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1. Introduction

In 1955 [1], Amitsur determined all the finite groups G that can be embedded in the
multiplicative group T* — GL(l, T) of some division ring T of characteristic zero. If
G can be so embedded, then the rational span of G in T is a division ring of finite
dimension over Q, and G acts on it by right multiplication in such a way that every
non-trivial element operates fixed point freely. The finite groups admitting such a
representation had earlier been determined by Zassenhaus[24; 4, xn. 8], and Amitsur
begins by quoting Zassenhaus' results, which show in particular that the only perfect
group that can be embedded in the multiplicative group of a division ring of charac-
teristic zero is SL(2,5). The more difficult part of Amitsur's paper is the determination
of the possible soluble groups. Here the main tool is Hasse's theory of cyclic algebras
over number fields.

In this paper we begin the investigation of the finite groups G that can be embedded
in GL(2, T), for some division ring T of characteristic zero. We consider only the case
when G is quasisimple, in the sense that G is perfect and G/Z(G) is (non-abelian) simple,
where Z(G) is the centre of G. Most of the arguments here are group-theoretic, and the
role previously played by Zassenhaus' theorem on fixed-point-free representations is
now taken over by the Gorenstein-Harada theorem [7] on finite simple groups of
sectional 2-rank at most 4. For, by Lemma 2.1 below and a theorem of Mac Williams [17],
all the groups we meet will have this property. Our proof consists of going through the
Gorenstein-Harada list, ruling out the various groups as the simple part of G, until only
the two possibilities below remain; these are easily shown to be realizable.

THEOREM. Let G be a finite quasisimple group. Then there exists a division ring T of
characteristic zero such that G can be embedded in GL{2, T) if and only i/6? s SL(2,5) or
SL(2,9).

Note in particular that G cannot be non-abelian simple. When we pass to 3 x 3
matrices we obtain at least one simple group, the alternating group Alt(5) of degree 5.
More surprisingly, perhaps, we find also the covering group of the Hall-Janko group
[23]. It might be interesting to determine exactly which quasisimple groups occur
here.

As in Amitsur's case, it is relatively straightforward to determine the possible finite
quasisimple groups that can be embedded in some GL(2, T), given the present state of
knowledge about finite simple groups. Banieqbal [2] has gone on to give an essentially
complete description of all the finite groups that can be embedded in some GL(2, T).
This is much more difficult. Many cases arise, and careful arguments with crossed
products over number fields are frequently involved. He has also given a proof of our
theorem, avoiding the use of heavy group-theoretic machinery, in the case when T is
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finite-dimensional over a field of p-adic numbers. Such a proof for general T appears
elusive.

2. Proof of theorem

We begin by introducing the Gorenstein-Harada theorem into the picture as follows.

LEMMA 2.1. Let The a division ring of characteristic zero and G be a finite subgroup of
GL(2,T).Then

(i) Every abelian subgroup of G has rank at most 2,
(ii) G has sectional 2-rank at most 4,
(iii) Every non-abelian composition factor ofG occurs on the following list:

(a) Groups of odd characteristic:

PSL{n,q) (n sj 5); PSp(4,q); PSU(n,q*) (n < 5); G2(q);

where q is an odd prime power in all cases,

(b) Groups of even characteristic:

PSL{2, 8), PSL(2,16), PSL(3,i), PSU(3,42), 2£2(23).

(c) Alternating groups Alt(n) (7 ^ n ^ 11).
(d) Sporadic groups Mn, M12, M22, M23 (Mathieu groups), Ju J2, J3 (Janko

groups), McLaughlin group, Lyons group.

Proof, (i) follows from [10], lemma 3-1, and (ii) then follows from a theorem of
MacWilliams[17]. We obtain (iii) from (ii) and the Gorenstein-Harada theorem [7].

Notes, (i) The Gorenstein-Harada list is actually a proper subset of the above list
since in some cases there are further congruence conditions on q for the groups of odd
characteristic. These need not concern us.

(ii) The notation we use for groups of Lie type and classical groups follows Carter [5].
The groups Jx, J2, J3 are the Janko groups of orders 23.3.5.7.11.19, 27.33.52.7 and
27.35.5.17.19 respectively.

(iii) Each group occurs on the list in only one guise. For example, Alt(5) appears as
PSL(2,5), as does PSL(2,4).

We require also the following facts. We denote the set of irreducible complex
characters of G by Irr(G), and if ^6lrr((?), mQ(x) denotes the Schur index of G over Q.

LEMMA 2-2. Let G be as in Lemma 2-1. Then
(i) / / mQ(x) = 1 for every x £Irr(G), then G can be embedded in GL{2, C),
(ii) If p is an odd prime, then every p-subgroup of G is abelian,
(iii) / / every Sylow subgroup of G is elementary abelian, then G can be embedded in

GL(2,C).

Proof, (i) See [10], lemma 2-3.
(ii) Let P be a subgroup of G of odd prime power order. By a well-known result of

Roquette[19] or ([12], p. 168), mQ(x) = 1 for all ^elrr(P). Hence, by (i), P can be
embedded in GL{2, C). The irreducible constituents of the corresponding two-
dimensional representation of P must be linear, since their degrees divide \P\, hence P
is abelian.

(iii) In this case also, mQ(x) = 1 for all ̂ Glrr(G) ([12], p. 165).
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Finally, for easy reference we list the Schur multipliers of some of the Gorenstein-

Harada groups.

Group Schur multiplier Reference

PSL(2, 5), PSL(2, 7) Z2 [11], V. 25. 7
PSL(2,9) Z6 Lll], V. 25. 7
PSL(2,8) 1 [11], V. 25. 7
PSE7(3,4") 1 [8]
AU(1) le [3], [20]
»B2(2

3) = Sz(8) Z J X Z J [4], XI. 3. 12
Mrl 1 [4], XII. 1. 16
Jx 1 [13]

Proof of Theorem. First let T be a division ring of characteristic zero, Gbe & finite
quasisimple subgroup of GL(2, T), and H = G/Z(G). Then H is one of the groups listed
in Lemma 2-1 (iii), and we go through the various possibilities.

(a) H has odd characteristic. Except for PSL(2, q), all the listed groups have a non-
abelian Sylow p-subgroup, where q is a power of p, and hence so does G. For PSp and
PSU see Huppert ([11], II. 10. 12) and for the remaining groups see Carter ([5] 5-2,
13-6). Hence H ~ PSL(2, q) for some q, and by ([10], Cor. 2-5), q < 9. Thus q = 5, 7 or 9,
as PSL{2,3) is not simple.

Suppose q = 5. From the above list of Schur multipliers, the Schur covering group
oiPSL(2,5) is SL(2, 5), so (? is isomorphic to SL(2,5) or PSL(2,5), and we just have to
exclude the latter possibility. Now PSL{2,5) s Alt(5) ^ Alt(4), so if G =; P£Z(2,5),
then Lemma 2-2 (iii) tells us that Alt(4) can be embedded in GL(2, C). As the unique
faithful irreducible character of Alt(4) has degree 3, this is not so.

Now suppose q = 7. The Schur covering group of PSL(2, 7) is SL(2, 7), from the
above list. Now SL(2, 7) contains a non-abelian group B of order 21 coming from the
upper triangular matrices, and so does PSL(2, 7). If H ^ PSL(2, 7), then Lemma
2-2(iii) tells us that B can be embedded in GL(2, C), which consideration of the degrees
of the characters shows is not so.

Finally, consider the case q = 9. The Schur multiplier of PSL(2, 9) is 26, so in this
case Z(G) has order dividing 6. Now if 3 divides |2((?)|, then G will have a non-abelian
Sylow 3-subgroup. For if K is any finite group and P is a Sylow ^-subgroup of K, then
P n K' n Z{K) = P' n Z(K), as can be established by considering the transfer of K into
P/P' (see [11], IV. 2. 2). Hence, by Lemma 2-2 (ii), \Z{G)\ = 1 or 2, and we just have
to exclude the first possibility. This can be done by noting that mQ(x) = 1 for all
X e Ivr(PSL(2, q)) [15] or [21], using Lemma 2-2 (i), and referring to the character table
ofPSL(2,9) ([16], § 38) to see that the smallest degree of a faithful irreducible character
of PSL(2,9) is 5. Alternatively, we note that PSL(2, 9) contains a subgroup, coming
from the upper triangular matrices, which is an extension of a self-centralizing
elementary abelian normal subgroup of order 9 by a cyclic group of order 4, and it is
not hard to see, by analysing the rational group ring of this group, that it cannot be
embedded in GL(2, T).

This concludes the discussion of the case of odd characteristic.

(b) H has even characteristic. Suppose first H £ PSL(2, 8). Then the Schur multiplier
of H is trivial, so G ^ PSL(2,8) = SL(2,8), which contains an elementary abelian
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2-subgroup of rank 3. This is impossible, by Lemma 21 (i). Similarly, H cannot be
isomorphic to PSL(2,16). Now PSL(3,4) contains PSL(3,2), which is isomorphic to
PSL(2,1). If H ^ PSL{3,4), then G will contain a non-trivial image of the Schur
covering group of PSL(2, 7), and this has previously been ruled out. Next suppose
H s PSU(3,42). The Schur multiplier of this group is trivial, so G s PSU(3,42). Let S
be a Sylow 2-subgroup of G. From Huppert ([11], II. 10.12), Z(S) is elementary
abelian of order 4 and NG(S) contains an element of order 3 that operates non-trivially
on Z(S). Thus, G contains a copy of Alt(4), which we saw was impossible in discussing
PSL(2,5).

Finally suppose H is the Suzuki group 2.B2(2
3). The Schur multiplier of this group is

Z2 x Z2. The Sylow 2-subgroup of H contains an elementary abelian subgroup U of
order 8 operated on by an element t of order 7 that permutes the involutions of U
transitively ([4], XI. 3.1). Let V be the inverse image of U in the Schur covering group
H of H. Then S contains an element of order 7, also denoted by t, and V contains a
normal ^-invariant subgroup Vo such that V/Vo is elementary abelian of order 8, Fo is
elementary abelian of order 4, and t operates irreducibly on V/Vo and trivially on Fo.
Let W be a subgroup of order 2 of Fo. Then as t operates irreducibly on V/Vo, the centre
of V/W is either V/W itself, or Vo/W. In the latter case, Fo/W would be extraspecial,
which is impossible as | V/Vo\ is not a square. So V/W is abelian, and since this holds
for all such W, so is V. But then every non-trivial image of ft contains an abelian
2-subgroup of rank 3, and so cannot be embedded in GL(2, T).

(c) H is alternating. Consider first the case H ^ Alt(7). The Schur multiplier of H has
order 6. If 3 divides |Z(G)|, then the Sylow 3-subgroup of G is non-abelian, as in the
discussion of P8L{2,9), and so this possibility is excluded. So \Z(G)\ is 1 or 2. Now
Alt(7) contains a non-abelian group B of order 21, and G will also contain this group.
As in the discussion oiPSL(2, 7), this is impossible. If H is alternating of degree greater
than 7, then G will contain a non-trivial image of the Schur covering group of Alt(7),
and so this too is impossible.

(d) H is sporadic. The Schur multiplier of the Mathieu group Mn is trivial, and this
group contains a copy of PSL(2,9), ([4], XII. 1) which we have seen cannot be em-
bedded in a GL(2, T). Hence H cannot be Mlv Since Ml2 contains a subgroup isomorphic
to M1U the possibility H ~ Jf12 is also ruled out. The groups M2Z and M23 both contain
PSL(3,4) and hence PSL(3,2), and are therefore both ruled out as H because of
previous parts of the proof. The group Jx has trivial Schur multiplier, and in it, the
centralizer of an involution t is isomorphic to (V) x Alt(5). Thus, if H ~ Jlt then
G ^ Alt(5), and this has been shown to be impossible. The remaining groups have a
non-abelian Sylow 3-subgroup, and are ruled out as H for that reason. In fact
J2 ^ PSU(3,32) [9], and for J3, see [14], in particular Lemma 5-4 and top of page 56.
The McLaughlin group contains P#£/(4,32) [18], and in the Lyons group the centralizer
of an involution is isomorphic to the covering group of Alt(ll) [16].

To complete the proof of the theorem we must show that SL(2,5) and SL(2,9) can
both be faithfully represented by 2 x 2 matrices over some division ring of charac-
teristic zero. In fact the real quaternions H will do. It is well known that SL(2,5) is
isomorphic to a subgroup of H* = GL(1,H). This can be obtained from the exact
sequence

1 -> 12 -> £{7(1, H) -> SO(3, U)^l,
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where SU^H) is the group of unit quaternions, by taking the inverse image of the
octahedral group Alt(5). We also have the exact sequence

1 -> 12 -> SU(2, H) -> 80(5, U) -+ 1

(see, for example, [22], p. 105, for these sequences).
The group Alt(6) has a faithful representation of degree 5 over Q obtained from the

elements of coefficient sum zero in the permutation module arising from the natural
permutation representation. Hence Alt(6) ^ PSL(2,9) can be embedded in 80(5, U).
Its inverse image in SU(2, H) must be SL(2,9) or P8L(2,9) x 22; the latter has been
ruled out above, so we obtain a copy of 8L(2,9) in (SE4(HI).

An alternative argument using Schur indices can be given as follows. From the
character table of 8L(2, q) ([6], § 38) we see that 8L(2,9) has two irreducible characters,
r\x and r/2, of degree 4. These characters are rational-valued, and mQ(i;i) = 2 (i = 1,2)
[21] or [15]. By the properties of the Schur index there exists an irreducible Q/S-module
(8 = SL(2,9)) V such that W = V ®QC affords the character 2^ . Thus dimQ F = 8.
Also if D is the division ring End^g F then D ®QC s Endc s (F ® C), which is iso-
morphic to MZ(C) as V ® C has two isomorphic irreducible constituents. Thus
dimQZ) = 4 and dim^F = 2. Hence, we can obtain an embedding of S in 0L(2,D),
Much more information can be obtained from Janusz's paper [15].
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