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Abstract
The next-generation radio astronomy instruments are providing a massive increase in sensitivity and coverage, largely through increasing
the number of stations in the array and the frequency span sampled. The two primary problems encountered when processing the resultant
avalanche of data are the need for abundant storage and the constraints imposed by I/O, as I/O bandwidths drop significantly on cold
storage. An example of this is the data deluge expected from the SKA Telescopes of more than 60 PB per day, all to be stored on the buffer
filesystem. While compressing the data is an obvious solution, the impacts on the final data products are hard to predict. In this paper, we
chose an error-controlled compressor – MGARD – and applied it to simulated SKA-Mid and real pathfinder visibility data, in noise-free
and noise-dominated regimes. As the data have an implicit error level in the system temperature, using an error bound in compression
provides a natural metric for compression. MGARD ensures the compression incurred errors adhere to the user-prescribed tolerance. To
measure the degradation of images reconstructed using the lossy compressed data, we proposed a list of diagnostic measures, exploring
the trade-off between these error bounds and the corresponding compression ratios, as well as the impact on science quality derived from
the lossy compressed data products through a series of experiments. We studied the global and local impacts on the output images for
continuum and spectral line examples. We found relative error bounds of as much as 10%, which provide compression ratios of about 20,
have a limited impact on the continuum imaging as the increased noise is less than the image RMS, whereas a 1% error bound (compression
ratio of 8) introduces an increase in noise of about an order of magnitude less than the image RMS. For extremely sensitive observations and
for very precious data, we would recommend a 0.1% error bound with compression ratios of about 4. These have noise impacts two orders
of magnitude less than the image RMS levels. At these levels, the limits are due to instabilities in the deconvolution methods. We compared
the results to the alternative compression tool DYSCO, in both the impacts on the images and in the relative flexibility. MGARD provides
better compression for similar error bounds and has a host of potentially powerful additional features.
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1. Introduction

1.1 The Square Kilometre Array

Radio Astronomy is currently undergoing a paradigm shift, with
the planning for many next-generation radio instruments, such
as the Square Kilometre Array (SKA), the next-generation Very
Large Array (ngVLA) and the next-generation Event Horizon
Telescope (ngEHT). All of these provide at least an order of mag-
nitude increase in bandwidth and a few orders of magnitude in
collecting area (and sensitivity) over current radio telescopes. This
enhancement will provide us with the opportunities to survey the
radio sky in exquisite detail, such as detecting the signal from
the epoch of reionisation from when the first stars were born
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(Koopmans et al. 2015) and measuring the spectral signal from
millions of galaxies (Staveley-Smith & Oosterloo 2015).

To achieve this significant advance in our understanding, the
radio astronomy community must manage and process unprece-
dented volumes of data (Quinn et al. 2015). In this paper we
focus on the SKA, as Australia is a founding member of the
intergovernmental organisation, but our results are applicable to
all the coming infrastructure. The SKA will be constructed in
Australia for frequencies spanning 50–350 MHz (SKA-Low) and
in South Africa for frequencies from 350MHz to 15GHz (SKA-
Mid) (McMullin et al. 2020). Phase 1 of SKA-Low will have 512
stations with a diameter of 38 m each. Phase 1 of SKA-Mid will
consist of 197 parabolic dishes with 15 m diameter. The final goal
is to have a full square kilometre of collecting area for both arrays.
Construction has commenced and science verification will begin
in 2027.a

Following this, data rates from each of the correlators will
become ∼6 TB/s, making storage one of the largest cost drivers

ahttps://www.skao.int/en/science-users/118/ska-telescope-specifications.
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for the SKA project. Due to limited storage, raw data will be tem-
porally captured into a local buffer and must be processed within
a specific period – ranging from days to weeks – before being per-
manently erased. Since observatory data are unreproducible and
further future analysis may be necessary, savings in storage will
not only directly impact the project’s operational budget but also
allow more data to be stored long term.

1.2. High-performance I/O and data compression

Nearly all modern radio astronomy analysis is performed via
the Common Astronomy Software Applications (CASA) software
package (CASA Team et al. 2022), which provides an ipython
environment and a set of core data processing tasks and utili-
ties. The CASACore Table Data System storage manager can use
the Adaptable Input Output System version 2 (ADIOS2) (Wang,
Harris, & Wicenec 2016; Godoy et al. 2020) as the input/output
(I/O) and storage backend. ADIOS is a software framework with
a simple I/O abstraction and a self-describing data model centred
around distributed data arrays, allowing multiple applications to
publish and subscribe data at large levels of concurrency. It is pri-
marily focused on high-performance, parallel I/O, with its parallel
storage performance, the file format, the memory management,
and data aggregation algorithms being designed together to be
highly scalable in every axis (many processes, many variables, large
amounts of data, many output steps). For the ADIOS/MGARD
compression of the Deep Investigation of Neutral Gas Origins
(DINGO) uv-gridded data (Williamson et al. 2024) we found a
seven-fold reduction in the storage footprint and a seven-fold
improvement on the processing speed. ADIOS2 additionally pro-
vides users the access to state-of-the-art lossless and lossy com-
pressors (i.e. data is fully recovered after decompression, or the
data is only approximately recovered) through its operator. By
attaching the operator to a variable, ADIOS seamlessly imple-
ments the compression and I/O as a combined operation. One
example of this is the use of the MGARD library of functions,
which we are currently testing as an extension of the software for
the Australian SKA Pathfinder (ASKAP), ASKAPSoft (Guzman
et al. 2019).

MGARD (Gong et al. 2023) is a software that offers error-
controlled lossy compression rooted in multi-grid theories. It
transforms floating-point scientific data into a set of multilevel
coefficients through multi-linear interpolation and L2 projection,
followed by linear quantisation and lossless encoding processes.
The magnitude of the transformed coefficients is close to zero,
making them more amenable to compression than the origi-
nal data. MGARD has been designed to provide error-controlled
rather than fixed-bit compression. It guarantees the compres-
sion incurred errors to stay below user-prescribed error bounds,
such that the lossy compressed data can be trusted for scientific
usage. The resulting compression ratios are data dependent with
smoother data being more compressible than noisy data. One of
MGARD’s notable features is its array of error control options,
including the various euclidean norms of L∞, L2, point-wise rel-
ative L∞, and the ability to vary error bounds across regions or
different frequency components. This flexibility is valuable for
preserving Region-of-Interest (RoI) and/or Quantities-of-Interest
(QoI) (Gong et al. 2022) derived from the reconstructed data.
Though we do not explore the use of RoI and QoI in this paper,
compression of astronomy data could be significantly improved
in size and quality using these features; this is left for future work.

For example, RoIs could be used to implement an optimal Baseline
Dependent Averaging (BDA) approach on the visibilities.

MGARD has been optimised with highly-tuned CPU and GPU
kernels and efficient memory and device management mecha-
nisms, ensuring rapid operations and device portability. When
integrated with ADIOS2, variables and the desired error bounds
can be prescribed through ADIOS2’s operator API, resulting in a
self-describing compressed buffer containing all necessary param-
eters for decompression.

The natural point of comparison for MGARD is the bit-
reduction compression method DYSCO (DYnamical Statistical
COmpression), a lossy compressor specifically designed for radio
astronomical data (Offringa 2016). DYSCO normalises the data
across different antennas, polarisation, timesteps, and frequencies,
ensuring a constant noise variance across the full dataset. It then
performs non-linear quantisation followed by customised encod-
ing. Unlike MGARD, DYSCO cannot directly prescribe error
bounds; the compression-induced errors can only be confirmed
post-factum, and its choice of quantisation bins is subjective to
the type of normalisation. Previous literature indicates that the
main benefit of using DYSCO is that its compression noise does
not exhibit spatial structure. In this paper, we demonstrate that
MGARD-compressed data exhibit the same properties as well as
the previously mentioned advantages.

Furthermore, although not investigated in this paper, MGARD
is natively embedded in ADIOS, thus allowing fully parallel I/O
just by linking to the relevant library, and MGARD is GPU-
enabled, which improves the speed of the compression calcula-
tions. These advantages of MGARD are discussed in Williamson
et al. (2024), Williamson et al. (2025, in preparation) and future
publications.

1.3 Radio astronomy data

Radio data presents a unique challenge. Much of the data is orig-
inating from thermal noise as the portion of the sky containing
emission is small, see for example Figure 1 that shows the sim-
ulated sky used in these investigations, which is based on the
real GaLactic and Extragalactic All-sky MWA (GLEAM) radio
survey catalogue. In this figure, only a small fraction of pixels
in the image contain emission from astronomical sources, which
appear as spatially concentrated regions of high radio emission.
Not all astronomical sources are spatially concentrated and with
ever improving resolution, what was once a single source can be
resolved into spatially extended, diffuse emission. Moreover, some
signals, such as the sought-after signal of reionisation from the first
stars, will be distributed across the entire image and is hidden in
the noise (Liu, Parsons, & Trott 2014; Nasirudin et al. 2020).

Furthermore, the sky signals are collected in the Fourier
domain, which is the reciprocal of the sky image domain. Thus
the weak individual signals from the different sources are spread
over the Fourier terms and the individual samples become com-
pletely dominated by the system noise. The latter should, in a good
design, be limited by the thermal noise from the amplifier chain
in the receivers. Figure 2 itemises four of the places where data
compression could be applied: on the input digital voltages, on
the time-ordered visibilities, on the spatially gridded visibilities
and on the final image. We are focusing only on the specifically
Radio Astronomical domains of use. In this paper we investigate
the compression of correlated outputs, in Williamson et al. (2025,
in preparation) we will present the results for spatially gridded
uv-visibilities.
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Figure 1. Image of the data used in these investigations, based on the GLEAM catalogue to provide a realistic complex sky with added random thermal noise, and deconvolved
with WSClean. The locations of in-field GLEAM-model components are marked with red squares and are widely dispersed over the image with only thermal noise between those
regions of interest. The insert shows the low flux residuals around the brightest source in the image of 1 Jy. This emphasises the interplay of the thermal noise and the imperfect
reconstruction from the deconvolution, which sets a limit on the accuracy of reconstruction.

Figure 2. Data Flow in a typical radio interferometre from the individual telescope, stations through the correlator and imaging, to intermediate and final data products. Various
datatypes and possible compression of these datatypes are noted along the path. After the amplification and digitisation the data is limited to 12bits for SKA, but may not fully
inhabit the data range. After correlation the time-sampled data is integrated into a complex value, which is not compatible with lossless compression but can undergo lossy
compression. This is because the data should be thermally limited in accuracy (from the amplification) and this would normally be less than the nominal numerical precision. For
the intermediate data product of the temporal data resampled onto a regular spatial uv-grid, many of the cells will be empty and lossless compressionwill be effective. In the final
image the astronomical emission will be concentrated into limited regions of interest, allowing for some of the advanced features of MGARD to be applied.

The raw samples from the correlator consist of a weak sky
signal, which is precious and can not be distorted, and a strong
random noise signal, which will be ‘averaged away’ in the forma-
tion of the images of the sky. An example of the signals on a single
baseline of about 16 km is shown in Figure 3, where the sky sig-
nal is from the GLEAM catalogue model, and an example of the
noise levels from the system thermal contributions are included.
Thus, in most cases the noise dominates the signal, making the
astronomical results equivalent to the noise-only results.

This data analysis challenge is combined with a data volume
challenge. Radio astronomy data volumes from current gener-
ation telescopes are of PB-scale. This data is often stored as a
MeasurementSet (MS) (Kemball & Wieringa 2000), a format in
which visibility and single-dish data are stored to accommodate
synthesis. Although this format has been historically very useful,
it does not scale particularly well and often the science process
requires non-optimal access, giving rise to additional I/O load.
It is for these reasons that we are investigating the application
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Figure 3. The real part of the signal on one baseline of length∼16 km, with and with-
out noise, from the 100 channel complex sky model simulations where the noise and
sky-signal are of comparable magnitude. For the 1 000 channel simulations the sky
signal would be the same but the noise is

√
10 times greater, thus this represents

a low-noise, but not noise-free case. The majority of the analysis is on high-noise or
noise-free cases.

of MGARD, implemented via the CASACore interface to ADIOS2
on the raw MS. In Radio Astronomy compression can be applied
in multiple places along the data collection and processing
chain: compression of images and multi-dimensional image cubes
(Kitaeff et al. 2015), particularly focusing on the sparseness of the
radio sky to leverage the use of RoI (Peters & Kitaeff 2014); com-
pression of gridded data, where the sparsely filled sampling grid
for the imaging can be compressed significantly in a lossless fash-
ion (Williamson et al. 2024); and relevant to this report, the lossy
compression of the raw (correlator output) MS datasets.

2 Methods

2.1 Observational data

We used the SKA simulator for Radio Interferometry data,
OSKAR (Dulwich 2020), to simulate a clean 1 h-long dataset
based on the SKA-Mid AA2 (64 antenna) configurationb (here-
after AA2-Mid) and a single polarisation, with the GLEAM
catalogue (Hurley-Walker et al. 2017) to provide 228 unpolarised
sources within a ∼3 degree field of view. This represents a realistic
complex sky, such as would be expected in real observations. This
was done at 1.0 GHz over a 300 MHz bandwidth, with both 100
and 1000 channels. The GLEAM sky-model had a strongest source
with a flux of just under 3 Jy, and a standard deviation of about
1 Jy. The baseline lengths with AA2-Mid range between 20 m and
84 km. In addition we added a further column of data, consisting
of the GLEAM sky-model plus pure normal-distributed Gaussian
noise for each visibility. To represent the continuum case we added
the expected per-baseline noise of 0.14 Jy over the whole band-
width, which was converted to the noise per visibility by scaling
with the square root of the number of channels. Thus the thermal
noise is several times greater than the sky signal. To investigate a
simpler sky, where the sky signals are not varying so rapidly, we
replaced the model with a single compact but slightly resolving

bhttps://gitlab.com/ska-telescope/sdp/ska-sdp-par-model/-/tree/add-AA-layouts/data/
layouts.

source, using a few components at the centre of the field. This
simple model had an integrated flux of 3 Jy. This was in order to
achieve very high dynamic ranges (greater than a thousand) with
the limited uv-coverage of the 64 antenna AA2 configuration. To
represent the spectral line case we added the simple model to a sin-
gle channel of the GLEAM sky-model, scaled up by a factor of ten,
so that it dominated the thermal noise. This represented a strong,
narrow, maser-like emission dataset. We imaged that channel and
a few either side to test whether the compression introduces ‘bleed
through’ of apparent emission into other spectral channels.

Our final test was to investigate compression on real data; we
selected a single typical example of an observation from the LOw-
Frequency ARray (LOFAR). The data selected was observation
ID L686982, heavily averaged (for data volume considerations),
targeted on the European Large Area ISO Survey deep field N1
at 16:11:00 +54:57:00, averaged down to 230 channels of width
195kHz around 150 MHz and 1 min integrations over the eight
hour long observation. The full scientific observations are pub-
lished (de Jong et al. 2024) and although our heavily averaged
version would not be suitable for a best-quality scientific image,
it was suitable to test the behaviour of real data under compres-
sion (albeit with improved per visibility signal to noise). With
this real data we found that the data distribution was far from
Gaussian, because of Radio Frequency Interference (RFI) andNot-
a-Number (NaN) values. We truncated the data range to ±100 Jy
with all other values flagged and set to zero. The standard devia-
tion of the remaining data was 4 Jy, albeit with a distribution that
had an excess of values closer to zero and a long tail of large values.
Nevertheless, we compressed it using MGARD in the same fash-
ion as the simulated data, with our best estimate of suitable error
bounds.

2.2 MGARD compression of complex visibility data

The visibilities, being complex values, can be compressed sepa-
rately in the real and imaginary form or in the amplitude and
phase form; we trialled both presentations. As compression algo-
rithms work best on smoothly changing data, we also reorgan-
ised the native output array ordering from time-ordered (i.e. all
cross-correlations on all baselines at every timestep) to baseline-
ordered (i.e. each individual baseline in time, in sequence). This
is a supported ordering in the MS format, but has the advantage
of presenting any smoothly changing features, such as the sig-
nal amplitude, in a fashion most detectable for the compression
algorithms.

We have compressed the visibilities using MGARD with rela-
tive error bounds (EB) between 6× 10−6 − 5× 10−1, in steps of
approximately a factor of 3. Below this range the compression
ratios approach unitary and above it one introduces appreciable
distortions into the image. The EB is defined as the global root-
mean-square-error normalised by the range of data values. Where
the range is positive to negative (as in the visibilities) an EB of 0.5
would represent the whole data span and the data could effectively
be compressed to a single value for the whole dataset. In practise,
for EBs below 0.1, after MGARD compression the absolute error
in the reconstructed data values forms a sharply truncated distri-
bution between zero and a few times the error bound, with 99%
of the post-compression values below the requested EB. Note that
above 0.1 the simple relationship between the EB and the 99% per-
centile starts to diverge. We tested the impact of data reordering –
in time-ordered and baseline-ordered changing fashion – on com-
pression ratios. Finally, for the real data we used an absolute EB,
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i.e. bounding the compression incurred error by an absolute value
rather than percentage relative to data value range.

2.3 Comparison of MGARD compression with DYSCO
compression

The results were compared to similar analysis from data com-
pressed with DYSCO, where the compression is limited to bit
reduction. That is 32 bit float numbers were reduced to a represen-
tation with a lower quantisation; 2-, 3-, 4-, 6-, 8-, 10-, 12-, 16-bit
are possible options. After DYSCO compression the absolute error
in the reconstructed data values forms a distribution between
zero and a maximum value. The distribution does not truncate
as sharply as for MGARD, but does allow us to measure an ‘error
bound’ in the cumulative probability function below which 99% of
the data is reconstructed sufficiently accurately. DYSCO also uses a
non-linear quantisation scheme, which means that the rarer num-
bers are less accurately stored. This is harder to compare directly,
but we can test the impacts on the data quality estimates derived
from the imaging.

In practise, we found that DYSCO did not support the baseline-
ordered data format, so for the relevant tests and comparisons all
data was in the default time-ordered format and noise dominated.
We note that this places our comparison in the domain where
DYSCOwas reported to perform best; that is the low SNR domain.

2.4 Image quality analysis

All the data was imaged with WSClean (Offringa et al. 2014), with
an image size of 8 000×8 000 px2, a cell size of 0.′′4, a taper of 2.′′0
and 10 000 clean iterations. This 1◦ image size does not capture the
full field of view for the GLEAM sky-model, so some components
do not appear in the image. However they will make a contri-
bution to the visibilities. The choice of imager is arbitrary, as we
compared the results from the compressed data to those from the
non-compressed data, rather than the input catalogue. The clean-
ing parameters are also somewhat arbitrary given our comparison
methodology.

The vital component for this work was the evaluation of
the possible radio astronomy data degradation caused by lossy
compression and its impact on image reconstruction. Common
diagnostic tests in, say, the SKA Data Processing pipelines were
deemed insufficient as they do not expose some of the artefacts
that might be present in the resulting image. These diagnos-
tics measures include global root-mean-square (RMS) across the
image, source positions, and source flux (Lü et al. 2022, RASCIL).
The RMS is a measure of the global image quality and the lat-
ter two diagnostics test the general quality of the corrections (in
that poor calibration or poor apriori information, such as antenna
positions or those that effect the reference frame, which will shift
apparent positions and/or the coherence of the sum). The key lim-
itation of these diagnostics is their inability to detect subtle effects
that could be localised and perhaps associated with regions close to
strong sources. For simulated data neither of thementioned effects
would apply, therefore we put together some additional alternative
tests, which are more suitable for checking subtle image degrada-
tion. These can be combined with those tests of the calibration
mentioned above to provide a complete test suite.

The metrics we studied are: image RMS, residual RMS,
localised RMS, Kurtosis, two point correlation, the maximum and
minimum values and these values over the RMS. For these inves-
tigations the image RMS is the RMS in the difference between

images made with compressed and non-compressed data. The
residual RMS is the RMS in the residual images after deconvo-
lution and model subtraction made with compressed and non-
compressed data. The localised RMS is formed in sub-regions of
the difference image (on a 32 by 32 grid in this case). The Kurtosis
is formed from the second order moment on both the residual and
the difference images. The two point correlation is the maximum
absolute pixel value in radial rings of the FFT of both the resid-
ual and the difference images. The maximum and minimum are
the largest and smallest values in the residual and the difference
images.

The RMS and absolute-maximum of the difference between
images formed from compressed and non-compressed data will
test whether the compression of the data changes the science out-
puts in a detectable fashion, globally and locally respectively. This
is predicated on the assumption that our imaging has produced
outputs that are not limited by some other systematic limitation,
due to any subtle non-linear processes inherent in the imaging
of radio-interferometry data. To minimise these contributions we
have formed images with and without the CLEAN deconvolution,
as CLEAN is widely considered to be the dominant non-linear
process from the analysis (Tan 1986).

The ratio of the two point maximum correlation of the images
formed from compressed and non-compressed data is sensitive to
subtle changes due to the compression that might introduce some
bias in the average of the values. Such an effect would appear in the
image, as every pixel in the image can be thought of as the phased,
weighted sum of all the data in that direction. The most common
introduced effects are ripples across the image due to the incor-
rect reconstruction of a source, with the unmodelled flux then
‘scattered’ across the image. Additionally any introduced astro-
metric coordinate error would appear as localised ripples around
the mismodelled sources.

3 Results and discussion

3.1 MGARD compression of different sky models

We evaluated the compression ratio obtained on the data in the
real-imaginary format for a range of simulated sky models. These
were: the complex and realistic sky represented the GLEAM sky-
model and a simplified compact model at the phase centre (where
the model would change smoothly), both with and without added
Gaussian random noise, as shown in Figure 4. In a subset of the
tests this data was reorganised to be baseline ordered (i.e. time-
fast), allowing the compression algorithm to ‘see’ the baseline data
where sky signals would be smoother. Otherwise it was retained in
time-ordered format; for noise-dominated data, for which every
sample is independent, the ordering did not affect the compres-
sion ratio. The compression shown used MGARD with relative
EBs between 10−4 – 5× 10−1. Where the Gaussian noise domi-
nates, for complicated, simple or noise-only data (blue, red and
green), the compression ratio varies from a factor of 3 at EB of 10−4

to several thousands, with about a factor of 20 at an EB of 10−1.
The complicated sky model without noise (purple) compressed
several times better than the noise. The simple sky model with-
out noise (black) compressed more than an order of magnitude
better, with the compression ratio of about a factor of 800 at an
EB of 10−1. If the noise-free data was not reordered, so that it was
in the default time-ordered format (dotted lines), the compression
ratio fell by more than an order of magnitude, to be only few times
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Figure 4. The compression ratios achieved when compressing the simulated visibility
data with various noise profiles. Shown are the compression results from MGARD for
data with a complicated sky (purple squares) and a simple sky (black circles) model.
The x-axis describes the relative error bound provided to MGARD for the compression.
For the data that are dominated by thermal noise (line-style symbols,multiple colours)
the compression ratios as a function of EB are practically identical and overlap on this
plot. The highest compression is achieved when the skymodel is simple and noise free
and ordered by baseline (black line). The noise-free baseline-ordered complicated sky
(purple line) is an order of magnitude lower, representing the impact of the rapidly
changing sky signals. Finally the time-ordered data is represented with dotted lines.
The noise-free time-ordered data has significantly lower compression ratios than the
baseline-ordered data, as the time-ordering hides the sky signal from the compression
algorithm. In our simulations the complicated and simple sky in time-order provide
very similar compression ratios for the same EB bound, particularly for the less aggres-
sive compression, underlining the importance of presenting the sky signal coherently
to the compression algorithm.

better than noise dominated signals. For the noise-dominated sig-
nals the ordering or the background signal did not matter and all
compression ratios were very similar for a given EB. This is inline
with expectations, as smooth data will compress best and base-
line ordered data, without noise and with a simple sky model, will
present the smoothest data to the compression algorithms. Thus
we conclude in a noise-free situation reordering before compres-
sion could have an impact, however, as the there are only a few
places in the sky where a single simple source dominates over the
noise, this will not be a widely applicable domain. As this would
be an expensive and I/O intensive operation we would not recom-
mend it in general, however it would be an option for strong and
simple sources, such as the calibrator scans.

3.2 MGARD compression of amplitude and phase

To further explore expressions of the data where the signal might
be smoother and therefore compress better, we investigated the
compression ratio for cases were the amplitude and the phase were
compressed separately, with independent EBs. These stepped from
10−4 to 10−1 in steps of ten, as shown in Figure 5. The compres-
sion ratio was symmetric around the axis of EBphase equal EBamp.
We found that compressing in amplitude and phase only pro-
vided an advantage for simple model in noise-free domain, at
low compression. For the noise-dominated sky-models, and for

Figure 5. The compression ratios achieved when compressing the amplitude and
phase of the visibility data. Shown are the results for simple sky simulation (top),
a complicated sky simulation (bottom), both with (right) and without (left) added
noise. The x and y-axes are the log of the relative error bounds provided to MGARD
individually for the amplitude and phase.

higher compression ratios, compressing the real and imaginary
data gave about a 20% better performance in all regimes of rel-
evance, i.e. below an EB of 0.1. Thus we find no advantage of
converting from the natural real and imaging axis, nor in reorder-
ing the data to expose any potential smoothness. For this reason
for MGARD we would not recommend compressing the complex
data in amplitude and phase components.

3.3 Comparison of MGARD compression with DYSCO
compression

This comparison was performed entirely on time-ordered data, as
DYSCO did not support the baseline-ordered format. For the sim-
ulated data we used the time-ordered complicated sky-model with
noise, which can be compared to the cyan line in Figure 4. The
DYSCO compression ratios are by bit reduction, with fixed fac-
tors of 2, 3, 4, 6, 8, 10, 12 or 16, although we note that 8-bit and
above are the recommended ranges (Offringa 2016). We used the
99% percentile as the approximate equivalent error for DYSCO.
This was used to compare with the requested error bound pre-
compression in MGARD, as shown in Figure 6. For an MGARD
relative EB above 10−4 the data compression ratio is larger than
a factor of 3, and a factor of 4 at 10−3 and a factor of 7 at
10−2. Above an EB of 0.1 the compression ratios are greater than
twenty, as the data becomes highly quantised with all the data
compatible with a few values across the whole dataset. For the
DYSCO compression the performance is slightly worse than for
MGARD, with the compression ratios falling below the MGARD
for the equivalent error by 50% at 3-bit compression and improv-
ing to ∼10% at 12-bit compression. However, we caution that
this is only an estimate, particularly under aggressive compres-
sion, as it is not an direct comparison of true like-for-like error
estimates. Furthermore, DYSCO uses a non-linear quantisation
format, which allows for recovery of this shortfall in the imaging
tests. For the LOFAR compression we could not use the relative
EB, as we can not use the actual data range, as it is highly non-
Gaussian with large tails of a few outlying values due to RFI. This
allows us to test the performance ofMGARD in the face of real-life
non-ideal behaviour. We found that setting the absolute bounds
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Figure 6. A comparison in log-log scale between the compression performance of
MGARDandDYSCO for the time-ordered ‘Complicated Sky+Noise’ case (comparewith
cyan line in Figure 4). The compression parameters for DYSCO are defined in terms of
bit storage as indicated and so the shown relative error bounds have been calculated
from the 99% percentile of the residuals in order to conform with those in MGARD. In
addition we plot the actual complicated sky and noise from the MGARD compression
of LOFAR observations, where we have used absolute error bounds and estimate the
equivalent relative error bound for compression assuming a data range of±5σ .

to match the expectations based on the thermal noise, or alterna-
tively the standard deviation, would deliver performance close to
that of perfect Gaussian distributed data, as shown by the close
correspondence of the LOFAR and simulated data results.We used
absolute EBs between 100 and 2E-3 Jy, and for plotting on Figure 6
and assume that the data range should be ±5σ (i.e. ±20 Jy) for
the conversion to a relative EB. In this case the compression ratio
tracks the results from the simulations, giving us confidence in our
conversion from absolute to relative EB.

The other strong advantage that MGARD offers in comparison
to DYSCO is the precisely tuneable selection of the error bounds,
and thus the compression ratio. MGARD is much more flexible
than the fixed levels of compression offered by DYSCO, and fur-
thermore the adjustable parameter can be directly matched to the
system noise level.

A future investigation that merits exploration is to utilise the
MGARD capability to control the compression over regions of
interest, and use this to vary the error bounds as a function of
baseline length. This would use the multi-grid approach to form
baseline dependent averaging, which we would expect to give
a more precise reconstruction than simply averaging data into
the equivalent of uv-cells. For the moment we are attempting
to surpass this by the compression of the uv-grids themselves
(Williamson et al. 2024; 2025) where the averaging is formed after
the correct application of the weighting kernels, but a comparison
would be interesting.

3.4 Image quality analysis

The RMS of the image difference in a pixel to pixel comparison
between images formed from compressed and non-compressed
data is shown in Figure 7. MGARD-compressed simulated data

Figure 7. RMS of the difference between the image from compressed data and the
non-compressed data; noise-free data is marked with a star and noise-added data is
marked with a diamond. Somemarkers are slightly shifted for clarity. The results from
cleaned images are shown with a solid line; a dot-dash line is for non-cleaned images.
The MGARD compression impact on complicated sky-images, with and without noise,
and without and with deconvolution are shown in red, blue and cyan respectively.
The simple and high dynamic-range image with noise and cleaning is shown in black,
and without noise and cleaning is in green. DYSCO compressed data with and with-
out cleaning is shown in purple with squares. An example for real data, cleaned and
with intrinsic noise, from the LOFAR pathfinder is shown in pink. The lighter dotted
lines without symbols represents the RMS of the residual images made from non-
compressed data. One can directly see that the global added noise to the images from
using compressed data is significantly less than the image noise. Furthermore, one can
see that non-linear process of cleaning on the GLEAM-model (which can be imaged to
a dynamic range of about 1 000 with 64 antennas) produces a limit on the reconstruc-
tion precision. After which reducing the degree of compression, and thus precision,
does not improve the reconstruction accuracy. However for the higher dynamic range
(>10 000) images the reconstruction accuracy continues to improvewith the improved
precision. The simulated DYSCO-compressed and real MGARD-compressed data have
similar results to the simulated MGARD-compressed data.

dominated by signal (noise-free) is marked with a star and the data
dominated by noise (noise-added) is marked with a diamond. The
real LOFAR data is marked in solid pink lines with circles. The
DYSCO-compressed data is marked in purple with squares. Solid
lines indicate images that have been deconvolved with CLEAN and
dot-dashed lines indicate where no deconvolution was performed.
The RMS of the images made with the non-compressed data is
shown as the dotted horizontal lines at the top of the plot in the
same colours. The RMS of the difference between non-compressed
and compressed data images falls significantly below the image
residual RMS, indicating that the added noise from the compres-
sion is much less than that in the images of the non-compressed
data itself. We note the dominant impact is actually in the decon-
volved images, where the decovolution reaches an accuracy limit
and improved precision in the compression does not improve the
reconstruction. For the complicated sky, where the limited num-
ber of antennas limit the possible accuracy to about a dynamic
range (DR) of 2 000 we see no improvement below an EB of
10−3. For the simpler sky model, where we can achieve a DR of
14 000, the reconstruction continues to improve beyond this limit,
albeit at a lower rate. The DYSCO points on this plot are slight to
the right of the of the equivalent MGARD points, implying that
they achieve the same recovered image quality for a larger relative
error; this is presumably, as all other aspects are equal, due to
the non-linear quantisation. However these gains (approximately
improving the performance by a factor of 1.05) are nullified by the
better compression for MGARD. The real LOFAR data has results
very similar to those from the simulations, particularly if we bear
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Figure 8. Maximum value of the difference between the image from compressed data
and the non-compressed data, with the same data labelling as Figure 7, including the
dotted lines without symbols indicating the RMS of the residual images, for compar-
ison. The maximum error between the images of compressed and non-compressed
data picks up (predominately) the change in side-lobes around the strongest sources.
Thus, if the image is CLEANed, the values tend to those of the image RMS. For MGARD,
with high compression (> 10%), the images of compressed data started to significantly
diverge from the non-compressed images, whilst DYSCO continues to perform well.
This may, however, be more related to the poorer compression ratio of DYSCO.

in mind the uncertainties in the conversion of absolute to relative
EB for the LOFAR data.

The RMS only measures the global difference, to investigate the
impact of differences localised in the image we repeated the analy-
sis above, but for the absolute maximum. These results are shown
in Figure 8 with the same colours as in Figure 7. Here we see how
the deconvolution mixes the thermal noise with the compression
errors so that themaximum errors track the image RMS. The cause
of this effect is clearly notable in the sidelobes around the strongest
sources in the image, which blend the two noise sources to pro-
duce thermal level variations that are a function of the strength of
deconvolved sources. This effect is not seen in the images without
CLEAN applied, and presumably any other deconvolutionmethod
that did not suffer from the CLEAN instabilities.

One should bare in mind that SKA images could be stacked
to achieve greater sensitivity. That is multiple independent images
would be combined to make a deeper image. Provided the com-
pression does not introduce systematic effects, which should be the
case where it is dominated by thermal noise, we would expect the
compression noise to also average down. However, in the thermal
noise-free case one could imagine a case where the compression
noise could become the systematic limit. We would recommend
compression error bounds of below � 10−3 to ensure an image
error bound of a fewµJy, for the given simulation parameters. This
is a factor of a hundred less in RMS than the intrinsic error bound
and could only dominate if more than 10 000 individual images
were combined.

The ratio of the two point maximum correlation of the images
formed from compressed and non-compressed data with a com-
plicated sky model is shown in Figure 9. To the left the decon-
volved data is shown, where the CLEAN step introduces a limit in
the achieved precision of the reconstruction. The right shows the
results from the same data without deconvolution. The profiles are
close to white noise (i.e. flat), that is there are no detectable large
scale ripples or similar features. This is because MGARD trans-
forms data into small-valued coefficients through multi-linear

Figure 9. Two point correlation of the images showing the maximum power at all
angular scales (� from zero to 200, where zero would be a constant value across
the ∼1◦ image and 200 would be the power on 16′′ scales) from the cleaned images
made with compressed data, normalised by the power in the image made with non-
compressed data. On the left is shown the results for the complicated GLEAM-model,
where the reconstruction accuracy reaches a limit at an error bound of∼1E-3. On the
right is shown the result for the same data, but imaged without deconvolution, which
does not introduce a limit in the reconstruction accuracy, which continues to improve
with EB precision. No peak from introduced image artefacts are detectable, and all
contributions are well below the noise levels.

interpolation then performs quantisation on interpolation resid-
uals. Given the original data is overwhelmed by thermal noise, the
interpolation residuals will exhibit a random distribution akin to
the white noise. The quantisation will then introduce an almost
uniform loss across the entire data space. The gradient at large
angular scales we interpret as the data compression preserving
the large scale structure slightly better than the small scale struc-
ture. Nevertheless, the limits are well below the native image
reconstruction errors, even in the noise-free case.

3.5 Effect of compression on spectral line cubes

To test the impact of the compression on the well-known ‘bleed-
ing through’ of the strong spectral feature into the surrounding
channels we added the simple sky point source to one channel
of the visibilities then compressed the whole dataset and imaged
the data, channel by channel. Figure 10 plots the peak flux in the
surrounding channels, normalised by the peak flux of the spectral
feature (28.5 Jy/beam). Even for a relative error bound below 10−1

the fractional error is the order of a percent, for error bounds of
10−2 and below the fractional error is about 10−4.We note that our
implementation in ASKAPSoft, as it performs the MGARD com-
pression in parallel on a (independent) channel by channel basis,
will not suffer from this effect. However, these results will impact
other future potential implementations of MGARD and thus are
included for completeness.

4. Conclusions and outlook

4.1 Conclusions

We have demonstrated the functionality of the MGARD compres-
sion application on the complex visibilities one might expect from
the next generation of instruments. This was on both simulated
SKA data and real pathfinder data from LOFAR.MGARDmatches
or slightly exceeds the performance of the best current option for

https://doi.org/10.1017/pasa.2025.29 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2025.29


Publications of the Astronomical Society of Australia 9

Figure 10. The degree of bleed-through from the strong spectral feature into surrounding channels, as a function of the compression error bound. As would be expected the
cruder compression causes greater bleed-through, although still at less than 1%. From an error bound of 1E-2 or below the bleed through is less than a few times a factor of 1E-5.

data compression, whilst providing amuchmore natural and flexi-
ble data compressionmetric. The concept of an error bound allows
us to guarantee that the data is not degraded more than the spec-
ified noise levels. The compression of the data, without loss of
information, directly addresses one of the major cost drivers of the
SKA.

Selecting relative error bounds less than 10%, with a compres-
sion ratio of 20, introduced no significant errors in the continuum
imaging, whereas 1% error bound, with a compression ratio of
about 8, introduced a loss of precision about an order of mag-
nitude less than the noise. Below 0.1% (compression ratio of
4) imperfections in the deconvolution dominated. For the spec-
tral line imaging, EBs below 10% limited the bleed through to
2% or less of the peak flux, whereas a 1% EB limited the bleed
through to less than 0.03% in the worst case. In summary, we
find that EBs between 10−3 and 10−2 have a good compromise
between compression and impact on the science data products.
High compression ratios achieved with small information loss
suggest that the raw data was significantly oversampled. This is
consistent with the results we have obtained, as in the signal-
dominated case a smoothly changing signal is highly compressible
using the recommended error bounds (i.e. 1% of the range). In the
noise-dominated case we obtain more moderate compression but
still up to an order of magnitude of improvement over the non-
compressed data. This is because there was no useful information
significantly below the resolution imposed by the thermal noise.

We did not find any benefit from reordering the data except
for the simplest noise-free cases, hence we believe the best rec-
ommendation for the use of MGARD on the SKA would be to
compress the data from the correlator on the fly to an error bound
of 0.1%. This could quarter the short term buffer storage costs and
massively ease the pressure on the SKA budget.

4.2 Outlook

MGARD offers a host of additional features which may have great
applications in Radio Astronomy. It continues to be improved

in performance and, as it is now being optimised specifically for
Radio Astronomy data, we expect further increases in compres-
sion ratios achieved. The innovative non-linear quantisation as
used by DYSCO can be implemented in MGARD to reduced the
image reconstruction errors for a given compression level. As
MGARD is embedded in ADIOS2 one also has direct access to
highly parallelise reading and writing, reducing I/O requirements.
Recent studies (Gong et al. 2023) demonstrate that MGARD
achieves a throughput of 15 and 30 GB/s when compressing data
using an NVIDIA A100 and AMD MI250X GPU. An evaluation
by Chen et al. (2025), using 1 024 nodes on Frontier supercom-
puter show that MGARD can accelerate the write and read oper-
ation of ADIOS2 by 6.8–15.3× and 5.2–9.3×, with 14− 2 379×
compression ratios. Our next paper (Williamson et al. 2025) dis-
cuss the performance on MGARD in ASKAPSoft on DINGO in
detail.

We have not used the rich feature-set of MGARD in this work.
For example, one could be particularly interested in the low or
high resolution data. MGARD allows for preferential preservation
of precision based on regions, such as baseline length. RoIs could
be used to implement an optimal Baseline Dependent Averaging
(BDA) approach as, in the gridding step, the short baselines are
more heavily averaged in the imaging. Thus this feature could used
to implement increased averaging in the shorter baseline visibili-
ties with controlled precision before the gridding, to increase the
compression achieved. As MGARD uses a multi-grid method this
should out-perform the traditional BDA compression which sim-
ply step-wise averages over variable time intervals that depend on
the baseline length.

MGARD can also be applied to other data products in the SKA
data lifecycle. We have already investigated the applicability of
MGARD to gridded visibilities from ASKAP (Williamson et al.
2024; 2025). Similar to Kitaeff et al. (2015) and Peters & Kitaeff
(2014) we are also planning to investigate MGARD’s flexible capa-
bilities, like hierarchical compression and special treatment of
regions of interest (RoIs), to compress radio astronomy image
cubes. The results of these investigations have the potential of very

https://doi.org/10.1017/pasa.2025.29 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2025.29


10 R. Dodson et al.

significant cost benefits for the SKA project as a whole in a range of
areas from intermediate storage and I/O, over LAN andWANnet-
work costs to archival storage. In some cases applying compression
might even enable certain science projects, which would otherwise
be unfeasible due to data volume or I/O constraints.

Data availability statement. Our Data Quality Analysis algorithms are
publicly available on github.com/ICRAR/Image-DQA/. The LOFAR data was
taken from the long-term archive lta.lofar.eu/.
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