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GENERALIZED RIEMANN SPACES

By JOHN MOFFAT
Received 31 October 1955

ABSTRACT. The recent attempt at a physical interpretation of non-Riemannian spaces by
Einstein (1, 2) has stimulated a study of these spaces (3-8). The usual definition of a non-
Riemannian space is one of n dimensions with which is associated an asymmetric fundamental
tensor, an asymmetric linear affine connexion and a generalized curvature tensor. We can also
consider an n-dimensional space with which is associated a complex symmetric fundamental
tensor, a complex symmetric affine connexion and a generalized curvature tensor based on these.
Some aspects of this space can be compared with those of a Riemann space endowed with two
metrics (9). In the following the fundamental properties of this non-Riemannian manifold will
be developed, so that the relation between the geometry and physical theory may be studied.

A generalized Riemann space of real coordinates z, (4 = 1, ..., n) is defined as one with
which is associated a complex symmetric tensor g,,. We have

G = S+ Qyys (1)
where s, and a,, denote real and imaginary symmetric tensors respectively.
It is assumed that the determinant g = Det(g,,)+0. We associate uniquely the
contravariant tensor g#” with g,, by the relation (normalized cofactors)

g"wg/w = dg, (2)
where the summation convention of a repeated index is implied, and &} is the
Kronecker tensor. Furthermore, it is assumed that the determinant s = Det (s w) =+ 0.
We define uniquely the real tensor *s# by the relation

*$h8 . = Oy ' (3)
Weshall use g# and g . bo raise and lower indices. However, we shall also have occasion
to use *s#” and s, and we have *sw = grrgs, .
With the space is also related a complex symmetric affine connexion I'},:

I}, = *T5,+ 13, (4)
where *I'}, and fﬁ, denote the real and imaginary parts of I'}, respectively. The affine

connexions I')} and I'g4 in coordinate systems z, and z, are related by the equations

ox 0%, 0% 0%
AT e, e f
T ox), T oz, 0x, + 0z, 0z, )

Erom this it follows that the real *I';, transform as an affinity and the imaginary
I'%, as a tensor.
We can introduce covariant differentiation with respect to I'}, as in Riemannian

geometry: N, = M+ Aapgw} )
T L
where A# = 0A*[0x,.
Let us determine the I'}, according to the g, by the equations
g,uv;o' = gpv,a—gw]:‘;w—gprrza = 0. (7)
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Permuting the indices g, v, o twice in (7), adding the resulting two equations and
subtracting (7), we get

Sor F;v = %(gwr,p + ga,u,v - g/w, a) — @, F/Ttv' (8)
Using the real tensor *s*7, defined by (3), we find the implicit solution for I'},:
A A
A __ kAl T
ry = {'W}+ [I“’] a,, 'y, 9)
Here we write {:V} = 3*82(8,0, 4 S » — Spv, o) [

(10)

A
[ﬂV] = %*skv(ava', I + a’a’p, v a[ll’, o’)’J

where {:V} are the real Christoffel symbols of the second kind. Separating (9) into real
and imaginary parts, we get

A A )
*sz = {/[,V} —_ *SAO'(ZW P,uv’

(11)

f‘;}u = [/fv] —*stog *T%,.

If the condition of integrability
2 2

2 (D) = 2 (e, (12)

0x, \0x,0x,]  0x, \ox,0x,

of equations (5) is reduced by means of equations of the form (5), we find

'R/Atva' = F[]:v. o F;):o', v F¢v F;o + Fi(a- F;w (13)

are the components of a tensor. This tensor is the generalized Riemann—Christoffel

tensor of the space. From (13) we see that R}, is skew-symmetric in the last two

indices R = —Rﬁm,. (14)

wo

Splitting (13) into real and imaginary parts, we get

*R/Awa = *F/]:v, o *F/]ﬁa, v *F'/r\v*r‘/rzo' - f‘;\y ﬁ;:r + *Fﬂzr*l-‘:w + f”}o' F;w (15)
and R,ﬁva‘ = i-\‘//}v, o f‘/l)v, v f‘év*r‘;o' - *F¢v f‘/.rta' + f‘:}r*P;v + *Ft)r(‘r F;v (16)
Here we have denoted by *R},, and ﬁ,’ﬁw the real and imaginary parts of R%,,
respectively. We can write (15) and (16) as
A A A A
*sz = 'B/Alvo' - P-/}v F;m— + F.,'}(, F;w (17)
and R/Awo' = P//}v/cr - F/Aw/w (18)

where Bj,, is the tensor based on the *I'}, and / means covariant differentiation with
respect to *I'%,.
Contracting (13) on the indices A and o, we get

R/w = 'RZVU = sz,a - I‘Za',v - P,Za F‘;v + FZV P;'-r‘ (19)

We call the tensor B, the generalized Ricci tensor. Splitting (19) into real and
imaginary parts, we have

*va = ‘P,uv + A;'tv,a' - AZU,P - A;‘TA‘;, + AZVA(TTT - P;Tw ng + PZV F;“r’ (20)
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and va =%/ e~ P”;w/v’ (21)

where P, is the real Ricci tensor based on the :/jv}:

el LR e

Moreover, the quantities A}, are determined by
A
Aﬁv = *I‘,’},,— {,”'V} . (23)
A straightforward calculation shows that the tensor R}, satisfies the differential
identities because of (14):

R;\wc;f = R;\wc',-r +R’;¢v<rr¢rr _R;\wcrfn’ =0, (24)
where we have used the notation
Ap.vo' = A/HJU+AV(7"M+A (25)

By means of (23) we can write (24) as

vao' ;T +-R/1.V0‘ Ap‘r ‘R;VO'A +‘R;I,V¢ I‘z‘r vao' I"P (26)

where ; means covariant differentiation with respect to {;}V} .
[]

The author has developed a generalization of Einstein’s gravitational theory by
using this non-Riemannian manifold in the case when n = 4. The correct equations
of motion of charged particles in an electromagnetic field have been derived from the
field equations adopted in the theory by using the method introduced by Infeld (10),
in which the particles are described by singular world-lines.

The author wishes to express his sincere thanks to the Nuffield Foundation for their
kind support of this work.
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