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1. Introduction. The hyperbolic boundary value problem

dfu-d%u + eu = 8f(u) (t,x)eUx(0,n) (e > 0),j

u\x-o = uU=n = °- i
has, for 8=0 and each positive integer k, ^-periodic solutions of period rfe(e) = 2n/
(k2 + e)i. For a reasonably large class of functions, / , and, for each k, certain values
of e, one at least of these solutions persists for small 8.

For a given positive integer, k, consider the following conditions on e and/.
(I) 3 a positive constant c such that

min{\(n2 + e)il(k2 + e)i-j\;jeN} > c\n VneN,n H= k.

(II) /: U -» U is a Cz function with/(0) = 0, and the function

U3r-+ \ sin. kx. sin sf(rainkx. sin s)dxds
Jo Jo

takes both positive and negative values for positive r. Let C(Ux [0, n]) be the space
of continuous real-valued functions on U x [0, n].

THEOREM 1. Under conditions (I) and (II), there exists 80 > 0 and a map

(-80,80)38->u(8)eC(nx[0,Tr]),

such that u = u(8) satisfies (1), in the sense of distributions,rJs t-periodic of period rk(e)
and not identically zero.

The proof of this theorem occupies sections three to six, but first, in section two,
some remarks on conditions (I) and (II) are made.

The authors wish to thank Dr F. G. Friedlander for suggesting the problem discussed
here, and for his continued interest and encouragement.

2. Remarks on conditions (/) and (II). First, it will be shown that, for each (positive)
integer k, the set of e satisfying (I) has 0 as a point of accumulation (and is therefore at
least countably infinite). To see this, define, for q = 1,2,...
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138 R. B. MELROSE AND M. PEMBERTON

Then, (k2 + eq)i = k+l/q and, for any n,

Now, the eq decreases as q increases so it follows from Taylor's theorem that there exists
q0 such that, V»eN and q ^ q0,

Thus,

If n > eqq, it follows that
1

Jfcg+1'

and therefore that co(n) is not an integer. eqq = 2k+ljq, so assuming q^ qo> 1,
this means that a>(») is not an integer if n > 2k,

If n < 2&, then r&2+e3 < 4&z + 4eg so w(n) < 2, and therefore (I) is true if it is true
for large n. However, for large n,

so condition (I) holds for e = eq, if q ~2 q0-
Secondly, note that if/(s) is odd, negative for small positive s and f(s) ->• +oo

as s -> oo then (II) holds, so it is not unduly restrictive. Moreover, iff(s) = / ( — «) satis-
fies condition (II) then the theorem remains true.

Finally, it is not difficult to show the continuity and local uniqueness of the map in
Theorem 1 under a suitable monotonicity condition on the function occurring in (II).

3. Existence of solutions to the abstract Cauchy problem. The existence and unique-
ness of solutions to the initial-boundary value problem

Sf(u) (t,x)eUx(O,n)
(2)

U\x=0 = U\x=n = 0 | d \ M

is classical. However, a proof, similar in spirit to that of Theorem 1, will be given.
Let Hs = HS(O,TT), HS = Hs(0,n)(H0 = L2) be, for sel, the usual (real) Sobolev

spaces. For any Banach space B, let C([0,17]; B) be the Banach space of continuous
functions [0, T] -» B.

o

THEOREM 2. If f is C1, then for each T > 03 a neighbourhood U(T) <= Hy® L2©R
of the hyperplane ^ © ^ © { O } such that, for each (uv uz, S) e U(T), the problem (2) has
a unique solution ueC([0, T\,HX) with 8tueC([0, T];L2). The map so defined

is C1. IfF is a primitive off, then the energy,

E{u) = r
J o

is independent of t.

https://doi.org/10.1017/S0305004100051574 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004100051574


Autonomous wave equations 139

Proof. Put A = {ueC([O,T];H1); dtueC([0,T];L2)}, with the obvious Banach
topology. The linear map

is 1 — 1 and so defines an isomorphism onto its range, B, with the Banach topology
given by ||Q«||B = \\u\\A. The solution map for the problem

u\x = 0 — u\x = ir — "> M | t = 0 ~ ul>e)tU\t = O — '

is a continuous linear map

H1®L2®C([0,T];L2)3(u1,u2,g)^(u,dtu)eC([0,T];H1)@C([0,T];L2).

This map, followed by Q is the identity, that is the natural embedding of

^i©i2©C([0,T];i2) into H1@L2®^'((0,T)X(0,TT));

so HX@L2@C{[O,T];L2)
is continuously embedded in B.

Now, consider the nonlinear term. When/is continuous, the fact that Hx is continu-
ously embedded in C([0,T]; U) implies that f(u)eC([O,T];L2), if ueC{\Q,TY,Hx).
The map

is then continuous, and C1 if/ is C1. Hue A, (2) is equivalent to

Qu = {ux,u
i.e. if P is the map

{u1,u2,S,u) \-* Qu— {u1,u2,

then (2) is equivalent to P(uv u2, S,u) = 0. P is clearly C1 and its partial derivative with
respect to the variables in A, evaluated at the point (%,u2,0,u),u = Q-1 (ultuz, 0),
is the map Q e£?(A ,B).As this is an isomorphism, the implicit function theorem (Dieu-
donne (l), Theorem 10-2-1) can be applied and easily gives the theorem as stated, except
for the constancy of the energy functional. This can be proved by integration by parts,
in the usual way.

4. Periodicity modulo a subspace. For each t £ [0, T], let y(t) be the map

Thus,
y{rk) o8:Hi@Li©U => U(rk)

The partial derivative of this map, with respect to the variables in H1@LZ evaluated
at d = 0, is easily seen to be the constant map H1@L2 ->• S^{HX®L2), whose image is
y(jk) o (<S|,=0), which will be denoted by Sk.

If (%, u2) e H±®L2, then there are unique expansions
00 00

ui(x) = 2 ansinnx, u2(x) = 21 finsinnz
n=l n=l

and 2»2<4 + AI < oo.
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It is easily verified that

#*.(%, u2) = ( S I ocn cos (n2 + e)i rk + "n j sin (n2 + e)$ Tk I sin nx,

2 (— oin(n
2 + e)i sin (n2 + e)l rk+pn cos (n2 + e)l T,.) sin nx I.

/

Condition (I) implies that (n2 + e)i rk = 2n(n2 + e)$/(k2 + e)i is an integral multiple of
2n only for n = k. It follows from this and (4) that the kernel of S,c — I is the two-
dimensional subspace, Vk, of H^L^, spanned by (sin (kx), 0) and (0, sin (kx)).

Define, for n =t= k, y^1 = sin2 [(n2 + e)i £rfc] and yk = 1. Denote by W the subspace
of HX®L% consisting of those pairs 0 = (01; 0£) which have sine expansions

such that

With this norm, JF is clearly a Hilbert space. Let Wk be the orthogonal complement
of Vk in W, and let nw be the projection onto Wk. The asymptotic information in con-
dition (I) has the following consequence.

LEMMA 3. If condition (I) holds, f: U -s- R is C2 andf(0) = 0, then the map

y^^oS-I-.H^L^U^ U(rk) -> Hi®^,

has range contained in W and the induced map

R: HX@LZ®U => U(T,.) -> W
isCx.

Proof. First consider the initial boundary-value problem (3) with ux — u% = 0.
Standard theory shows that the solution of this defines, for each t e [0, T], a continuous
linear map

P(t):C([0,T}; H^sg ^ (u(t),dtu(t))e(H2(\ H^®^,
o

where (H2 n Hx) is treated as a subspace of H2.
Now, the map R can be written

8, (5)

where J ^ is the map C([0, rk]; Hx)3u \-+f(u) eC([0, Tk];Hj), which is C1 if/ is C2 and
/(0) = 0. So the last term in (5) is a C1 map into (Hz n H-^QH^. To prove the lemma,
it only needs to be shown that (H2 n H^®^ is continuously embedded in W and that
Sk — I maps U(rk) continuously into W. The first of these results follows from the
definition of W and the fact that

yn = sin-2[(w2 + e)H7fc]

https://doi.org/10.1017/S0305004100051574 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004100051574


Autonomous wave equations 141

for some constant C". The second follows from the expansion (4), since

- an(n
2 + e)i sin {n2 + e)i rk+fin(coB (w2 + e)i Jk -

So the lemma is proved. It leads to

LEMMA 4. Under the conditions of the, previous lemma 3 a neighbourhood <1> of
Vk®{0} in Vk® U and a C1 map

v: Vk@ U => <D -> F£ <= HX@L2

such that
y(rk) o S(<f> + v(<f>, 8), S) = v(<f>, S) + dftf, S) + <j>,

where ^: O -> ]^. is continuous.
Proof. Consider the map 77-ppoi?: £/(rfc) -> Ŵ , which is C1. Splitting the domain

variables U(rk) a {Vk® U) © Vk, the implicit function theorem can be applied at each
point ((j>,0,0)e(Vk@M)®Vk (clearly 77^oi£(0,0,0) = 0) provided that the partial
derivative with respect to the variables in Vk, evaluated at (0,0,0), is an isomorphism
of Vk onto Wk. This derivative is just nw oSk — I, restricted to Vk, and from the proof
of the last lemma is clearly continuous and 1-1.

Suppose that {\jrly i/r2) e Wk, so

fri= 2 °~n s m nx' ^2 = S /'n s m nx

with 2 Jn [(«2 + e) o t + / 4 ] = II (^1, ^ , ) | | i < 00.
n

Put
n (COS (7l2 + e)* Tfc - 1) - J^~^ SU1 (%2 + # Tfcj ,

If «! = 2ansin(wx), M2 = SAn
sm(na;)> ^ is easY t o show that (ul,u2)&Hl@L2,

n n
\\(uv uz)\\£i<S)lit < C ' lK^, ^ 2 ) | | w for some constant C", and

Thus, TTW o (Sk — /) is an isomorphism, and the implicit function theorem gives, for
each <f>eVk,a, neighbourhood U^ of (0,0) eVk@R and a unique, C1, mapping vf U^-^-Vk

such that M(i/r + v^(i/r, S), S) e Vk V (^, ^) e U^ and v#(^, 0) = 0. As they are locally unique,
these maps piece together to give v on some neighbourhood <5> of ^-©{0} c Vk@U,
with the required properties, since

V(<f>, *) = r(Tfc) o 5(0 + »(^, 8),8)-<p- vtf, 8)
defines a C1 map f $ ^ F t , with i/(0,0) = 0, so n = <Ĵ  with 0: 0 -> P̂  continuous.
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5. The projected equation.
Put

2 C"
9(y) — - s m kxf(y sin kx) dx.71J o

LEMMA 5. / / condition (II) holds then 3 80 > 0, 0 > 0 arad rx, r2 > 0 <mc/& that the
solutions yt, i = 1,2, to

Proof. Standard theory shows that

as

uniformly for (t, r) in any compact subset of R2. So, from the integral equation

and Taylor's theorem applied to g, it follows that

uniformly for ri in any compact set. Thus,

2* C2" f"
y'(T*(e)) = ~ ^FTi j i J o J 0

sintesin5

By condition (II) it is possible to pick rx, r% > 0 such that the integral is negative for
i = 1 and positive for i = 2, and this implies the validity of the lemma.

6. Existence of periodic solutions. Put

),9) so i t^eCtfO.Tjjf l i) , dtueC([0,Tk];L2),

for (0,<$)eO. Thus, putting <f> = (A1sin(Ax), A2sin(&x)), u(<f>,d) is the solution of the
initial boundary value problem with initial conditions

As S is C1 and «((4,0)eC([0,T4];Ft) with dtueC([0,Tk];Vk), there exists a C1 map
a: O ->• ^([O,Tk]; U) and a continuous map w: <1> -> (7([0, rfc]; ^x) such that

is orthogonal to sin kx for all (<j>, 8;t)e(t>x [0, Tk] and

•M = a(<) sin kx + 8w.
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Equation (2) holds in C([0,Tfc];ZLi), so clearly,

a" + (k2 + e) a = - 8 f s in kxf(u(<f>, S))dx
TT J 0

2 C"
= -8\ sinkxfta.sinkx)dx + 82h(t),

" • J o

where heC([0, rfc]; R) is uniformly bounded for <f> in any compact subset of Vk and
15| sufficiently small.

Now, put <f>i = (0,rism(kx)), i.e. Ai = 0, A2 = ri; it follows that a = 2/i + O(52),
as \8\ ~> 0, where yt is discussed in Lemma 5, and the error term is uniform for
1̂ 1 < R. So, choosing rlt rz as in Lemma 5, and 80 > 0 sufficiently small, it follows that
for each 8 with 0 < |<J| < 80, 8a.{rk) > 0 if $ = (0, rx sin (kx)) and fe(TA.) < 0 if

0 = (0, r%sin(kx)).

Thus, for each 8 with 0 < \8\ < So, there exists r(8) between rx and r2 (and therefore
positive), such that if tj> = (0, r(8) sin (kx)), a(rfc) = 0.

From Lemma 4, M(0) = u(rk) and 3t«(0) — a'(0) sin (&#) = dtu(Tk) — a'(rfc) sin (fcc)
is orthogonal to sin (kx) in Z2. So, the energy equation (Theorem 2) becomes simply

and since a'(rfc) = — a'(0) is not possible for small 8 (by continuity at 8 = 0) the
theorem is proved.
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