ft =
⊕
β

nβ⊕
i=1

Oβ,i(−1)�Oβ,i(−1) (A.A)

where Oβ,i is the structure sheaf of Cβ,i. Using [Tod15, 3.1, 3.2], which are general, it follows
that Ft with t �= 0 is a flat deformation of F0. Since both F0 and Ft have compact supports, their
Hilbert polynomials must therefore be equal. In particular, let L be the g-ample line bundle on X
such that deg(L|Ci

) = 1 for all i= 1, . . . , n, which exists by (2.H) and the sentence underneath,
then

χ(F0 ⊗ (L�L)) = χ(Ft ⊗ (L�L)). (A.B)

But χ is additive on filtrations, and so by Corollary A.3

χ(F0 ⊗ (L�L)) =

dimC Acon∑
i=1

χ(OCi
)χ(OCj

) = dimC Acon. (A.C)

Conversely, given the form of Ft in (A.A), it is clear that

χ(Ft ⊗ (L�L)) =
∑
β

nβ∑
i=1

χ(Oβ,i(−1)⊗L)2 =
∑
β

nβ(β1 + . . .+βn)
2 (A.D)

since deg(L|Cβ,i
) =β1 + . . .+βn. Combining (A.B), (A.C) and (A.D) gives the result. �
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