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ON APPROXIMATE SOLUTIONS OF LINEAR
DIFFERENTIAL EQUATIONS
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ABSTRACT. Asymptotic approximations of Green's type to solutions of differential equations
are studied, with special reference to the uniformity of the approximation given by the first
term. In extension to the complex variable this is found to require substantial restrictions on
the region considered. An anomaly previously noticed is traced to non-uniformity of approxima-
tion. The case where the coefficient Xo has a simple zero and Xi is n o t z e r 0 i s treated by a simple
method.

1. The asymptotic solutions of differential equations of the form

where %0, Xi> Xz a r e given functions of a; and h is large, have received much attention.
Langer(7-12), especially, has given sufficient conditions for the existence of solutions
in descending powers of h and has shown that they possess an asymptotic property in
Poincare's sense. His discussion includes the case where Xo n a s a z e r o m t n e interval
of x considered and Xi is n o t z e r o - On t n e other hand, his method includes several
rather cumbrous transformations, and the final answer needs several references to
earlier parts of the work before it can be interpreted. In the case where Xo has a zero
use is made of Bessel functions of orders ± J, thus introducing a singularity at an
ordinary point of the original differential equation. This can be avoided by using the
Airy integral and its companion function Bi(z). Both these functions have been
tabulated for real argument (Miller (13)) and their general behaviour is known over the
complex plane (Miller (13); Jeffreys and Jeffreys (5), chap. 17).

Cherry (l) has given an alternative treatment, using the Airy function but not Bi (2);
but the latter is much the most convenient second solution of the Airy equation in
problems of this type. He does not treat the effect of the term in Xi explicitly.

As the names of several modern authors are associated in the literature with solu-
tions of this type, I think that the part played by Green (3) needs emphasis (see also
Lamb (6)). Green studied the propagation of long waves in a channel of non-uniform
section, under the condition that the period is short enough for the depth and width
not to change greatly within a wave-length. He found a solution that is easily seen to
be equivalent to the first term of the modern solutions for the case where Xo d ° e s n o t

vanish in the interval of x considered. Further, his solution brings out the essential
principle that the solutions are functions of two variables, x, h, and are required to
hold over a fixed interval of a;; the asymptotic property holds with respect to the large
parameter h (which in Green's problem is the speed of the vibration considered).
The resemblance in some respects to the asymptotic solutions of Bessel's equation for
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fixed order and large argument has led to some confusion of the essentially different
natures of the approximations that are attempted.

In practice not much use is made of the later terms of the approximations, partly
because the first term usually gives surprising accuracy, partly because the later
terms are often rather complicated. The practical procedure, if the first term is not
enough, would usually be to take the first term as a first approximation and use
numerical integration.

There is a need for a simplified account that will place the emphasis on the first term
of the series and give conditions for its validity as an approximation. The method is
also being applied to complex variables, whereas it was originally developed only for
real variables, and some attention needs to be given to the nature of the region of
validity.

2. In what follows I make extensive use of the principle that if

and two independent solutions when S(x) = 0 are y1(x), yz{x), then the complete
solution is given by the solutions of the integral equation

y(x)=f(x)+{*K(x,t)y(t)dt, (2)
J a

where a is any conveniently chosen constant, and
ftx) = A1y1(x)+Aiyi(x), (3)

K ( r t) _ yi
K{x't} ~ yi

The Wronskian in the denominator is never zero, and is constant if p(x) = 0. Av A2

are arbitrary constants.
If | f(x) | < M, | K{x, t) | < N in a bounded region of x, of diameter k, then f(x) can

be taken as a first approximation to y{x). Successive substitutions in the integral
lead to a series of corrections whose moduli are less than the terms

M{N | x-a\}njn\^N(Mk)njn\,
and thus always yield a uniformly convergent solution, which is analytic if p, q, S are.

Whenp(x), q(x) depend not only on x but also on a parameter h, M and N will become
M(h), N(h), and so long as these are finite the same argument shows that there is a
solution analytic with regard to x for any h. There is nothing in the argument, however,
to say that N(h) does not tend to infinity with h, and if it does so the series, though
ultimately convergent, does not yield a useful approximation in a few terms. Also
the terms are in general unbounded with regard to x in an unbounded region of #.

3. If we transform the independent variable in 1 (1) to £ and put

Hip*
d2z I f" 3£"2\

1(1) becomes g '2_ = ^ + ^ + ^ + ^ . _ _ | _ j z . (2)
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Solutions of linear differential equations 603

We take | ;\;0 | to have a positive lower bound in the region of x considered (which may
be unbounded) and take „_ . . . .

where Tp~2 is to some extent at our disposal. It is customary to take either ^ 2 = 0 or
^2 = Xz> I have recommended taking

In any case (2) takes the form
d^-h2z = g(g,h)z, (5)

which we shall take as the fundamental equation, h is taken real and positive. In
either case the usual method makes the first terms of the approximate solutions

z = exp( + A£), y = ^ i e x p ( + hE), (6)

and the choice of \]r2 makes only a difference of order ljh. But xjr2 does affect g(£,, h).
Suppose that ^0 = 1, Xi = 0, X2 — «>0. The exact solutions are exp { + (h2 + a)* x}.
If we take \jr2 = X2 = a> the first approximations given by (6) are exact solutions. If,
however, we take ijr2 = 0 in (3) or use (4), the first approximations are in error by factors
approximating to exp { + ax/2h}, which vary to any extent with x for given h. For some
purposes (for instance, in giving precision to the notions of reflected and transmitted
waves) it is desirable to have approximations that never become wrong by more than
a factor 0(1/h) even in an unbounded region of x. An example has been known since
1923 (Jeffreys(4); Jeffreys and Jeffreys(5), p. 523) where it was better to use (4), and
this wul be re-examined later; the immediate point is that the effect of the choice of
i/r2 on the first approximation is important in some conditions. We shall say that the
approximations (6) are uniformly asymptotic if the error terms are of the form P\h
times the main terms, where P is bounded for x in the region and h^ho>O. The theorem
of § 2 might suggest that this condition would hold if g(£, h) is uniformly bounded,
but the example just given shows that this is false.

With suitable cuts in the x plane (3) will define £ uniquely in a region of the x plane,
and we shall suppose that by excluding singularities of the transformation we can find
a region D of £ such that for points of this region there is a 1-1 correspondence between
x and £. In this region g(£,, h) is supposed analytic. We assume further that there is
a part of D, say E, such that (i) (5) holds inE; (ii) E contains the whole or part of the real
axis of £; (in) if £ is in E, then all points v such that v = 9ff(£) + i#Q(£) (0 < 6 < 1) are also
in E; (iv) on any paths in E parallel to the real or the imaginary axis, for h ̂  h0,

'\ g(t, h)dt\< M.P
These conditions permit E to contain infinite strips enclosing the real or imaginary
axes. We show that in these conditions (5) has two solutions Zlt Z2 analytic in D and such

thatinE Z1 = e*t(l + O(llh)), Z2 = e-«(l + 0(l/A)). (7)

uniformly with respect to £,.
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The analytic property in D follows from the argument of § 2 and will not be discussed
further.

If g was zero solutions would be

zx=<t*, z2 = e-»i. (8)

Denoting the lower and upper bounds (possibly ± oo) of 9?(§) by A, B, we have that
a pair of solutions of (5) are solutions of the integral equations

(9)

} g(t,h)Z2(t)dt, (10)

where the path in (9) is from t = A to 9t(£) along the real axis and then from 9t(£) to £
parallel to the imaginary axis; in (10) it is from £ to 3t(£) and then from Sft(£) to B. In
(9) the first approximation to the integral is

(11)

and on the path | e« - e^ -^ | < 2eA*©. (12)

Then the modulus of the first correction is not greater than

l i CVKD n
+ \g(t,K)dt\U^(F*®. (13)

Further substitutions show that

where \K\ = (2MT- (15)

Hence for h>ho> 2M the error of the first term is uniformly O(l/A). Similar con-
siderations show that in the same conditions the second solution gives

e>*Z2(£) = 1 + SZr(£, h)jhT, \ l r \ < (2MY, (16)

and the error of the first term is again uniformly 0(1/h) for h > h0.
The solutions given by (14), (16) are uniformly convergent in the conditions stated,

but that does not imply the existence of convergent solutions of the forms

Solutions of this form can be obtained in many cases by expanding kr, lr in descending
powers of h and rearranging; but in fact kr, lr in general contain non-zero functions
tending to zero exponentially. Such functions and all their derivatives with regard
to 1/h tend to 0 for l/A->0, and would therefore vanish if they had expansions in
powers of l/h. Hence the most that can be expected of expansions rearranged in this
way is that they will be asymptotic.

3 1 . The condition (iii) is needed because otherwise there might be no path in E
that passes from A to £ without passing through some point /? where 9l(<) > 9i(£), and
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Solutions of linear differential equations 605
then exp A9t(£) would not be the upper bound of | exp h(2t — £) | on the path. Similarly
in (10) the upper bound of | expA(£— 2t) | might not be exp( — A9t(£)). In either con-
dition the successive corrections would ordinarily contain extra factors of the form
exp [ + MJ(£—/?)], and at least one of the solutions, though convergent and analytic,
would depart from the first approximation by a factor that is not uniformly O(\jh).
Thus the main conclusion is not true for parts of D not included in E. This complication
does not arise when x is restricted to be real or purely imaginary; it is a new feature
introduced by the application to complex values.

It must be recognized that the effect of singularities is an essential feature of the
problem. If g(£,, h) was analytic and bounded in the whole £ plane, g would be a con-
stant, by Liouville's theorem, and the whole subject becomes trivial. Similarly,
condition (iv) applied over the whole plane would give g — 0. If gr(£, h) has singularities,
on the other hand, not only the asymptotic approximations but the exact solutions
will differ according to the paths of integration used; (iii) picks out a type of region
such that suitable paths are easily specified, and permits us to establish the required
asymptotic property for such regions. If E was identical with D, its boundary would
be a wall of singularities.

3-2. I t does not appear that condition (iv) can be appreciably lightened for complex
n

arguments. If, however, £ is restricted to be real, it is enough that g(t, h) dt shall be
J A

bounded, by Abel's lemma for integrals. If £ is purely imaginary, it is enough that

g(t,h)dt shall be bounded and g(t, h) of uniformly bounded variation; though this
Jo «
condition is not hi practice often satisfied when | g(t, h)dt I is not bounded.*

Jo
3-3. These considerations explain an anomaly that has already been noticed

(Jeffreys (4); Jeffreys and Jeffreys (5), p. 523). If
6 = (log*)2, (17)

the equation -r-̂  = (h2d'2 + h6")y (18)

has an exact solution y1 = exp(A#), (19)
and a second solution given by

-M. (20)

we use (4) £= | (d + ̂ ^ ) dx = (logxf + -^log — ^ - , (21)

(22)
d? \ 8(logz)4 \hd'

* An example, for real variable, is

Then f(x) is of bounded variation in (1, oo), I f(x) dx converges, but |/(x) | dx does not

converge.
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Then j\g(£,h)\d£=j(logx)-3d(}ogx)*, (23)

and converges absolutely in (1 +e, oo). Hence the first terms of the asymptotic solu-
tions give a uniform approximation, agreeing with (19) and (20). But if we used 1 (3)
with tjfz = X2 = 0, g{E,, h) would contain a term in (logx)~2 and the integral corre-
sponding to (23) would not converge. This explains why it was found better in this
case to use 1 (4) rather than 1 (3) with i/r2 = ^2; but it must be emphasized that this
was highly exceptional. If possible xjr^ should be chosen so that (iv) is satisfied; direct
inspection of the transformation is probably easier than the application of any
general rule.

4. Solutions when Xo ^ ° 5 a simple zero. In this case 3 (3) would give a point where
£' = 0, and g(E,, h) would in general be unbounded near this point. The solutions for
real x, h are of exponential type for x > 0, oscillating for x < 0. We can reduce the
equation approximately to the Airy equation

whose exact solutions are known; and by comparison with the asymptotic solutions
of the original equation we can derive the required connecting formulae. This was
apparently first done by Rayleigh(i4), who, however, gave only the exponentially
decreasing solution explicitly. It is noteworthy that he alluded only incidentally to
the possibility of expressing the solutions in terms of Bessel functions of orders + \.
Gans(2) gave connecting formulae for both solutions; these were rediscovered by me
in 1923(4). The first study of the convenient second solution Bi(z) was in Miller's
introduction (13) to the British Association tables of Ai(z) and Bi(z). In my original
recommendation for the tabulation I pointed out that it was desirable that for negative
2 the first term of the asymptotic expansions should have the same amplitude and
differ by \n in phase; the definition of Bi (z) was chosen by Miller so as to satisfy this
condition. Bi (z) is real for real z.

We want to transform 1 (1) so that it reduces approximately to the above form. Then
£ must vanish with Xo + Xxl^1 + fa/h2, where i/r2 is again to some extent at our disposal.
If ^0(0) = 0, Xo(°) + °»this occurs at x = -a= -Xi(°)lhXo(°)'> a n d w e t a k e

W. (2)

Take YQ(0) > 0. Then
J —

(3)

which approximates to zXo*^ + °0* n e a r x = —a. Consequently the transformation
is 1—1 near x = — a. Then we find

If Xo, Xi> ^2 a r e °f tQ e form A + B\x for x large, £ behaves like (f-4*x)5, g(E,, h) like a
i.e. like £~2. Thus g(E,, h) will ordinarily be O(£,~2) for | £ | large.
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As for the case of § 3, cuts will be needed to give a 1-1 correspondence between x
and £ for a suitable region D of £, and the asymptotic expressions will be limited to
a part E of D. We assume E to include a segment 0 < £ < B of the real axis, with B > 0;
if | arg £ | < \n, an arc t = peie with p* cos § 6 = constant lies in E connecting £ with
£0 on the positive real axis; if 11 arg £ | — §771 4 \n, a similar arc lies in E and connects
£ with £0 on a line | arg £ | = § n, and 2? contains this arc and the line from £0 to 0. It
is also assumed that the values of £ with these properties include a neighbourhood of

£ = 0 and that for integrals on all such arcs and segments I g(t, h) t~^dt I < M.
hi

Solutions of (1) are z1(£) = Bi (A*£), z2(£) = Ai (A*£), (6)

and 2iz2-z122 = A*/7r. (7)

A pair of solutions of (4) are solutions of

Z(£)=f {£)+[* K(g,t,h)g(t,h)Z{t)dt, (8)
J a

with/(£) = z1orz2)

K(i, t, h) = 7rh-i{Bi (h*£) Ai (hH) - Ai (M£) Bi (hH)}. (9)

I t is convenient to record at this point certain identities satisfied by Ai (z) and
Bi (z). For integral values of k

Ai (ze^kni) = e*kni{ cos hr Ai (z) - -r- sin \hn Bi (z) , (10)

Bi (ze*fcni) = eikni{ - ^ 3 i sin \lm Ai (z) + cos P?7 Bi (z)}, (11)

cos \kn Ai (ze**") + -^ sin £JbrBi (ze*^) = e*fc)ri Ai (z), (12)
V3

kni) Bi (te*fciri) - Bi (ze**"*) Ai (te*kiri) = e^kni{M (z) Bi (t) - Bi (z) Ai («)}. (13)

It follows that Bi (z) is exponentially large for large | z | for all values of arg z, except for
argz = (2k + l)n or (2A- ± ^) 7r; while | K\ in (8) is unaltered if arg t and argz are both
changed by a multiple of \TT. We have

~ ^ z - t e x p ( - § z * ) (| argz | < §77-5), (14)

Bi(z)~-f z-iexp(fzt) (| argz | < \n-S). (15)

Consider first | arg £ | < \n - 8. In (8) take a = 0, /(£) = zx(£). Then since

\Ai(hH)Bi(h*t)\

is uniformly less than a fixed multiple of | A* t~* \, if we take a path from 0 to £0 and
then on an arc from £0 to £, the first term of K will give a correction of order A"
The second term gives

r hi{Ai A»£) Bi2 {hH) **} {Hflr(« A)} (ft (16)r
J
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The modulus is < nM | A-*Ai(AS£)Bi2 (&*£)£* |, (17)

which is of the same form. By repetition, if h is sufficiently large there is a uniformly
convergent solution in this sector satisfying

Z1^Bi(h^){l+O(llh)}. (18)

For [ arg £ | = \n, we can write

Z1 = Bi(h^) + O(l/h). (19)

For the second solution we use the equation

^ } (20)

and take the path to consist of the arc from £ to £0 on the real axis and the part of the
real axis from £0 to B. In the asymptotic expressions for Ai and Bi the factors
exp ( + fhtf) have constant modulus on the arc, decreasing toward B. Then the first
correction is of the form (aMjh) exp (— §A£$), with a bounded; and proceeding to
further corrections we find

(21)

which may be written

(| arg* |«; fr-*), (22)

(|aig*|=i»r). (23)

As for the case of § 3 these relations will not hold for values of £ not in E. For these
the error may be many times the first term for h large.

Note that a change from B to B' < B introduces a term in Bi (A*£), but its coefficient
is 0{h-* Ai (MB1)} and the term is o(l/h) of the first term for | exp §A£» | < | exp §AB'* |.

In sectors %n < | arg £ | < n, Ai and Bi are nearly proportional and both large. Then
it no longer follows that (17) is 0(Bi (&*£)). But we can proceed as follows. Take
£ = ^e**"*, where | arg y | ̂  \TT, k = ± 1; there is an arcp* cosf^ = constant passing
through E, and having a point £0 with arg £0 = + %TT. E is assumed to contain this arc
and the line from £0 to 0. Then with i/0 = £oe-|&7", T = te~ikni,

Zx{£) = Bi (h*g) + nh-S | + {Bi (Wg) Ai (h*t) - Ai (A»£) Bi (h*t)} Zx(t) g(t, h) dt
Jo Jg,

) + ffA-»e**'*r T V T{Bi (hhi) Ai (hh) - Ai (h^) Bi (A*T)} g(t) Z^e^h) dr\= Bi (A»g) + ffA

by (13). Then by (11) we have Bi(A5£) = 0(A~*T~*exp(|AT*)) and the previous argu-
ment shows that

Zx(£) = Bi

Similarly by taking the path from £ to £0, 0 and B in turn we find

Zt(g) = Ai (M£) + Oih-1 exp ( - 2Af I)).

If arg £ = 7r or + \n, £0 = 0, but the results in this form still hold.
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Solutions of linear differential equations 609
As g varies, subject to £ remaining in E, the paths are deformed continuously, and

Zx, Z% always represent the same analytic solutions and are valid in the same region.
Small third solutions can be found for \n < | arg £ | < n by taking paths in E to
oo exp (i arg g) if such paths satisfy the remaining conditions, but these are not the
analytic continuations of the solution represented by (22).

The Stokes phenomenon arises from the different asymptotic expressions of Ai
and Bi in different sectors, and is fully taken into account by the identities (10) to (13).
The complication from additional singularities of the transformation has received less
attention, but is of comparable importance when the theory is applied to the complex
variable.

When | A5£ | is large we can approximate to Ai and Bi by asymptotic expressions,
with further errors of order 1/A£*.

4-1. I t remains to relate the approximate solutions to the original equation. We

fx
For | arg £ | ^ \n we put M = htfdx = §A£*, (2)

J -a.

and then a pair of solutions are

2/2 ~ *(*"*£*) £-* exp ( - M) = £*-* exp ( - M) (3)

~V^^ ' - J Ai (M£) , (4)

*/!-;*;-* exp itf~>M£'-*Bi(/i5£). (5)

For |7r + (J|arg£|<7r,£ = - ^ i = f *A(-*)*«£, (6)
Jo

\ (7)

(8)

In these^can be replaced by ̂ 0 with an error of order l/h. In a neighbourhood of a; = 0,
where Ai and Bi have to be used directly, £' can be replaced by its value at x = 0,
namely, {^(0)}*.

The present method has allowed for Xi from the start, but it is interesting to examine
its effect for large x and compare with the case where Xo never vanishes. We have,

r * TO Ca fx

M - \hx\dx = htfdx + (tf -a») dx + tytf - xt) dx.
Jo J-a Jo Ja

(9)

Here a is some suitably chosen constant. Then the first two terms are independent
Cx

ofx; and the last approximates to (Xil^Xo) dx. The principal effect of Xi f° r large x
J a

is therefore to add the last integral to M. For x<0, if^ = — i/ro

. (10)

Thus on the negative side, if ^(0) > 0, %1(0) > 0, all phases are reduced.
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4-2. I t has been pointed out by Langer (especially (8)) that care is needed in the
use of 4-1 (3), (5), (7), (8) to establish correspondences between solutions on opposite
sides of a zero of x0. We have, if A and B are constants, a general solution Ay1 + By2,
with asymptotic expressions

\AJC* exp M{1 + Oih-1)} + Bx~* exp ( - M) {1 + OQi-1)}, (1)

A\x\~*{cos(L + in) + O(A-i)} + B\X~i\ {sin(L + in) + O(A-i)}. (2)

If the solution for £ > 0 is exponentially small, it follows that A = 0 and hence the
solution must be, to O( Ijh), equal to B x~k exp (— M) and B | x \ ~k s m (L + in) on the
respective sides. If, however, it is exponentially large, A + 0, but this information
does not determine B, and any multiple of y2 can be added to the solution for £ > 0
without disturbing the asymptotic solution for £>0. Confusion can be avoided if
explicit mention is made of the orders of magnitude of the error terms. The difficulty
will not arise for an infinite interval, since the relevant solution will be required to
be bounded in any case.

5. In actual calculation where the dominant solution contains a large exponential,
it is often found worth while to include the small solution; thus for Bi (£), where Sft(£)
is negative and | Q(£) | is small but not zero, £s has a small but not zero real part, and it
may happen that the ' small' series is larger than the fourth or fifth term in the ' large'
series. Stokes's original papers (15,16) contain a numerical illustration. This fact is
essentially related to the non-uniformity of the asymptotic expansion in power series
in £- 1 in the neighbourhood of certain values of arg £. In asymptotic approximations
obtained by the method of steepest descents it can be shown to come from a topo-
logical change in the line of steepest descent through a saddle-point when it passes
over a second saddle-point. There seems to be no formal theory on the point; this is
essentially because Poincar6's definition of the asymptotic property deals with limits
as the modulus of the variable tends to infinity, in which case the small series ulti-
mately becomes less than any assigned term in the large series, and no precise alter-
native definition exists. But it is noteworthy that the approximations to Ai (z) and
Bi (z), for z real and negative, arise from paths through two saddle-points and that for
§n< a rgz<\n they are more accurate than those that include only one path.

6. We have not assumed that g(E,, h) has a convergent, or even asymptotic, expan-
sion in powers of Ijh. Apparently a term in h** would vitiate Langer's treatment
(though of course an extension of his treatment would cover it); the present argument,
however, shows that it does not affect the first term of the solution.
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