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Abstract

In this paper, we apply flexible data-driven analysis methods on large-scale mass transit data to identify areas for
improvement in the engineering and operation of urban rail systems. Specifically, we use data from automated fare
collection (AFC) and automated vehicle location (AVL) systems to obtain a more precise characterisation of the
drivers of journey time variance on the London Underground, and thus an improved understanding of delay. Total
journey times are decomposed via a probabilistic assignment algorithm, and semiparametric regression is undertaken
to disentangle the effects of passenger-specific travel characteristics from network-related factors. For total journey
times, we find that network characteristics, primarily train speeds and headways, represent the majority of journey
time variance. However, within the typically twice as onerous access and egress time components, passenger-level
heterogeneity is more influential. On average, we find that intra-passenger heterogeneity represents 6% and 19% of
variance in access and egress times, respectively, and that inter-passenger effects have a similar or greater degree of
influence than static network characteristics. The analysis shows that while network-specific characteristics are the
primary drivers of journey time variance in absolute terms, a nontrivial proportion of passenger-perceived variance
would be influenced by passenger-specific characteristics. The findings have potential applications related to
improving the understanding of passenger movements within stations, for example, the analysis can be used to
assess the relative way-finding complexity of stations, which can in turn guide transit operators in the targeting of
potential interventions.

Impact Statement

The use of automated data sources in analysing transit journey time performance has gainedwidespread attention
in the academic literature, however, the focus has been limited to the analysis of operational characteristics.
Along with operational factors, passenger-specific characteristics can also influence journey times, although to
date, analysis has been restricted to the evaluation of group-level demographic characteristics as this information
is typically sourced via small-scale manual surveys. In this paper, we use large-scale disaggregate automated data
from the London Underground metro system to track individual passengers via pseudonymised card identifiers.
We apply flexible data-driven analysis methods to offer new insights regarding the degree to which individual-
specific behaviours influence journey times alongside network characteristics. We find that passenger-specific
characteristics have a nontrivial impact on journey times in the out-of-vehicle phases of a trip. Passenger effects
represent 6% and 19% of variance in access and egress times, respectively, and this could in part be attributed to
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way-finding complexity within stations. For future applications, the analysis method can be used by operators to
assess the relative complexity of station layouts and passenger flow control operations, as well as inform the need
for potential interventions to improve passenger journey times.

1. Introduction

In this paper, we seek to quantify passenger journey time variance for trips on the London Underground
metro system via a flexible data-driven analysis to identify areas for improvement in the engineering and
operation of urban rail systems. Journey time variance can have a significant impact on passenger
perceptions of travel. Noland and Small (1995), Bates et al. (2001), and Noland and Polak (2002) were
among the first to suggest that passenger perceptions of unreliable service arising from inconsistent
journey times on a route could result in a higher generalised cost of travel.More recent studies suggest that
some public transit users value consistency in journey times above reductions in mean journey times on a
route (Li et al., 2010; Kouwenhoven et al., 2014), and empirical research on elasticities of passenger
demand further indicate that improvements in journey time variance are associated with higher levels of
ridership for rail transit (Preston et al., 2009; van Loon et al., 2011). Better quantification of journey time
variance and the factors that influence it can lead to the development of targeted interventions to improve
perceptions of travel, and can ultimately lead to higher levels of ridership.

Existing research on the drivers of journey time variance for transit systems can be segmented into two
distinct areas. The first research area is more network-oriented and focuses on quantifying the impact of
physical and operational network characteristics on journey time performance (El-Geneidy et al., 2011;
Sun et al., 2012; Yetiskul and Senbil, 2012; Ma et al., 2015). In this research area, there has been
widespread adoption of automated data sources, including automated fare collection (AFC) data on
passenger trips and automated vehicle location (AVL) data on train movements. The second area of
research relates to the analysis of passenger travel behaviour and focuses on quantifying the impact of
group-level sociodemographic characteristics on journey times for application in demand and choice
modelling (Krygsman et al., 2004; Crane and Takahashi, 2009; McQuaid and Chen, 2012; Mao et al.,
2018). Themajority of research in this area relies on small-scale manual surveys of samples of passengers,
and as a consequence of the limited scale, the influence of passenger characteristics is typically evaluated
at a demographic group level rather than at the individual passenger level.

In our analysis, large-scale AFC data from the Oyster card payment system enable the identification
and tracking of trips made by individual passengers via pseudonymised card numbers. Through the use of
these data, we are able to quantify individual rather than group-specific effects on journey times. This
more granular level of analysis can offer new insights into the influence of individual-specific charac-
teristics on journey times, and this is a key contribution of the paper. Furthermore, the combination of the
AFC trip data with AVL train movement data enables operational network characteristics as well as
individual passenger-specific characteristics to be quantified. Through the use of this large-scale com-
bined data set, we are therefore able to capture both network and passenger-specific characteristics within
a unified framework to provide amore complete and precise characterisation of the drivers of journey time
variance compared to previous studies.

The analysis is split into two parts: (i) passenger journey times are decomposed into components to
distinguish between in- and out-of-vehicle phases of a passenger journey via a probabilistic assignment
algorithm to allocate individual passenger trips to unique train itineraries, and (ii) semiparametric
regression is used to quantify the effects of passenger-level heterogeneity and network-related factors
within each component of journey time, as well as total journey times. Semiparametric regression is a
data-driven analysis technique whereby the relationships between the independent and dependent vari-
ables are generated via flexible splines fitted to the data points, thus resulting in a greater degree of fidelity
to the data compared to conventional linear regression methods. In the literature on the generalised cost of
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travel for rail modes, it is well established that the out-of-vehicle phases of a journey are considered to be
more onerous for passengers compared to base uncongested in-vehicle travel conditions. Walking and
wait time components are typically valued at least twice the value of uncrowded in-vehicle times
(Wardman, 2004; Wardman et al., 2016). In this analysis, we therefore consider the in-vehicle and out-
of-vehicle components of journey time separately.

The results from the analysis can provide valuable insights for transit operators regarding the
management of journey time variance. For total journey times, we find that train speeds and headways
represent the majority of variance while passenger heterogeneity represents a minimal proportion, and
that static route-specific characteristics are more influential than passenger-specific effects. However,
within the typically twice as onerous out-of-vehicle components of access and egress times, passenger
characteristics are found to bemore influential. Passenger-specific effects are similarly or more influential
than static network effects, and on average, passenger-level heterogeneity represents 19% of variance in
egress times and 6% of variance in access times. Although quantification of the generalised cost of travel
is not within the scope of this analysis, the results indicate that the impact of passenger heterogeneity in the
access and egress models would be nontrivial in terms of passenger perceptions of travel.

The estimates of passenger heterogeneity obtained in this analysis have potential applications related to
improving the understanding of passengermovementswithin stations. Across all stations in the analysis, a
greater degree of passenger heterogeneity is observed in the egress phase compared to the access phase. A
lower degree of heterogeneity in the access models could be a result of the constraint imposed on
passenger walking speeds and platform positioning to board the train when it arrives, while no such
constraints are present in the egress phase. The result could also reflect a greater degree of way-finding
complexity as a result of complex station layouts with poor route information, or less effective pedestrian
flow control measures (for example, less availability of dynamically controlled escalators in the exiting
direction). Further modelling of disaggregate station elements could disentangle such effects. Further-
more, the analysis could be undertaken at an individual station or route level, and differences in passenger-
level heterogeneity could be used to identify differences in way-finding complexity between stations. The
second stage modelling of disaggregate station characteristics could then guide operators in identifying
station elements that require potential improvements. The estimates of passenger heterogeneity obtained
in this analysis could also be used as inputs to improve assumptions of passenger walking characteristics
in pedestrian modelling applications used in the assessment of pedestrian dynamics and flows in transit
stations.

The remainder of the paper is organised as follows: a literature review is presented in Section 2, and the
study area and the properties of the data set are defined in Section 3. The framework for the semipara-
metric regression models is given in Section 4. The analysis and discussion of the results are presented in
Section 5, and conclusions are summarised in Section 6.

2. Literature review

Prior to the introduction of automated data collection systems, the observation of passenger travel patterns
relied on data obtained frommanual stated preference surveys (SP) and passenger counts. The increasing
prevalence of AFC systems has enabled access to greater volumes of passenger trip data andmore detailed
information on passenger travel patterns in a revealed preference (RP) format. AFC systems capture
information on trip transactions as well as card properties, which can represent passenger-specific
information, however, the recorded information can vary in level of detail. Trip information can include
entry and exit dates, times, and locations. In a number of cases, boarding or alighting locations are not
recorded, and so there are a number of approaches in the literature to infer missing timestamps and
location information, including the work by Trepanier et al. (2007) and Munizaga and Palma (2012).
Card-specific information typically includes unique card identification numbers and the card payment
category, which captures price differentiation based on user segmentation. In the registration process for
AFC cards, additional information may also be recorded including home address, age, gender, occupa-
tion, and bank account details.
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Research seeking to quantify the impact of passenger characteristics on transit journey times is largely
based on analysing group-level characteristics where passengers are aggregated into user groups to
represent different population demographics. Research targeted at the level of individual passengers is
limited, with only one known study undertaken on analysing the consistency of departure times of
individual commuters using SP data in Germany by Kitamura et al. (2006). To that end, the following
literature review not only covers work on transit journey times, but also includes a review of work in the
wider transport literature which focuses on the analysis of passengers at an individual level using RP data
from AFC systems. Research areas include the analysis of individual travel patterns in transit networks,
and the development of individual-specific route choice models.

2.1. Travel patterns

The majority of research that makes use of passenger-specific information recorded by AFC systems
focuses on recovering descriptive information on the travel patterns of individuals. Utsunomiya et al.
(2006), Morency et al. (2007), Trepanier et al. (2012), and Goulet-Langlois et al. (2016) use AFC data
with complete tap-in and tap-out information recorded. Utsunomiya et al. (2006) mine individual-level
travel behaviour using AFC data from rail, bus, and paratransit in Chicago. Access distances for the first
transit trip of the day are analysed, along with the frequency of trips and consistency of routes taken.
Another study on individual travel patterns is undertaken by Morency et al. (2007) using smart card data
from the bus network in Gatineau, Canada. Data segmentation and a k-means clustering algorithm are
applied to determine spatial and temporal patterns of bus boarding by passenger card type. The analysis
for the Gatineau bus network is extended by Trepanier et al. (2012), where a hazard model is applied to
determine the degree of loyalty of individual passengers using the service and the underlying socioeco-
nomic factors affecting loyalty. Goulet-Langlois et al. (2016) use data from bus and rail modes in London,
UK, and apply principal component analysis and the k-meansþþ clustering algorithm to segment
passengers into 11 different clusters based on their travel activity patterns. A further analysis is undertaken
using odds-ratios to understand the relationship between travel patterns and sociodemographic passenger
information collected through household travel surveys.

In the studies undertaken by Ma et al. (2013) and Kieu et al. (2015), the AFC data have missing
timestamp and location information, so an additional step to infer the missing information is first
performed. Ma et al. (2013) analyse the spatial and temporal travel patterns of individuals for the bus
and metro systems in Beijing, China. The data do not record boarding and alighting locations and tap-out
timestamps and so a decision tree algorithm is first applied to infer the locations and further clustering
algorithms are applied, including the density-based spatial clustering algorithm (DBSCAN), to infer the
regular and irregular travel routes and times for individuals. A similar analysis is performed by Kieu et al.
(2015) on bus, rail, and ferry data fromBrisbane, Australia. Complete origin–destination (OD) trip chains
are first constructed for passengers who use more than one mode for a given trip, and then the DBSCAN
algorithm is applied to infer regular travel routes and regular travel times of individual passengers.

2.2. Route choice modelling

The broader field of travel behaviour research focuses on analysing the effects of sociodemographic
characteristics on travel behaviour, and the majority of these studies use SP survey data and population
census data. Within this field, travel utility theory methods are applied to infer travel preferences and
decisionmaking at a user-group level; reviews of the more recent advances in travel behaviour analysis at a
household level can be found inBhat and Pendyala (2005) andTimmermans andZhang (2009). Focusing on
rail networks in particular, travel behaviour models are used to quantify the route choice of passengers
between eachorigin and destination nodeof a network, and this has conventionally beenundertaken through
SP surveys of samples of passengers, e.g., Guo and Wilson (2011) and Raveau et al. (2017).

Recent work incorporates the more disaggregate information available from AFC sources to develop
improved models of route choice based on the generation of individual utility functions rather than the
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traditional approach, which estimates utility functions for the average user based on aggregation of
individual preferences from a sample of passengers. Arentze (2013), Nuzzolo et al. (2015), and Nuzzolo
and Comi (2016) estimate route choice preferences at an individual level for input into transit trip planner
tools. Nuzzolo et al. (2015) and Nuzzolo and Comi (2016) develop route choice utility functions at an
individual level for public transit networks in Rome, beginning with a stated preference survey filled
out by users to establish their initial preferences, and then preferences are iteratively updated with
revealed preference data of recorded trips that the individual has taken. Arentze (2013) follows a similar
approach, however in this case, initial user preferences are designated as the average of aggregated travel
preferences of users from SP survey data from a sample of passengers. Aside from these three studies on
transit modes, the remaining majority of work on analysing route choice at an individual level focuses
more on private road transport with revealed preference data generated from vehicle-mounted GPS
trackers, as presented in Li et al. (2016), Lima et al. (2016), and Amirgholy et al. (2017).

2.3. Journey time modelling

Compared to the descriptive work on tracking individual travel patterns, and studies on inferring route
choice at an individual level, assessing the impact of individual-level heterogeneity on journey times has
received relatively little attention in the literature. Kitamura et al. (2006) use stated preference data
gathered from 6-week travel diaries of inhabitants in Karlsruhe and Halle in Germany to track the
consistency of departure times by individuals for the first morning trip of the day. Linear regression and
stochastic frontier models are applied to determine the degree of intra-individual and inter-individual
heterogeneity in departure times, including additional explanatory variables to capture sociodemographic
characteristics such as gender, income, residential zone, household size, marriage status, and total
commuting time.

The remaining majority of the literature involves aggregation of individual passengers into categories
and therefore, the interpretation of results can only be applied at a group rather than individual level. For
example, in transport sociology literature, a vast stream of research is dedicated to analysing gender-based
differences in journey times (Crane, 2007; Crane and Takahashi, 2009; McQuaid and Chen, 2012).
Another branch of research involves developing regression models of journey time for travel demand and
behaviour applications. The regression models typically include sociodemographic characteristics such
as age, occupation, income, ethnicity, household characteristics, and residential zone, among others
(Krygsman et al., 2004; Fan and Machemehl, 2009; Mao et al., 2018).

Thus from our review of the literature, we find that analyses of travel characteristics at an individual
level have focusedmore on the descriptive characterisation of travel patterns and inference of route choice
behaviour.Work on quantifying the underlying drivers of transit journey times focuses more on analysing
the impact of passenger characteristics at a group rather than individual level. The analysis presented in
this paper aims to combine network and passenger-related factors in a unified modelling framework to
better inform operators of the drivers of journey time variance. Rather than representing passengers at a
group level, we make a new contribution to the literature by exploiting the disaggregate information
recorded by the London Underground AFC Oyster card system to analyse the impact of heterogeneity at
an individual passenger level along with operational and physical network characteristics.

3. Study area and data

Selected sections of three lines on the London Underground are included in the analysis, and these line
sections are located within the Transport for London (TfL) zones 1 and 2 in the Central London area. The
line sections are chosen to exclude considerations of route choice and interchangemovements. As a result,
trips within the study area satisfy the following conditions: (i) trips are single line trips that originate and
terminate on the same line and (ii) there are no other probable routes between the OD pair of interest under
normal operating conditions. Trips in both directions are analysed over the following topological extents:
the entire length of the Victoria line (16 stations), West Acton to Oxford Circus on the Central line
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(12 stations), and Bond Street to North Greenwich on the Jubilee line (10 stations). The analysis
boundaries are illustrated in Figure A1 in Appendix A.

Weekday trips (Monday–Friday) over a 7week period from October to December 2013 are analysed.
The TfL Oyster smart card system records tap-in and tap-out timestamps and locations at the origin and
destination stations for each trip. The TfL NetMIS system records train departure timestamps at each
station platform in the network. Additional data on the physical and operational characteristics of the
network are obtained through TfL infrastructure and operations database sources and station layout
drawings.

For the analysis of individual characteristics, multiple observations of an individual passenger
completing trips on the same OD route are required. Figure 1 shows the frequency distribution of the
number of trips an individual passenger undertakes on the same OD pair within the analysis boundaries.
As shown in the figure, the majority of trips are undertaken by passengers who travel infrequently, with
over half of trips undertaken by passengers who complete fewer than three repeat trips on the same OD
pair.

In the selection of the range of trip frequencies, there is a trade-off between ensuring that there are
enough observations per passenger for robust estimation of model parameters and the computational time
required to successfully generate the regression models. Using the “mgcv” package in R statistical
analysis software, the time taken for the semiparametric regression models to converge to a solution is in
the order of O npð Þ where n is the number of observations in the data set and p is the number of model
parameters to be estimated (Wood et al., 2015). In this analysis, each individual passenger is treated as a
unique parameter in the model. Therefore, including more passengers in the data set leads to longer
computational times.

Through a number of trials, we select a random sample of 8,000 passengers who complete 10 or more
repeat trips on the same OD route as the data set to be used in the analysis. The selection of a minimum
number of 10 trips enables enough repeat trips per passenger for regressionmodelling purposes, as well as
being representative of a range of passengers from those who travel less frequently to those who travel on
the same route everyday over the 35 day analysis period. The frequency distribution of the selected subset
of trips by the time of day is illustrated in Figure 2. The figure shows that the sample represents typical
weekday travel patterns where more passenger trips are undertaken during the morning and afternoon
peak periods, compared to the midday inter-peak.
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Figure 1. Distribution of the number of trips undertaken on the same origin–destination (OD) route per
individual passenger.
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4. Methods

The AFC data set reports total journey times from tap-in at the origin station to tap-out at the destination
station, and to enable the journey times to be split into parts, passengersmust first be allocated to trains. This
is achieved by merging the AFC trip data with the AVL train movement data and applying a probabilistic
train assignment algorithm based on the egress times associated with each feasible train itinerary. Full
details of the assignment algorithm are not presented here but are available in Singh et al. (2020).

Through assignment of all trips to unique train itineraries, the total journey times of each trip are
decomposed to obtain the access, on-train, and egress time components. Semiparametric regression
models are then developed with the components of journey time set as the response variables, as detailed
in the following sections.

4.1. General regression model framework

Semiparametric regression enables nonlinear relationships between the independent and dependent
variables to be modelled via basis functions in the form of penalised thin-plate regression splines. The
basis functions are fitted with a penalty to impose a trade-off between the degree to which the spline
functions match the data and the degree of smoothness. Further details of the underlying theory are given
inWood et al. (2015) andWood (2017).Model fitting is undertaken using penalised iteratively reweighted
least squares (PIRLS), and the model parameters are estimated via restricted maximum likelihood
(REML) optimisation (Wood et al., 2015; Wood, 2017).

A generalised additive mixed model (GAMM) framework is used, and a log–log form produces the
best performing models in terms of goodness-of-fit. Further discussion and comparisons of different
model forms are presented in Section 5.2. The resulting general form of the regression models is given in
Equation (1). To facilitate subsequent interpretation of the results, the exponential form of Equation (1) is
given in Equation (2).

log Y ijt

� �¼ αþ
XK
k¼1

f k log Xijt

� �� �þuiþ c jþ γtþ εijt (1)

Y ijt ¼ eα �X0β
ijt � ebijt � eui � ec j � eγt � eεijt (2)
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Figure 2. Distribution of sampled passenger trips by time of day.
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In Equations (1) and (2), Y ijt is the response calculated as
ycijt
ycfj

� �
, where ycijt is component c of journey

time evaluated for passenger i travelling on a given OD route, via given entry and exit stations on a
given line and direction. The network group effects specific to each unique OD route are collectively
denoted by j, t denotes the day of travel, and ycfj is the free flow time on the route. The model constant is
denoted by α, Xijt are the covariates modelled nonparametrically, and f k ,k¼ 1::K are the smooth basis
functions based on penalised thin-plate regression splines such that f k log Xijt

� �� �¼ β log X0
ijt

� �
þ

bijt,bijt �N 0,σ2b
� �

(Wood, 2017). The group-specific fixed effects for the categorical factors of OD
routes, stations, and line/directions are collectively represented by c j, ui are the passenger-specific
random effects, such that ui �N 0,σ2u

� �
, γt are the fixed effects indexing the different days t of travel,

and εijt is the random error term such that εijt �N 0,σ2ε
� �

.
The systematic component of the regression model comprises continuous covariates which capture

observed variation in the model, and categorical factors which capture unobserved variation between
groups of categories modelled as fixed and random effects. The continuous covariates are modelled via
nonparametric thin-plate regression splines generated from the data points; these smooth basis functions
also possess a random effects structure to accommodate uncertainty in the estimation of the smoothing
parameters, and this has implications for the interpretation of the model results as discussed further in
Section 5.4. In terms of the group-specific effects, the main distinction between the two forms is that fixed
effects allow correlation between group effects and other covariates, while random effects do not allow
correlation.

Fixed effects can be interpreted as constants specific to each level within a factor. A fixed effects
structure is more appropriate if the variable has been drawn from a finite population, where inferences
regarding the effect of the variable are confined to the categories of the variable included in the model
(Searle et al., 1992). The fixed effects structure is applied for stations, OD routes, line/directions, and days.

Conversely, a random effects structure is more appropriate in cases where the variable has been drawn
from a large or infinite population, and the observations used in themodel are considered a random sample
of the population (Searle et al., 1992). Under a random effects structure, the random effects coefficients
are considered to be independently and identically distributed with mean 0 and constant variance. As the
individual passengers in the analysis represent a sample of a large population of passengers in London,
passenger-specific effects are modelled as random effects. Validation of the fixed and random effects
designations is undertaken and documented in the discussion of model results in Section 5.2.

4.2. Dependent variables

The dependent variable in Equations (1) and (2) represents the journey time of each passenger trip at a
component level ycijt normalised by the average free flow time at a component level ycfj. The free flow time
represents the time taken to travel from the origin to the destination in uncongested conditions without
delays, and it is taken here as the 10th percentile of the aggregate journey time distribution for the OD pair
of interest over the 7-week analysis period. The 10th percentile value is chosen as it is not influenced by
outlying journey times recorded for the fastest individuals travelling in ideal situations, for example, a
passenger running through an empty station to board the train just as it arrives. The rationale behind the
choice of the free-flow normalised response variable is that the explanatory variables capture variation in
journey times relative to the base uncongested travel conditions on a route.

Journey times are split into four components and analysed in three distinct time periods and so a total
of 12 models are estimated. The components of journey time are defined as follows: (i) Access time is
the time between passenger tap-in at the origin station and the departure of the assigned train at the
origin station, (ii)On-train time is the time between train departure at the origin station and train departure
at the destination station, (iii) Egress time is the time from train departure at the destination station to
passenger tap-out at the destination station, and (iv) Total journey time is the total time from passenger
tap-in at the origin station to passenger tap-out at the destination station. The time of day is arranged into
three subcategories as follows: (i) AM peak—7 am to 10 am, (ii) Inter-peak—10 am to 4 pm, and (iii) PM
peak—4 pm to 7 pm.
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The descriptive statistics for the dependent variables corresponding to the 12 regression models are
summarised in Table 1. Across all time periods, on-train times are the least variable component, followed
by total journey times, while access and egress times are relatively more dispersed. Across all compo-
nents, mean journey times tend to be longest during the AM peak and PM peak periods compared to the
midday inter-peak. This coincides with the distribution of passenger entries by time of day as shown in
Figure 2, which indicates that more trips are undertaken in the peaks compared to the inter-peak.

To further contextualise the components of journey time, Figure 3 illustrates the shares of access, on-
train, and egress times as a proportion of total journey times. On average, on-train times represent the
greatest proportion of total journey times (64%), followed by access times (25%), and egress times (11%).

4.3. Model covariates

4.3.1. Group-specific effects
Individual-level effects - The effects of the passenger characteristics are captured at an individual card
level. The pseudonymised unique card identifiers are defined as categorical factors in the models, and
are modelled as random effects. The number of individual passengers by time period is summarised in
Table 2. Across all time periods, passengers make on average approximately 16 repeat trips on the same
OD route over the 35-day analysis period. Analysing the properties of the data set, 84% of trips in the AM
peak, 71% in the inter-peak, and 84% in the PM peak are made by adults holding Oyster cards with no
additional discounts applied. The remaining trips are associated with a mix of child, student, and senior
card holders.

Stations, OD routes, and line/direction effects - Rather than explicitly including different measures for
different physical characteristics, each station, OD route, and line/direction are defined as a fixed effects
categorical variable, which represents all physical characteristics and any other residual time-invariant
properties associated with the entity.

Days - Fixed effects at the level of days are included to account for changes in travel conditions across
the 35-day analysis period.

Table 1. Summary statistics of dependent variables.

Component Time period

Summary statistics

Minimum Maximum Mean Variance

Normalised access time AM peak 0.46 12.58 2.14 1.06

Inter-peak 0.46 14.54 2.11 0.89

PM peak 0.38 11.32 1.98 0.78

Normalised on-train time AM peak 0.34 4.94 1.10 0.01

Inter-peak 0.48 5.62 1.06 0.01

PM peak 0.27 9.22 1.11 0.02

Normalised egress time AM peak 0.24 22.29 2.57 2.84

Inter-peak 0.30 18.75 2.46 2.21

PM peak 0.31 20.29 2.66 2.40

Normalised total journey time AM peak 0.67 2.60 1.16 0.02

Inter-peak 0.67 4.00 1.14 0.03

PM peak 0.67 4.71 1.17 0.03
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The number of levels within each fixed effects category by model is given in Table 3.

4.3.2. Continuous covariates
Headway - Different service frequencies are in operation at different times of the day on different lines,
and this can lead to fluctuations in journey times. The headway for each trip is therefore included in the
models and is measured on a minutes scale.

Coefficient of variation (COV) of headway - The coefficient of variation of headway is included to
capture the variation in train frequencies which would otherwise skew the model results, particularly at
the transition periods between peak and off-peak times. The COV is calculated over the 15min period
corresponding to the time that the trip was undertaken at an OD route level.

Headway normalised by mean headway - The train headway associated with each passenger trip is
normalised by the mean value of headway over the corresponding period of 15min at an OD route level.
This covariate is included to specifically capture any potential effects of train bunching. In the train
movement data set, approximately 15% of all trips operate at headways shorter than the minimum
scheduled headway of approximately 1.67min, and this may indicate the occurrence of train bunching.

Train speed - Train speed is included as a covariate in the on-train time and total journey time models,
and it is calculated by taking the inter-station distance of each trip and dividing by the on-train time of the
trip. To maintain consistency in units with the other covariates in the models, speed is measured here in
kilometers per minute.

Passenger demand indicators - A set of covariates are included to represent passenger demand levels.
Indicators of passenger volumes are evaluated at three points as follows: platform loading at the origin
station, line loading, and platform loading at the destination station. Since trips byOyster card captured an

Table 2. Number of passengers per time period.

Time period Number of passengers Mean number of trips

AM peak 3828 16.3

Inter-peak 4744 15.7

PM peak 5066 15.6

Figure 3. Proportional share of journey time components relative to total journey time.
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estimated 70% share of all trips made on the network in 2013 (Uniman, 2009; Paul, 2010), the indicators
of passenger loading are calculated using the TfL Rolling Origin and Destination survey (RODs), which
provides count estimates of all trips on the network. The indicator for passenger volumes ρqpt for the
quantity of interest q (origin platform loading, line loading, destination platform loading) is defined as the
number of trips nqpt during a 15min time period p on day t, normalised by the average number of trips nqt
across all 15min periods over the day as per Equation (3).

ρqpt ¼
nqpt
nqt

: (3)

5. Results

5.1. Data properties

Testing of correlations between covariates is performed to determine the degree of linear association via
Pearson correlation testing and for the presence of nonparametric monotonic associations through
Spearman correlation testing. The correlation matrices show that the highest degree of correlation occurs
between the covariates representing headways and normalised headways. The Spearman correlation
coefficient has a maximum value of 0.76 and the Pearson correlation coefficient has a maximum value of
0.73. The maximum values of the correlation coefficients do not indicate strong correlations between the
covariates. Moreover, given the large volume of data available for model estimation, it is appropriate to
initially include all covariates in the models and conduct further model refinement based on covariate
significance values as required.

5.2. Model form

The results of alternate model forms are presented in Appendix B to justify the application of the
following: the GAMM formwith continuous covariates modelled with smooth splines and group-specific
effects modelled with mixed fixed and random effects, the log-log transformation, and the random effects
structure for the passenger-specific effects. The model goodness-of-fit statistics for four model forms are
presented in Tables B1–B4 in Appendix B corresponding to: (i) Final model form—all continuous
covariates modelled with nonparametric smooths, fixed network effects, and random passenger effects
(Table B1), (ii) All continuous covariates modelled with nonparametric smooths, fixed network effects,
and fixed passenger effects (Table B2), (iii) All continuous covariates modelled with nonparametric
smooths, fixed network effects, random passenger effects, and with no log transformations applied to any
variables (Table B3), and (iv) All continuous covariates modelled with a linear structure, and no group-
specific effects (Table B4). It should be noted that as a result of previous trials of model form, the
covariates capturing the network effects are modelled as fixed effects in the final model form. The
passenger-specific effects are found to be significant at a level of 99.9% in the access, egress, and total
journey time models; however, they are not significant in the on-train time models at a lower bound of
90% significance. This result is as expected; the network operational characteristics and physical route

Table 3. Summary of fixed effects levels.

Fixed effect AM peak Inter-peak PM peak

Entry station 33 33 33

Exit station 35 34 35

OD 261 328 327

Line/direction 6 6 6

Day 34 35 35

Abbreviation: OD, origin–destination.
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characteristics are the primary determinants of the variance in on-train times. Consequently, the results for
the on-train time models are not further presented.

The justification for the log-log transformation can be ascertained by comparing the results for the final
model form (Table B1) and the equivalent model form with no log transformations applied (Table B3).
Although the models with no log transformations perform slightly better in terms of the indicators that
reflect how well the models represent variation in the data (R2

adj: and Dexplained), the remaining three
indicators for overall model performance (AIC, BIC, REML) perform worse than the log-transformed
form. As such, it can be stated that the log-transformedmodels provide a better overall fit to the data. From
a theoretical perspective, the log-transformation applied to the response variable of journey times also
corresponds to the literature on transit journey time distributional form,which states that journey times are
typically distributed following a right-skewed form (Fosgereau and Fukuda, 2012; Taylor and Susilawati,
2012; Rahman et al., 2018).

The verification of the GAMM structure is assessed by comparing the final form, which consists of
continuous covariates modelled with nonparametric smooths andmixed fixed and random group-specific
effects (Table B1), with the base pooled linear model form in Table B4, where the continuous covariates
aremodelled with a linear form and there are no group-specific effects. The base pooled linearmodel form
tends to perform better than the GAMM structure when considering the BIC indicator which penalises
more heavily for model complexity. However, across all other goodness-of-fit criteria, the GAMM form
outperforms the base linear model form. As such, we adopt the GAMM form as the final form for all
models.

Comparing the random and fixed effects structures for the passenger effects, Tables B1 and B2 show
that the performance of the two forms is similar. Across all models, the R2

adj: indicator reflects equal
performance for the two forms. The Dexplained indicates that the fixed effects form performs better, while
the AIC and BIC indicate that the random effects structure performs better across all models. The REML
scores are mixed, indicating that the fixed effects structure is more appropriate for the egress time models
and the inter-peak access time model, and that the random effects structure is more appropriate for the
remaining models. Overall, the results show that the majority of models perform better with a random
effects structure. Coupledwith the theoretical basis for the application of a random effects structure for the
passenger effects, this form is adopted for the final models.

5.3. Covariate significance and mean elasticities

The passenger effects are significant at a level of 99.9% in all access, egress, and total journey time
models. The group-specific fixed effects for days, stations, OD routes, and line/direction are also
significant in all models; however, the significance levels vary across the groups from a minimum level
of significance≥90% to amaximum level of significance≥99.9%. The passenger effects and fixed effects
representing network characteristics are discussed further in Section 5.4.

The significance and mean elasticities of the continuous covariates are given in Table 4. Overall, the
models generate plausible results in terms of the relative magnitudes and directions of elasticity. For the
access time models across all time periods, headways are the most influential covariate, with a positive
mean elasticity representing longer platformwait times as headways increase. The covariates representing
passenger demand levels are the second most influential set of covariates, while the covariates represent-
ing headway regularity have a relatively low degree of impact on access times.

Compared to the magnitude of elasticities of covariates in the access and total journey timemodels, the
continuous covariates have a relatively lower degree of influence on egress times. In the AMand PMpeak
egress time models, the passenger loading covariates are the most influential, while the headway
covariates have a relatively minimal effect. In the inter-peak egress time model, all covariates with the
exception of headway are insignificant at a minimum level of 90%, although the magnitude of elasticity
suggests that headways also have a relatively minimal impact on egress times. In the total journey time
models, train speed is the most influential covariate, with the plausible result of a negative elasticity.
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Headway is the second most influential covariate, followed by covariates representing passenger demand
levels. The covariates representing headway regularity have a relatively minimal impact.

5.4. Passenger effects

There are two possible interpretations of the passenger-specific random effects. In the first case, we use the
variance component structure of themodels to quantify the impact of intra-passenger heterogeneity on the
variance of normalised journey times. In the second case, we calculate the realised values of the passenger
effects and quantify the predicted values of normalised journey time specific to each passenger; this
represents heterogeneity across passengers. Each of these interpretations is considered in turn in the
following subsections.

Table 4. Results for continuous covariates.

Time period Covariate

Access time Egress time Total journey time

Significance Elasticity Significance Elasticity Significance Elasticity

AM peak Headway *** 0.28 – *** 0.07

COV headway – * 0.01 * 3E�3

Normalised headway *** �0.05 – *** �0.02

Speed *** �0.61

Number of entries *** 0.03 ** 4E�3

Number of exits *** 0.04 *** 0.02

Line loading *** 0.12 ** �0.02 *** 0.04

Inter-peak Headway *** 0.30 . 5E�3 *** 0.08

COV headway *** 0.02 – *** 0.01

Normalised headway * �4E�4 – * �2E�3

Speed *** �0.58

Number of entries . 0.02 * 0.01

Number of exits – –

Line loading *** 5E�3 – * 0.01

PM peak Headway *** 0.24 *** 0.03 *** 0.06

COV headway *** 0.04 – *** 0.01

Normalised headway *** �0.01 * �0.01 *** �0.01

Speed *** �0.62

Number of entries *** 0.09 *** 0.02

Number of exits ** 0.04 * 0.01

Line loading *** 0.07 *** 0.04 *** 0.03

Abbreviations: COV, Coefficient of variation.
Significance notation: p-values 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1
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5.4.1. As variance components
The first form of interpretation involves considering the random passenger effects as variance compo-
nents, and quantifying the degree to which intra-passenger heterogeneity influences variance in normal-
ised journey times. The total variance in the dependent variable is simply the sum of the variance
components for the smooth covariates σ2b, the passenger random effects σ2u, and the random error term σ2ε
as per Equation (4). The proportion of variance captured by the passenger effects pσ2u can be quantified as
per Equation (5).

σ2Y ¼ σ2bþσ2uþσ2ε (4)

pσ2u ¼
σ2u

σ2bþσ2uþσ2ε
(5)

The proportion of variance captured by the smooth terms and the proportion of variance attributed
to random error can be quantified in a similar manner. The variance components of each model are
summarised in Table 5, and the proportion of variance represented by the passenger effects is illustrated

Table 5. Summary of variance components as proportion of total model variance.

Time period Variance components Access time Egress time Total journey time

AM peak Passenger effects 4.7% 16.2% 1.0%

Headway 30.2% 0.0% 5.2%

Headway regularity 2.9% 0.0% 0.6%

Passenger loading 35.1% 21.6% 1.6%

Train speed 87.7%

Network effects total 68.2% 21.6% 95.0%

Random error 27.0% 62.3% 4.0%

Inter-peak Passenger effects 5.5% 24.0% 0.2%

Headway 24.4% 4.9% 0.7%

Headway regularity 5.2% 2.1% 0.1%

Passenger loading 26.9% 0.0% 0.1%

Train speed 98.0%

Network effects total 56.5% 7.1% 98.9%

Random error 38.0% 68.9% 0.9%

PM peak Passenger effects 8.4% 16.1% 1.2%

Headway 26.8% 3.7% 9.8%

Headway regularity 16.3% 3.4% 2.0%

Passenger loading 11.3% 21.4% 2.1%

Train speed 80.6%

Network effects total 54.3% 28.6% 94.5%

Random error 37.3% 55.3% 4.3%
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in Figure 4. In this interpretation, the continuous covariates with smooth forms represent dynamic
operational and demand characteristics of the network. The results are presented in categories
of covariates as follows: headway, measures of headway regularity (combination of the COV headway
and normalised headway covariates), passenger loading (combination of platform and line loading
covariates), and train speed.

The passenger effects capture the greatest proportion of variance in the egress time models, ranging
from 16.1–24.0% of total variance across the different time periods. For the access time models, variance
in passenger effects represents 4.7–8.4% of total variance. Passenger effects capture the least degree of
variance in the total journey time models ranging from 0.2–1.2% of total variance.

When assessing the influence of the time of day, the results are mixed. For the egress time models, the
passenger effects capture the greatest degree of variance in the inter-peak period at 24.0% of total variance
in egress times. In the AM and PM peak, the proportion drops to approximately 16%. For the access time
models, passenger effects represent similar proportions of variance in the AM peak (4.7%) and inter-peak
periods (5.5%), and a relatively larger proportion of variance (8.4%) is captured in the PM peak. For the
total journey timemodels, passenger effects capture the greatest degree of variance in the PMpeak (1.2%),
followed by the AM peak (1.0%), and inter-peak (0.2%).

The proportion of variance captured by passenger-level heterogeneity can be compared with the
proportion of variance captured by the dynamic network effects. Figure 5 provides graphical illustrations
of the comparisons. When considering journey times from tap-in to tap-out as a whole, the network
characteristics capture the majority of variance ranging from 94.5–98.9%, while passenger heterogeneity
represents a minimal 0.2–1.2%. Within the network effects category, train speeds (80.6–98.0%) capture
the majority of variance, followed by train headways (0.7–9.8%), and passenger loading (0.1–2.1%). The
results align with the elasticities of journey time previously presented, which indicate that train speed has
the greatest influence on the magnitude of journey times with an average elasticity of�0.6, followed by
train headways with an average elasticity of 0.07, and passenger loading with a combined average
elasticity of 0.04. From the results, we can therefore conclude that operational characteristics represent
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the majority of variance in total journey times, and train speeds and headways have the greatest influence
on the magnitude of journey times.

For the access time models, network characteristics again represent the greatest proportion of variance
ranging from 54.3–68.2% across all time periods, while passenger effects represent 4.7–8.4%. Of the
network effects, headways (24.4–30.2%) and passenger loading (11.3–35.1%) represent the majority of
variance. Unlike the access and total journey time models, the random error component represents the
greatest degree of variance in egress times across all time periods, ranging from 55.3–68.9%. Of the
systematic components, passenger effects are more influential, and network characteristics represent a
lower proportion of variance compared to the access and total journey time models. In the inter-peak
egress time model, passenger effects represent the greatest degree of variance at 24.0% while network
effects, primarily headway, represent 7.1%. In the AM and PM peak models, network effects represent
a greater proportion of variance at 21.6% and 28.6%, respectively, while passenger effects represent
approximately 16% of variance. Of the network effects, passenger loading represents the greatest degree
of variance (approximately 21%).

We can conclude that when considering variance in total journey times, train speeds and headways
represent the majority of variance, while passenger effects represent a minimal proportion of variance, on
average 1%. When analysing the access and egress time components in isolation, passenger effects are
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Figure 5. Comparison of variance components per model as proportion of total model variance.
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more influential. In the access time models, passenger effects represent on average 6% of variance in
access times compared to an average 60%of variance represented by network characteristics. In the egress
time models, passenger effects represent a similar or greater degree of variance as the dynamic network
characteristics; averaged across all time periods, passenger effects and network effects equally represent
19% of variance.

5.4.2. As individual-specific realised values
The second interpretation involves treating the passenger effects as random intercepts. The model is
interpreted in relation to the prediction of the realised value of the random effect for each individual
passenger, which can be expressed as the best linear unbiased predictor:

E log Y ijt

� �j log X0
ijt

� �
,ui,c j,γt

h i
,

where log Y ijt

� �
∣ log X0

ijt

� �
,ui,c j,γt �N αþβ log X0

ijt

� �
þbijtþuiþ c jþ γt,σ

2
ε þσ2b

� �
:

(6)

The realised values of passenger-specific effects represent inter-passenger effects. As per Equation (2),
a passenger effect of magnitude ui log-units represents a multiplicative increase of eui units, which can be
interpreted as an eui �1ð Þ�100% increase (or reduction) in the predicted values of journey times relative
to free flow times. The same reasoning applies for the fixed effects, which capture group-specific effects
related to days, stations, routes, and lines. The summary statistics for the realised values of the passenger
effects and fixed effects are provided in Table 6, and kernel density distributions of the realised values of
the passenger effects are illustrated in Figure 6.

Across all time periods, the passenger-specific effects for the egress time models range from a
minimum effect of �0.65 log-units for the fastest passenger to a maximum effect of 0.90 log-units for
the slowest passenger; this corresponds to a minimum 48% reduction to a maximum 145% increase in
predicted egress times relative to free flow times. For the access time models, the individual effects range
from a 37% reduction to a 85% increase in predicted access times, and for the total journey time models,
the effects range from a 23% reduction to a 43% increase in predicted total journey times.

In terms of the influence of the time of day, the results are mixed. For access times, the range and
variance of passenger effects are greatest during the PM peak followed by the AM peak and inter-peak,
indicating that passenger effects have a greater influence on predicted access times during peak periods
compared to the midday inter-peak. In the egress time models, the variance of passenger effects is similar
across the time periods, while the range of passenger effects is greater during the PM peak and inter-peak
compared to the AM peak. For the total journey time models, the range and variance of passenger effects
are similar across the three time periods; the passenger effects cover the same magnitude of range during
the AM peak and inter-peak, and a slightly narrower range during the PM peak.

The fixed effects capturing days and static network characteristics influence journey times at the same
scale as the passenger-specific effects, i.e., at the scale of the predicted response. The passenger effects can
be compared with the network fixed effects to give a general indication of whether passenger-specific or
static network characteristics are more influential on predicted values of journey times (refer to Table 6
and Figure 7). In the total journey time models, the route and line/direction effects are generally more
influential than the passenger effects, and day-specific effects are least influential. In the AM peak, when
comparing the range of effects from the minimum to maximum outlying values, route-specific effects are
the most influential, ranging from a minimum 25% reduction in journey times to a maximum 52%
increase, followed by the passenger-specific effects ranging from a 14% reduction to a 24% increase. In
the inter-peak and PMpeakmodels, route effects are themost influential, ranging from a 34% reduction to
a 59% increase in journey times, followed by line/direction effects ranging from a minimum no effect on
journey times to a 57% increase, and passenger effects ranging from a 14% reduction to a 28% increase.
When considering the variance and interquartile range of the effects, the route and line/direction effects
are more influential compared to the middle 50% range of passenger effects.
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Table 6. Summary of realised values of passenger effects and fixed effects (log-units).

Time period Covariate

Access times Egress times Total journey times

Minimum Maximum Mean Variance Minimum Maximum Mean Variance Minimum Maximum Mean Variance

AM peak Passenger �0.44 0.54 0.00 1E�2 �0.65 0.71 0.00 2E�2 �0.15 0.22 0.00 1E�3

Entry station 0.00 0.78 0.31 5E�2

Exit station �0.95 0.76 �0.47 2E�1

OD �0.29 0.42 0.07 3E�2

Line/direction �0.57 0.00 �0.36 1E�1 0.00 0.22 0.13 1E�2 0.00 0.16 0.08 1E�2

Day �0.12 0.00 �0.08 5E�4 0.00 0.15 0.11 1E�3 �0.03 0.00 �0.02 4E�5

Inter-peak Passenger �0.37 0.54 0.00 7E�3 �0.62 0.87 0.00 3E�2 �0.13 0.25 0.00 8E�4

Entry station 0.00 1.28 0.41 8E�2

Exit station �0.81 0.85 �0.32 2E�1

OD �0.32 0.46 0.01 4E�2

Line/direction �0.22 0.21 0.00 3E�2 �0.14 0.20 0.03 2E�2 0.00 0.45 0.25 3E�2

Day �0.08 0.00 �0.06 4E�4 0.00 0.20 0.13 3E�3 0.00 0.02 0.01 4E�5

PM peak Passenger �0.46 0.61 0.00 1E�2 �0.64 0.90 0.00 3E�2 �0.16 0.22 0.00 1E�3

Entry station �0.34 1.00 0.28 7E�2

Exit station �1.00 0.59 �0.30 2E�1

OD �0.41 0.33 �0.14 3E�2

Line/direction �0.22 0.10 �0.06 2E�2 �0.44 0.00 �0.28 6E�2 0.00 0.38 0.21 3E�2

Day �0.04 0.10 0.04 2E�3 0.00 0.13 0.08 7E�4 0.00 0.05 0.02 8E�5

Abbreviation: OD, origin–destination.
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In the access time models, when considering the range of effects from minimum to maximum values,
station effects are the most influential group effect, followed by passenger effects, line/direction effects,
and day effects. Station effects range from a minimum 29% reduction to a maximum 259% increase in
access times, while passenger effects range from a minimum 37% reduction to a maximum 85% increase
in access times. Discounting outliers and considering the interquartile ranges and variance of group
effects, the line/direction effects and station effects are more influential when compared to the passenger
effects for the middle 50% range of passengers.

When considering the range of effects for the egress time models, passenger effects are more
influential, and have a similar or greater degree of influence than the station effects. In the AM and
inter-peak, station effects range from a minimum reduction of 61% to a maximum increase of 134% in
egress times, and passenger effects range from a minimum reduction of 48% to a maximum increase of
139% in egress times. In the PM peak, outlying passenger effects are more influential, ranging from a
minimum reduction of 47% to a maximum increase of 145%while station effects range from a minimum
reduction of 63% to a maximum increase of 80% in egress times. Considering variance and the
interquartile ranges, the middle 50% of passenger effects are less influential than station effects but have
a similar degree of influence to the line/direction effects.

0

2

4

Realised value of passenger effect (log−units)

D
en

si
ty

(a) Access times

0

1

2

3

Realised value of passenger effect (log−units)

D
en

si
ty

(b) Egress times

−0.50 −0.25 0.00 0.25 0.50

Time period AM peak Inter−peak PM peak Time period AM peak Inter−peak PM peak

−0.5 0.0 0.5

0

5

10

15

Time period AM peak Inter−peak PM peak

−0.1 0.0 0.1 0.2
Realised value of passenger effect (log−units)

D
en

si
ty

(c) Total journey times

Figure 6. Distribution of realized values of passenger effects by model.
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In summary, when assessing the predicted values of journey time at a group-specific level, we can
conclude that station and route-specific characteristics tend to have the greatest degree of influence on the
magnitude of total journey times, followed by line/direction effects, passenger effects, and day effects. In
the access and egress time models, passenger effects are relatively more influential. In the access time
models, station effects are most influential, followed by passenger effects, which have a similar degree of
influence, line/direction effects, and day effects. In the egress time models, the passenger-specific effects
are equally or more influential than the station and line-specific characteristics.

6. Conclusions

In this paper, we seek to derive amore accurate characterisation of the underlying drivers of transit journey
time variance, with a specific focus on separating the impact of passenger-specific effects from opera-
tional and physical characteristics of the network. Three lines on the London Underground metro system
are analysed as a case study, and a random sample of passengers who undertake 10 or more repeat trips on
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Figure 7. Comparison of realized value of passenger effects and other network fixed effects by model.
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the same OD route are selected. Twelve semiparametric regression models are generated; one for each
component of journey time, namely access, on-train, and egress times, and total journey times over the
AM peak, inter-peak, and PM peak.

The passenger-specific effects are statistically significant in the access, egress, and total journey time
models across all time periods, however, the effects are not significant in the on-train time models. Two
forms of interpretation are presented to assess the impact of passenger heterogeneity on journey times as
follows: (i) the first interpretation involves using the variance component structure of the models to
quantify the proportion of variance in journey times captured by intra-passenger heterogeneity, and (ii) the
second interpretation involves extracting the realised values of the effects and treating these as passenger-
specific intercepts to quantify inter-passenger effects on predicted journey times. The first interpretation
relates to the comparison of passenger-specific effects with dynamic operational and demand character-
istics, while the second interpretation relates to comparisons with physical static characteristics of the
network.

When considering total passenger journey times from tap-in to tap-out, we find that dynamic
operational and demand characteristics capture on average 96% of journey time variance, while passen-
ger-level heterogeneity accounts for approximately 1%. Of the dynamic factors, train speeds and
headways have the greatest influence on journey times. Comparing group-specific effects, we find that
the fixed effects representing physical OD route characteristics are more influential than the passenger-
specific effects. However, when taking into account passenger perceptions of travel, within the typically
twice as onerous out-of-vehicle phases, passenger-level heterogeneity is found to be more influential. In
terms of variance components, passenger-level heterogeneity represents on average 6% and 19% of
variance, and network characteristics represent on average 60% and 19% of variance in the access and
egress time models, respectively. As realised values, passenger-specific effects have a similar or greater
degree of influence as the static station-specific characteristics. The results therefore show that while
network-specific characteristics are the primary drivers of variance in journey times in absolute terms, a
nontrivial proportion of passenger-perceived variance would be influenced by passenger-specific travel
characteristics.

The estimates of passenger heterogeneity obtained in this analysis have potential applications related to
improving the understanding of passenger movements within stations. The lower degree of passenger
heterogeneity in the access models could arise from the walking speed and platform positioning
constraints imposed on passengers to board the train as it arrives, while no such constraints are present
in the egress phase. The result could also reflect a greater degree of way-finding complexity in terms of
layout and/or station pedestrian flow control in the exiting direction at the destination stations. Second
stage regression modelling of station characteristics could be undertaken to disentangle station complex-
ity from inherent passenger characteristics.

A number of other future research areas could also be explored. The analysis could be applied at amore
disaggregate level to quantify passenger heterogeneity at a station or route-specific level. The degree of
passenger heterogeneity across the stations or routes could be compared, and those exhibiting a greater
degree of heterogeneity could potentially indicate a greater degree of way-finding complexity. Second
stage modelling of disaggregate station characteristics could then disentangle inherent passenger char-
acteristics from operational and physical station characteristics, and guide operators in identifying station
elements that require potential improvements. In terms of the type of passengers analysed in this study, the
models focus on the behaviour of a sample of passengers who undertake 10 or more trips only. Awider
range of passengers could be sampled to obtain a more comprehensive set of results across different
passenger demographics. Finally, the models could be scaled up to a network level, and with additional
data on different networks, comparisons of the impact of passenger heterogeneity across networks could
be made.
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Appendices

A. Study Area

Figure A1. Study area, London Underground (adapted from Transport for London, 2014).
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B. Regression Modelling Results

Table B1. Model form 1 goodness-of-fit statistics—final model form with all continuous covariates modelled with nonparametric
smooths, fixed network effects, and random passenger effects.

Time period Indicator Access time Egress time Total journey time

AM peak n 40,901 40,901 40,901

R2
adj: 0.34 0.54 0.50

Dexplained 0.38 0.57 0.54

AIC 3.59E4 3.93E4 �7.92E4

BIC 5.58E4 6.17E4 �5.62E4

REML 1.89E4 2.09E4 �3.78E4

Inter-peak n 30,399 30,399 30,399

R2
adj: 0.29 0.46 0.49

Dexplained 0.33 0.51 0.53

AIC 2.60E4 3.09E4 �5.43E4

BIC 4.22E4 5.38E4 �3.38E4

REML 1.37E4 1.67E4 �2.56E4

PM peak n 37,199 37,199 37,199

R2
adj: 0.34 0.44 0.57

Dexplained 0.39 0.49 0.61

AIC 2.87E4 3.91E4 �7.23E4

BIC 5.22E4 6.48E4 �4.59E4

REML 1.54E4 2.09E4 �3.42E4

Abbreviations: AIC, Akaike Information Criterion; Dexplained , deviance explained; n, number of observations; R2
adj: , adjusted coefficient of determination;

REML, restricted maximum likelihood.
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Table B2. Model form 2 goodness-of-fit statistics—all continuous covariates modelled with nonparametric smooths, fixed network
effects, and fixed passenger effects.

Time period Indicator Access time Egress time Total journey time

AM peak n 40,901 40,901 40,901

R2
adj: 0.34 0.54 0.50

Dexplained 0.40 0.58 0.55

AIC 3.74E4 4.05E4 �7.81E4

BIC 7.10E4 7.40E4 �4.41E4

REML 1.94E4 2.08E4 �3.28E4

Inter-peak n 30,399 30,399 30,399

R2
adj: 0.29 0.47 0.49

Dexplained 0.40 0.55 0.57

AIC 2.85E4 3.25E4 �5.21E4

BIC 6.87E4 7.27E4 �1.10E4

REML 1.36E4 1.53E4 �2.02E4

PM peak n 37,199 37,199 37,199

R2
adj: 0.34 0.44 0.57

Dexplained 0.43 0.52 0.63

AIC 3.07E4 4.10E4 �7.05E4

BIC 7.46E4 8.49E4 �2.60E4

REML 1.54E4 1.99E4 �2.81E4

Abbreviations: AIC, Akaike Information Criterion; Dexplained , deviance explained; n, number of observations; R2
adj: , adjusted coefficient of determination;

REML, restricted maximum likelihood.
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Table B3. Model form 3 goodness-of-fit statistics—Equivalent to final model form but no log-transformation.

Time period Indicator Access time Egress time Total journey time

AM peak n 40,901 40,901 40,901

R2
adj: 0.37 0.59 0.51

Dexplained 0.40 0.62 0.55

AIC 1.02E5 1.25E5 �6.29E4

BIC 1.22E5 1.48E5 �4.00E4

REML 5.18E4 6.38E4 �2.97E4

Inter-peak n 30,399 30,399 30,399

R2
adj: 0.32 0.52 0.51

Dexplained 0.37 0.57 0.55

AIC 7.27E4 9.07E4 �4.24E4

BIC 8.92E4 1.15E5 �2.23E4

REML 3.70E4 4.67E4 �1.97E4

PM peak n 37,199 37,199 37,199

R2
adj: 0.36 0.48 0.59

Dexplained 0.41 0.52 0.62

AIC 8.21E4 1.17E5 �5.49E4

BIC 1.06E5 1.44E5 �2.94E4

REML 4.21E4 5.99E4 �2.57E4

Abbreviations: AIC, Akaike Information Criterion; Dexplained , deviance explained; n, number of observations; R2
adj: , adjusted coefficient of determination;

REML, restricted maximum likelihood.
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Table B4. Model form 4 goodness-of-fit statistics—Linear continuous covariates, no group-specific effects.

Time period Indicator Access time Egress time Total journey time

AM peak n 40,901 40,901 40,901

R2
adj: 0.06 0.06 0.04

Dexplained 0.06 0.06 0.04

AIC 4.79E4 6.59E4 �5.48E4

BIC 4.79E4 6.59E4 �5.47E4

REML 2.39E4 3.30E4 �2.74E4

Inter-peak n 30,399 30,399 30,399

R2
adj: 0.06 0.02 0.05

Dexplained 0.06 0.02 0.05

AIC 3.25E4 4.67E4 �3.77E4

BIC 3.26E4 4.67E4 �3.77E4

REML 1.63E4 2.34E4 �1.88E4

PM peak n 37,199 37,199 37,199

R2
adj: 0.06 0.02 0.10

Dexplained 0.06 0.02 0.10

AIC 3.92E4 5.69E4 �4.78E4

BIC 3.93E4 5.70E4 �4.77E4

REML 1.96E4 2.85E4 �2.39E4

Abbreviations: AIC, Akaike Information Criterion; Dexplained , deviance explained; n, number of observations; R2
adj: , adjusted coefficient of determination;

REML, restricted maximum likelihood.
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