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Abstract

We sketch the history of spectral ranking—a general umbrella name for techniques that apply

the theory of linear maps (in particular, eigenvalues and eigenvectors) to matrices that do

not represent geometric transformations, but rather some kind of relationship between entities.

Albeit recently made famous by the ample press coverage of Google’s PageRank algorithm,

spectral ranking was devised more than 60 years ago, almost exactly in the same terms, and

has been studied in psychology, social sciences, bibliometrics, economy, and choice theory.

We describe the contribution given by previous scholars in precise and modern mathematical

terms: Along the way, we show how to express in a general way damped rankings, such as

Katz’s index, as dominant eigenvectors of perturbed matrices, and then use results on the

Drazin inverse to go back to the dominant eigenvectors by a limit process. The result suggests

a regularized definition of spectral ranking that yields for a general matrix a unique vector

depending on a boundary condition.

Keywords: ranking, centrality, eigenvectors

1 Introduction

From a mathematical viewpoint, a matrix M represents a linear transformation

between two linear spaces. It is just one of the possible representations of the map—

it depends on a choice for the bases of the source and target space. Nonetheless,

matrices arise all the time in many fields outside mathematics, often because they

can be used to represent (weighted) binary relations. At that point, one can apply the

full machinery of linear algebra and see what happens. The most famous example of

this kind is probably spectral graph theory, which provides bounds for several graph

features using eigenvalues of adjacency matrices.

When a square matrix represents relationships between entities, such as endorse-

ment among persons, teams defeating other teams, friends or followers on social

networks, and so on, several different eigenvectors can be obtained from the original

matrix, giving rise to different kinds of spectral rankings. Spectral rankings have

been computed under different names since the 50s in psychology, social sciences,

bibliometrics, economy, and choice theory.

This paper describes the early history of spectral ranking, highlighting funda-

mental contributions. Moreover, by describing those contributions in modern terms,

we can actually describe new connections between them and show that all rankings

depending on a damping or attenuation factor, such as Katz’s index, are just dominant

eigenvectors of perturbed matrices. We then go back to the eigenvectors of the

original matrix by a limiting process, obtaining a regularized definition of spectral
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ranking that yields for a general matrix a unique vector depending on a boundary

condition.

2 Spectral ranking 101

Let us start with a square matrix M on the reals. We will not make any assumption

on M. We imagine that the indices of rows and columns actually correspond to some

entity, and that each value mij represents some form of endorsement or approval of

entity j from entity i. Endorsement can be negative, with the obvious meaning.

Many centrality indices based on simple summations performed on the row or

columns of this matrix were common in psychometry and sociometry. For instance, if

the matrix contains just zeroes and ones meaning “don’t like” or “like,” respectively,

the sum of column j will tell us how many entities like j. But, clearly, we are not

making much progress.

The first fundamental step toward spectral ranking was made by Seeley (1949):

He noted that these indices were not really meaningful because they did not take

into consideration that it is important being liked by someone that is in turn

being liked a lot, and so on. In other words, an index of importance, centrality, or

authoritativeness, should be defined recursively1 so that my index is equal to the

weighted sum of the indices of the entities that endorse me. In matrix notation,2

r = rM (1)

Of course, this is not always possible. Seeley, however, considers a non-negative

matrix without null rows and normalizes its rows so that they have unit �1 norm

(e.g., you divide each entry by its row sum); his rows have always non-zero entries,

so this is always possible, and Equation (1) has a solution, because M1T = 1T , so 1

is an eigenvalue of M, and its left eigenvector(s) provide solutions to Equation (1).

Uniqueness is a more complicated issue which Seeley does not discuss and which can

be easily analyzed using the well-known Perron–Frobenius theory of non-negative

matrices, which also shows that 1 is the spectral radius, so r is a dominant3

eigenvector, and that there are positive solutions.4

Our discussion can be formally restated for right eigenvectors, but of course

Seeley’s motivation fails. However, Teh-Hsing Wei in his Ph.D. dissertation (1952)

argues about ranking (sport) teams, reaching the following, dual conclusions.5 Given

a matrix M expressing how much team i is better than team j (e.g., 1 if i beats j,

1/2 for ties, 0 if i loses against j, with coherent values in symmetric positions), Wei

argues that an initial score6 of 1 given to all teams, leading to an ex aequo ranking,

1 The word “recursively,” here, is used in a generalized but slightly incorrect sense which is common
in the literature, and for which the word “impredicatively” would be more appropriate, but probably
obscure to most readers.

2 We use row vectors.
3 A dominant eigenvalue is an eigenvalue with largest modulus (i.e., the spectral radius). An eigenvector

associated with the dominant eigenvalue is called a dominant eigenvector. In most practical cases of
spectral ranking, there is just one strictly dominant eigenvalue.

4 Actually, Seeley exposes the entire matter in terms of linear equations. Matrix calculus is used only
for solving a linear system by Cramer’s rule.

5 Kendall (1955) discusses Wei’s (unpublished) findings at length.
6 Here, we take care of distinguishing the scores given to the teams from the ranking obtained sorting

the teams by score.
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can be significantly improved as follows: Each team gets a new ranking obtained by

adding the scores of the teams that it defeated, and half the scores of the team with

whom there was a draw. There is thus a new set of scores and a new ranking, and

so on. In other words, Wei suggests looking at the rank induced by the vector

lim
k→∞

Mk1T

‖Mk1T‖
Wei uses Perron–Frobenius theory to show that under suitable hypotheses this rank-

ing stabilizes at some point to the one induced by the dominant right eigenvector.

In modern terms, given a matrix M expressing how much each team is better than

another, the right dominant eigenvector provides the correct ranking of all teams.7

Wei’s ranking is interesting in its own for three reasons: First, the motivation

is clearly different; second, it clearly shows that using the dominant eigenvector

(whatever the dominant eigenvalue) was already an established technique in the

50s; third, in this kind of ranking, the relevant convergence is in rank (the actual

components of the vector are immaterial).

Few years later, in his celebrated book on graph theory Berge quotes Wei’s thesis

and makes the remark that the (right) eigenvector approach can be applied to

any directed graph. As an example, he considers sociograms, where nodes represent

individuals and arcs represent influence (Berge, 1958).8

Getting back to left eigenvectors, the works of Seeley, Wei, and Berge suggest

that we consider matrices M with a real and positive dominant eigenvalue λ and its

eigenvectors, that is, vectors r such that

λr = rM (2)

If λ is complex, r cannot be real, and the lack of an ordering that is compatible

with the field structure makes complex numbers a bad candidate for ranking.

In general, a (left)9 spectral ranking associated with M is a dominant (left)

eigenvector. If the eigenspace has dimension one, we can speak of the spectral

ranking associated with M. Note that in principle such a ranking is defined up to

a constant: This is not a problem if all coordinates of r have the same sign, but

introduces an ambiguity otherwise.

3 Damping

We will now start from a completely different viewpoint. If the matrix M is a

zero/one matrix, the entry i, j of Mk contains the number of directed path from

i to j in the directed graph defined by M in the obvious way. A reasonable way

of measuring the importance of j could be measuring the number of paths going

7 This technique is known in the literature about ranking of sport teams as “Perron ranking” or
“Kendall–Wei ranking.”

8 Indeed, if we had to assign a name to the dominant eigenvector it should be “Wei–Berge index.”
9 The distinction between left and right spectral ranking is in principle, of course, useless, as the left

spectral ranking of M is the right spectral ranking of MT . Nonetheless, the kind of motivations
leading to the two kind of rankings are quite different, and we feel that it is useful to keep around
the distinction: If the matrix represents endorsement, left spectral ranking is the correct choice; if
the matrix represents influence or “better-than” relationships, right spectral ranking should be used
instead.
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into j, as they represent recursive endorsements.10 Unfortunately, trying the obvious,

that is,

1(1 + M + M2 + M3 + · · · ) = 1

∞∑
k=0

Mk

will not work, as formally the above equation is correct, but convergence is not

guaranteed. Convergence is guaranteed, however, if M has spectral radius smaller

than one, that is, |λ0| < 1. It is thus tempting to introduce an attenuation or damping

factor that makes things work:

1(1 + αM + α2M2 + α3M3 + · · · ) = 1

∞∑
k=0

(αM)k (3)

Now, we are actually working with αM, which has spectral radius smaller than one

as long as α < 1/|λ0| (e.g., if M is (sub)stochastic any α < 1 will do the job). This

index was proposed by Katz (1953).11 He notes that

1

∞∑
k=0

(αM)k = 1(1 − αM)−1

which means that his index can be computed solving the linear system

x(1 − αM) = 1

4 Boundary conditions

There is still an important ingredient we are missing: some initial preference, or

boundary condition, as Hubbell (1965) calls it. Hubbell’s interest is clique detection,

an early study of spectral graph clustering.12 Hubbell is inspired by the works of Luce,

Perry, and Festinger on clique identification (Luce & Perry, 1949; Festinger, 1949);

they use fixed powers of the adjacency matrix to estimate the similarity of nodes,

and Hubbell proposes to sum up all powers of a matrix when such a sum exists.

Then, in analogy with Leontief’s input–output economic model,13 which represents

the relationships between input and output of goods in each industry (Leontief,

10 Indeed, taking the limit of the vector giving for each node the number incoming paths of length
k (somehow normalized) when k → ∞ leads to the definition of spectral ranking, as the process
is equivalent to finding the dominant left eigenvector using the power method. This was observed
already by Berge (1958).

11 We must note that actually Katz’s index is 1M
∑∞

k=0(αM)k . This additional multiplication by M is
somewhat common in the literature; it is probably a case of horror vacui.

12 It would be interesting to write a note similar to this one for spectral clustering, as sociologists have
been playing with the idea for quite a while.

13 Recently, Franceschet (2011) has argued that Leontief’s input–output model is a precursor of
PageRank, which would make it the oldest known example of spectral ranking. I think this is a
red herring, as Leontief just wants to represent the relationship between input and output of an
economy. He claims that an equilibrium is reached when prices are given by the fixpoint of the
linear operator describing the input/output relationship, but being the goods indexing the matrix
inhomogeneous, this pricing is not a ranking (and, indeed, Leontief does not appear to make claims
in this direction). If we consider any study of fixpoints of a linear operator that expresses some kind
of input/output relation a kind of spectral ranking, then Markov (1906) beats Leontief by more than
30 years, and we can probably go back further.
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1941), he argues that one can define a status index r using the recursive equation

r = v + rM (4)

where v is a boundary condition, or exogenous contribution to the system. Finally, he

notes that formally

r = v(1 − M)−1 = v

∞∑
k=0

Mk

and that the right side converges as long as |λ0| < 1: M can even have negative

entries. Clearly, this is a generalization of Katz’s index14 to general matrices that

adds an initial condition, as the vector 1 is replaced by the more general boundary

condition v.15 ,16

5 From eigenvectors to path summation

Seeley’s, Wei’s, and Katz’s work might seem unrelated. Nothing could be farther

from truth. Let’s get back to the basic spectral ranking equation:

λ0r = rM

When the eigenspace of λ0 has dimension larger than one, there is no clear choice

for r. But we can try to perturb M so that this happens. A simple way is using

Brauer’s results (1952) about eigenvector separation:17

Theorem 1

Let A be an n × n complex matrix, λ0, λ1, . . . , λn−1 be the eigenvalues of A, and let

x be a non-zero complex vector such that AxT = λ0xT . Then, for every complex

vector v, the eigenvalues of A + xT v are λ0 + vxT , λ1, . . . , λn−1.

Brauer’s theorem suggests to perform a rank-one convex perturbation of M using

a vector v satisfying vxT = λ0 by applying the theorem to αM and (1 − α)xT v:

λ0r = r(αM + (1 − α)xT v)

Now, αM + (1 − α)xT v has the same dominant eigenvalue of M, but with algebraic

multiplicity one, and all other eigenvalues are multiplied by α. This ensures that we

have a unique r, at the price of having introduced a parameter (the choice of x is

particularly simple in case M is stochastic, as in that case, we can take 1).

There is also another important consequence: r is defined up to a constant, so we

can impose that rxT = λ0 (i.e., in case x = 1, that the sum of r’s coordinates is λ0,

which implies, if all coordinates have the same sign, that ‖r‖1 = λ0). We obtain

λ0r = αrM + (1 − α)λ0v

14 Hubbell claims that its index (actually, its status model ) bears a “rough resemblance” to Katz’s: Once
the mathematics has been laid out in simple terms, one can easily see that they are the same thing.

15 We note that while the ranking induced by 1M(1 − αM)−1 and 1(1 − αM)−1 = 1 + 1αM(1 − αM)−1

is the same, this is no longer true when we use a general boundary condition.
16 Hubbell remarks that its score depends linearly on the boundary condition. This is actually an

important feature for quick computation of personalized or topical versions of PageRank (Jeh &
Widom, 2003).

17 I learned the usefulness of Brauer’s results in this context for separating eigenvalues from Stefano
Serra–Capizzano. The series of papers by Brauer is also (maybe not surprisingly) quoted by Katz in
his paper (Katz, 1953).
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so now

r = (1 − α)v
(
1 − αM/λ0

)−1
= (1 − α)v

∞∑
k=0

(
αM/λ0

)k
= (1 − λ0β)v

∞∑
k=0

(βM)k (5)

and the summation certainly converges if α < 1 (or, equivalently, if β < 1/λ0).

In other words, Katz–Hubbell’s index (modulo a multiplicative constant) can be

obtained as the spectral ranking of a rank-one perturbation of the original matrix.18

As the convex perturbation parameter α moves from 0 to 1, the damping factor β

moves from 0 to 1/λ0.

6 From path summation to eigenvectors

A subtler reason takes us backwards. Given a matrix Z , the index of Z is the

smallest non-negative integer k such that the kernel (the eigenspace associated to

the eigenvalue zero) of Zk is equal to the kernel of Zk+1. Equivalently, the index

is the size of the largest Jordan block of the eigenvalue zero (which is zero for a

non-singular matrix).

The Drazin inverse of Z , written ZD , is the unique solution of the equations

ZXZ = X XZ = ZX Zν+1X = Zν,

where ν is the index of Z (Drazin, 1958). When Z is non-singular, it coincides with

Z−1. The matrix �Z� = 1 − ZZD is called the eigenprojection (for the eigenvalue

zero) of Z: It is a projection on the kernel of Zν along the range of Zν . The

fundamental theorem we will use about the Drazin inverse is due to Meyer (1974):

Theorem 2

Let Z be a square matrix with index ν. If m and p are non-negative integers, the

limit

lim
ε→0

εm(ε + Z)−1Zp

exists if and only if m + p � ν, and in that case

lim
ε→0

εm(ε + Z)−1Zp =

{
ZDZp if m = 0

(−1)m−1Zm+p−1 �Z� if m > 0

We would like to know what happens to the perturbed dominant eigenvector (5)

when α → 1:

lim
α→1

(1 − α)v
(
1 − αM/λ0

)−1
= lim

α→1

1 − α

α
v

(
1

α
− M/λ0

)−1

= lim
α→1

1 − α

α
v

(
1

α
− 1 + 1 − M/λ0

)−1

= lim
α→1

1 − α

α
v

(
1 − α

α
+

(
1 − M/λ0

))−1

= lim
ε→0

εv
(
ε +

(
1 − M/λ0

))−1

18 This result is of course well known for stochastic matrices, as it is one of the ways of defining
PageRank.
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Now, 1 − M/λ0 is a singular matrix with index equal to the index19 of λ0 in M. If

λ0 is semisimple (i.e., ν = 1), we can apply Meyer’s theorem with m = 1, p = 0 and

conclude that

lim
α→1

(1 − α)v
(
1 − αM/λ0

)−1
= v �1 − M/λ0�

The circle is closed, as the kernel of 1 − M/λ0 is exactly the eigenspace of M

associated with the eigenvalue λ0: Spectral ranking is just the limit case of Katz–

Hubbell’s index.20

The eigenprojection �1 − M/λ0� has an intuitive description if λ0 and all other

eigenvalues of maximum modulus are semisimple: It is equal (Rothblum, 1981) to the

Cesàro limit

lim
n→∞

n−1∑
k=0

(M/λ0)
k

n

that is, the limit in average of (M/λ0)
n. In stochastic matrices, all eigenvalues of

modulo one are semisimple, which explains why the Cesàro limit is very popular

in the Markov chain literature to obtain eigenprojections. Rothblum (1981) shows

that a suitable generalization of the Cesàro limit to n-fold sums makes it possible to

write the eigenprojections in limit form even if the eigenvalues of maximum modulus

other than λ0 are not semisimple.

If λ0 is not semisimple, say with index ν, the situation is not very different: Meyer’s

theorem essentially tells us that the perturbed dominant eigenvector (5) would grow

too quickly as α → 1, but nonetheless

lim
α→1

(1 − α)νv
(
1 − αM/λ0

)−1
= (−1)ν−1v �1 − M/λ0�

(
1 − M/λ0

)ν−1

The resulting vector is still in the kernel of 1 − M/λ0, because �1 − M/λ0� projects

on the kernel of
(
1 − M/λ0

)ν
:(

v �1 − M/λ0�
(
1 − M/λ0

)ν−1
)(

1 − M/λ0

)
= v �1 − M/λ0�

(
1 − M/λ0

)ν
= 0

Note that since the (1 − α)ν factor is just a scalar, we can also write (even when

ν = 1)

lim
α→1

v
(
1 − αM/λ0

)−1∥∥∥v
(
1 − αM/λ0

)−1
∥∥∥ =

(−1)ν−1v �1 − M/λ0�
(
1 − M/λ0

)ν−1∥∥∥v �1 − M/λ0�
(
1 − M/λ0

)ν−1
∥∥∥

which means that the direction of the perturbed dominant eigenvector always tends

to that of a dominant eigenvector of M as α → 1, albeit normalization is necessary

to avoid divergence. If M is non-negative, Rothblum shows that generalized Cesàro

limits can be applied even to this case.

7 Putting it all together

It is interesting to note that the journey made by our original definition through

perturbation and then limiting has an independent interest. We started with a matrix

19 The index of the eigenvalue λ of a matrix M is the index of the matrix 1 − M/λ, or equivalently the
maximal dimension of the Jordan blocks of M containing λ.

20 Once again, this result is well known for PageRank (Boldi et al., 2009).
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M with possibly many eigenvectors associated with the dominant eigenvalue, and

we ended up with a specific eigenvector associated with λ0, given the boundary

condition v. This suggests to define in general the spectral ranking21 of M with

boundary condition v when the dominant eigenvalue λ0 is semisimple as

r = v �1 − M/λ0�

or, in the general case,

r = v(−1)ν−1 �1 − M/λ0�
(
1 − M/λ0

)ν−1
(6)

with ν equal to the index of λ0. If M has a unique eigenvector, this definition is

equivalent to Equation (2), and v is immaterial. However, in the general case (6)

provides a unique (albeit possibly difficult to compute) eigenvector depending on v.

If we start from a generic non-negative matrix M and assume to normalize its

rows, obtaining a substochastic matrix P , we should probably speak of Markovian

spectral ranking, as the Markovian nature of the object becomes dominant. If λ0 = 1,

we have

r = v �1 − P � = v lim
n→∞

n−1∑
k=0

Pk

n
(7)

as dictated by Markov chain theory.22 If v is a distribution, r is essentially23 the

limit distribution when the chain is started with distribution v. If λ0 < 1, we must

check its index and work the details as in the general case (6), as we can no longer

guarantee semisemplicity of all eigenvalues of maximum modulus. For example, the

matrix ⎛
⎝0 1

2
1
2

0 0 1

0 0 0

⎞
⎠

has a single eigenvalue 0 with algebraic multiplicity three and geometric multiplicity

one.

Finally, we could define the damped spectral ranking of M with boundary condition

v and damping factor α when the dominant eigenvalue λ0 of M is semisimple as

rα = (1 − α)v

∞∑
k=0

(
αM/λ0

)k
for |α| < 1. If we normalize the rows of M, we should speak of a damped Markovian

spectral ranking (see Table 1).

The (1 − α) term comes out naturally from Equation (5), and makes the limit

for α → 1 exist in the semisimple case, unifying the treatment of normalized (i.e.,

Markovian) and unnormalized rankings; moreover, it forces ‖r‖1 = 1 when M is

stochastic and v is a distribution.24 An even more general definition, taking the index

21 We remark that in social sciences and social-network analysis “eigenvector centrality” is often used to
name collectively ranking techniques using eigenvectors (“centrality” is the sociologist’s “ranking”).
On the other hand, in those areas indices based on paths such as Katz’s are considered to be different
beasts.

22 Substochastic matrices, too, enjoy the property that all eigenvalues of modulo one, if any, are
semisimple; however, if λ0 < 1, there are no such eigenvalues.

23 “Essentially” because �1 − P � smooths out problems due to periodicities in the matrix.
24 As noted by Bonacich (1987), α can even be negative.
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Table 1. A reasoned table of the basic types of spectral ranking; the names defined in

Section 7 are in boldface.

No normalization Row normalization

No damping

Spectral ranking Markovian spectral ranking

Eigenvector centrality Markov chain steady state

(Wei, 1952; Berge, 1958) (Seeley, 1949)

Damping

Damped spectral ranking Damped Markovian spectral ranking

Katz’s index Total effect centrality, PageRank

(Katz, 1953) (Friedkin, 1991; Page et al., 1998)

ν of λ0 into consideration, would use a multiplicative factor (1 − α)ν , which would

make the limit for α → 1 always exist. It can be argued, however, that for practical

purposes the normalization factor is just a nuisance, as it does not affect ranks (just

scores), and it might be difficult to determine, as it depends on the index of λ0.

It is interesting to note that in the Markovian case the change of role of

the boundary condition from the damped to the non-damped case has a simple

interpretation: In the damped case, we have a Markov chain that restarts on a

fixed distribution v, and there is a single stationary distribution which is the limit

of every starting distribution; in the non-damped case, v is the starting distribution

from which we compute the limit distribution using the eigenprojection. Thus, when

α → 1, the restart distribution v becomes the starting distribution, which is significant

only if the graph underlying the chain has more than one terminal strongly connected

component. An analogous consideration can be done in the general semisimple case:

The preference vector of Katz–Hubbell’s index becomes, in the limit, the starting

vector of an averaged version of the power method that mimics Cesàro limit.

8 Followers

The work of Seeley was almost unnoticed, Wei’s dissertation was known mainly to

rank theorists, Berge’s observations were buried in a book on graph theory, and

Katz’s paper was known mainly by sociologists, so it is no surprise that spectral

ranking has been rediscovered several times.

In this section, we gather the main insurgencies of spectral ranking in various

fields we are aware of. In some cases, spectral ranking in some form is applied to

some domain; in other cases, very mild variations of previous ideas are proposed

(mostly, we must unhappily say, without motivation or assessment). The list is

certainly incomplete.

(French Jr., 1956). For completeness, we mention French’s theory of social power,

which bears a superficial formal resemblance with spectral ranking. However,

French’s theory considers right eigenvectors of row-stochastic matrices, so the trivial

uniform solution is always a solution, and it is considered a good solution, as the

theory studies the formation of consensus (e.g., the probability of getting the trivial

uniform solution depending on the structure of the graph).
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(Gould, 1967). Gould proposes to use eigenvectors to study geographical features

such as irregular terrains, the orientation of transportation networks, and even the

homogeneity of architectural features. In one particular example, he consider the

connectivity graph on a set of cities (edges are direct roads) and discusses the

information conveyed by the dominant and a few other eigenvectors (Seeley’s, Wei’s,

and Berge’s work are not quoted).

(Bonacich, 1972). Bonacich proposes to use spectral ranking on zero-one matrices

representing entities and their relationships to identify the most important entities

(Seeley’s, Wei’s, and Berge’s work are not quoted).

(Pinski & Narin, 1976). Here, M is the matrix that contains in position mij the

number of references from journal j to journal i. The matrix is then normalized in

a slightly bizarre way, that is, by dividing mij by the jth [sic] row sum. The spectral

ranking on this matrix is then used to rank journals. Geller (1978) tries to bring

Markov-chain theory in by suggesting to divide by the ith row sum instead (i.e.,

Markovian spectral ranking). No reference is made to previous work.

(Hoede, 1978). Hoede proposes to avoid the boundary condition of Hubbell’s index

by computing 1M(1 − M)−1 instead, under the condition that 1 − M is invertible.

This is exactly Katz’s index with no damping. The main point of the author is that

now we can just tweak the entries of M so to make 1 −M invertible, as “this hardly

influences the model” [sic].

(Saaty, 1980). In the 70s, Saaty developed the theory of the analytic hierarchy process,

a structured technique for dealing with complex decision. After some preprocessing,

a table comparing a set of alternatives pairwise is filled with “better then” values

(the entry mij means how much i is better than j, and the matrix must be reciprocal,

i.e., mij = 1/mji); right spectral ranking is then used to rank the alternatives. Some

insight as to why this is sensible can be found in Saaty (1987). The mathematics is

of course identical to Wei’s and Berge’s, as the motivation is structurally similar.

(Bonacich, 1987). Bonacich proposes a mild extension of Katz’s index (i.e., damped

spectral ranking) that includes negative damping; the interpretation proposed is that

in bargaining having a powerful neighbor should count negatively.

(Bonacich, 1991). Bonacich proposes to rank individuals and groups simultaneously,

given the person/group incidence matrix, by computing the first left and right

singular vectors of the incidence matrix M, which are the spectral rankings of MMT

and MTM, respectively.

(Friedkin, 1991). Friedkin discusses a damped version of French’s consensus theory

based on a row-stochastic matrix M. However, halfway through the paper he defines

the total effect centrality of an entity as the average of the off-diagonal entries of a

column of (1 − α)(1 − αM)−1. If we forget the motivations behind Friedkin’s model

and take the average of all entries, instead, we obtain a damped (Markovian) spectral

ranking of M with constant boundary condition. If M is obtained by normalizing
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the rows of the adjacency matrix of a graph, we obtain exactly PageRank (Page

et al., 1998).

(Keener, 1993). Keener discusses a few different rankings for football teams based

on the results of played games. He computes dominant eigenvectors of different

matrices derived from game outcomes. This paper is one of the very few ones

explicitly quoting both Wei and Berge.

(Page et al., 1998). PageRank is the damped Markovian spectral ranking of the

adjacency matrix of a web graph (i.e., the graph having pages as nodes and

hypertextual links as arcs). It was one the features originally used by Google

to rank documents25 associated with a query, and it has since then been applied to a

wide variety of problems (Gleich, 2015). The boundary condition is called preference

vector, and it can be used to bias PageRank with respect to a topic or to personal

preferences. In case the preference vector is constant, the resulting centrality is

almost identical to the total effect centrality defined by Friedkin (1991), whose work

is not quoted, though.

(Huberman et al., 1998). With the aim of predicting the number of visits to a web

page, Huberman, Pirolli, Pitkow, and Lukose study a model derived from spreading

activation networks. Essentially, given a distribution d that tells which fraction of

surfers are still surfing after time t, the prediction vector at time t is d(t)vP t, where v is

the initial number of surfers at each page. They use an inverse Gaussian distribution

obtained experimentally, but using a geometric distribution the predicted overall

(i.e., summed up over all t) number of surfers at each page will give a Markovian

damped spectral ranking.

(Kleinberg, 1999). HITS is Kleinberg’s algorithm for finding authorities and hubs in

a (part of a) web graph. As in Bonacich’s previous work (Bonacich, 1991), HITS

computes the first left and right singular vectors of a matrix A, which are the spectral

ranking of AAT and ATA, respectively. Kleinberg notes, however, that it is possible

to extract clustering information from additional singular vectors.

(Bonacich & Lloyd, 2001). Bonacich and Lloyd propose again to use damped

spectral ranking, but with a boundary condition, that is, Katz–Hubbell’s index. The

authors do quote Hubbell (1965), but apparently they do not realize that they are

just redefining his index. They prove, however, prove that under strong conditions

(M symmetric and with a strictly dominant eigenvalue) damped spectral ranking

converges to spectral ranking.

25 It should be noted there are several other ways to use a graph to obtain scores for documents. For
instance, one can use links (in particular, hypertext links) to alter text-based scores using the score of
pointed pages: This simple idea dates at least back to the end of the 80s (Frisse, 1988). In the 90s,
the idea was rediscovered again for the web: see, for example, Marchiori (1997), which, in spite of
some claims floating around the net, does not do any kind of spectral ranking. An obvious spectral
approach would use a preference vector containing normalized text-based scores, and then a right
or left spectral ranking depending on whether authoritativeness or relevance is to be scored. To the
knowledge of the author, this approach has not been explored yet.
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(Bergstrom et al., 2008). Eigenfactor is a score computed to score journals. It is

a Markovian damped spectral ranking computed on the citation matrix, with an

additional non-damped step (e.g., S(1 − αS)−1), as in the original formulation of

Katz’s index.

9 Conclusions

We described a comprehensive framework for spectral ranking, highlighting the

fundamental contributions of Seeley, Wei, and Berge (the dominant eigenvector,

possibly with stochastic normalisation), Katz (damping), and Hubbell (boundary

condition). We showed in a very general setting that one can move from dominant

eigenvectors to damped rankings by a perturbation process, and get back to

the dominant eigenvectors by taking the limit of the parameter controlling the

perturbation. The process suggests a generic way to define spectral ranking by

dominant eigenvectors on general graphs, by applying the eigenprojector of the

(possibly normalized) adjacency matrix to a given boundary condition.
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