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INTRODUCTION

Bagnera(i) shows that when a certain primitive finite group of order 576, (r576,
is represented as a group of collineationsin three-dimensional space, it contains twenty-
four harmonic inversions with respect to points and planes, and he shows how to
calculate the coordinates of the points and planes of the inversions. The purpose of
this note is to discuss the configuration of these points, which we shall call vertices,
to show that the whole group is generated by the twenty-four harmonic inversions,
termed projections after Prof. Baker (2) and Dr J. A. Todd (4), and to enumerate the
conjugate sets of the group.

1. THE CONFIGURATION

From Bagnera we find that the vertices are
( 1 , 0 , 0 , 0 ) ( 1 , 1 , 1 , 1 ) ( - 1 , 1 , 1 , 1 )

( 0 , 1 , 0 , 0 ) ( - 1 , - 1 , 1 , 1 ) ( 1 , - 1 , 1 , 1 )

( 0 , 0 , 1 , 0 ) ( - 1 , 1 , - 1 , 1 ) ( l , 1 , - 1 , 1 )

( 0 , 0 , 0 , 1 ) ( - 1 , 1 , 1 , - l ) ( 1 , 1 , 1 , - 1 )

The four vertices in each column form a tetrahedron, giving six tetrahedra in all. Each
vertex of a tetrahedron and its opposite face are found to be the fixed point and plane
for one of the twenty-four harmonic inversions of the group; we refer to such a vertex
and its corresponding plane as a pole and its polar plane.

The six tetrahedra fall into two systems of three: the first three tetrahedra we call
A -tetrahedra, and their vertices A -vertices, and the last three tetrahedra we call
B-tetrahedra, with ^-vertices. The A -tetrahedra and the i?-tetrahedra each form a
desmic system, the two systems being associated in that the eighteen edges of the three
A -tetrahedra are also the edges of the 5-tetrahedra (see Hudson (3)).

By examination of the coordinates, the configuration is seen to contain three
different types of lines:

(i) There are 18 lines, a-lines, which are the edges of the tetrahedra, each containing
four vertices, two of each system, forming a harmonic range. Evidently three of these
lines pass through each vertex. The polar planes of the four vertices on an a-line meet
in another o-line which is the opposite edge of each of the tetrahedra having the
original a-line as edge. Two such a-lines are said to he polar a-lines.

(ii) There are 72 lines, called e-lines, joining two vertices of opposite systems, and
containing no further vertices. Six of these lines pass through each vertex. The polar
planes of the vertices of an e-line meet in a second e-line which is said to be the polar
e-line of the first. If UV and U'V are polar e-lines, then the notation can be arranged
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On a finite group of order 576 27

so that U and U' come from one tetrahedron, V and V from another, and then UV,
W are polar a-lines.

(iii) There are 32 lines, called K-lines, each of which contains three vertices, one
vertex from each of the three tetrahedra of a desmic system. These lines fall into two
systems, according as they join A -vertices or B-vertices. The polar planes of the three
vertices on a /c-line meet in a /c-line of the opposite system; two K-lines so related are
said to be polar K-lines. The nine lines joining the vertices of a /c-line to those of its
polar /c-line are all e-lines.

The configuration contains just two different types of planes through three or more
non-collinear vertices:

(i) There are 24 planes, called n-planes, which are the faces of the tetrahedra and the
polar planes of the vertices. Each contains nine vertices, three vertices of the tetra-
hedron whose face it is, and six vertices of the opposite system. These six vertices are
the vertices of a complete quadrilateral of /c-lines whose diagonal triangle is formed by
the three edges of the tetrahedron to which the plane belongs. Thus each «-plane
contains four /c-lines, three a-lines and six e-lines. The joins of the pole of the plane to
the vertices of the diagonal triangle are a-lines, and to the other six vertices of the plane
are e-lines. These n-planes form two systems since their poles form two systems.

(ii) There are 96 planes, called d-planes, which are the planes joining a vertex to
a /c-line in its polar plane. Each contains four points, three of one system on a /c-line,
and one of the other system, the joins being e-lines. These d!-planes form two systems
since the /c-lines form two systems.

If we call the vertices of the tetrahedra of one system Lit Mt, Nt (i = 0,1, 2,3) and of
the other system Pt, Qit Rt (i = 0,1, 2, 3), we can represent the configuration diagram-
matically as follows:

p2

M2

X

X

Pi . L3

P3 Lx

Mo Qi

Ml Qo

X

X

Lo

Qi

Q2
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28 C. M. HAMILL

Here the vertices Rt are at the intersections of L0L3 and I^L^ with M0M3 and MXM2,
while the vertices Nt are at the intersections of P0P3 and P^P^ with Q0Q3 and QxQ2-
The notation is chosen in such a way that the triads of points on /t-lines and the polar
pairs of/c-lines are as follows:

L0M0N0

PoQi^i P0Q2R2 P0Q3R3 P\Q%R

L0M2N2

P3Q0R3 P2Q3R1 P2Q1R3

L0M3N3 L3M0N3 L3M3N0

PiQi^o P2Q2R0 P3 Q3 Ro

2. THE PROJECTIONS

We now consider the effect on the configuration of a harmonic inversion with respect
to a vertex X and its polar plane. This collineation, leaving fixed all the points of the
polar plane, leaves fixed the four vertices of the tetrahedron containing X, and all the
vertices joined to X by e-lines. Since the four vertices on an a-line form a harmonic
range, the second pair of vertices on each a-line through X is interchanged. Also we
see from a simple example that the other two vertices on a /c-line through X are inter-
changed. This harmonic inversion we call the projection from X and denote by p(X).

We note that p(X) permutes the vertices among themselves, thus leaving the con-
figuration invariant. Also p(X) interchanges the other two tetrahedra of its own system
and leaves each tetrahedron of the opposite system invariant. Each of the two systems
of 12 vertices is therefore left invariant under a projection p(X). It is easily verified
that the group G generated by the projections is transitive on the vertices of each
system, and also on the lines and planes of the various types and systems.

Since (?S76 contains the 24 projections p(X), the group G generated by these pro-
jections is a subgroup of G516. We shall show that in fact G is equal to GS76; we shall
also express the operations of G as products of four or fewer projections, and find their
periods and their distribution in conjugate sets.

We first show that the 24 projections form two complete sets of conjugate operations
in G. Let T be any operation of G, and for any vertex S of the configuration define
T[S] = S*. Then if X, X', Y, Y' are the two pairs of vertices on an a-line, C and D
lie on a /c-line through X, and XF is an e-line, since T is an automorphism of the con-
figuration we have

Tp{X) T-^X*] = Tp(X) [X] = T[X] = X*,
Tp(X) T~\X'*} = Tp(X) [X1] = T[X'] = X'*,
Tp{X)T~\Y*] = Tp(X)[Y] = T[Y'] = Y'*,
Tp(X) T-^C*] = Tp(X) [C] = T[D] = D*,
Tp(X) T-*[F*] = Tp{X) [F] = T[F] = F*.
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Thus Tp(X) T*1 has the same effect on the vertices as p(X*), and must be equal to
p(X*), proving that an operation conjugate to a projection is a projection. Conversely,
projections from vertices of the same system are conjugate, since G is transitive on the
vertices of a system. Projections from vertices of opposite systems cannot be con-
jugate, since G leaves each system invariant. Thus the 24 projections from two complete
conjugate sets in G.

We next obtain some fundamental relations between projections.
(i) If U and V are two vertices on an e-line,

p(U)p(V).= p(V)p(U), (A)

for each has the same effect on the vertices of the polar planes of U and V.
(ii) If L, M and N are vertices on a K-line,

p(L)p{M) = p(M)p(N) = p(N)p(L), (B)

for each has the same effect on the vertices of n-planes through LMN.
(iii) If Y, Y', Z, Z' are the vertices on an a-line,

p(Y)p(Y') = p(Y')p(Y) = p(Z)p(Z') = p(Z')p(Z), (C)

and P(Y)P(Z) = p(Z)p(Y') = p(Y')p(Z') = p(Z')p(Y), (D)

for in each case the four expressions have the same effect on the vertices of w-planes
through YZ.

(iv) If Ut (i = 0,1, 2,3) are the vertices of a tetrahedron, and (jklm) is a permutation
O f ( 0 1 2 3 ) >

for it leaves fixed all the vertices on each face of the tetrahedron.
In the work which follows it will often be necessary to transform products of pro-

jections by means of these relations. One very common technique is that of 'moving
a factor to the right (or left)'. From our relations (A)-(D) we see that, for each type of
line UV, a product of the form (pU)p(V) can also be written in either of the forms
p{V)p(U'),p(V')p{U) for some £7'and V. By using this result, any factor in a product
of projections may be moved one or more places in. either direction without altering
the number of factors in the product. Thus if a product contains a repeated factor p(X)
it is always possible to move one of the factors p(X) until it is adjacent to the other,
and the two can then be cancelled.

We can now commence the enumeration of the operations of G. We have already
two types of operation, namely,

I. The identical operation.

II. The 24 projections, each of period 2, forming two equal conjugate sets.

3. PRODUCTS OF PROJECTIONS FROM COLLTNEAR SETS OF VERTICES

3-1. If UV is an e-line^ relation (A) shows that p(U) and^p(F) commute. Thus each
e-line gives a single new product p(U)p(V), and this is of period 2. Since it is easy to
see that p(U)p(V) leaves fixed U and V, and also the vertices U' and V of the polar
e-line, but no other vertices, this operation can arise from at most two distinct e-lines.

https://doi.org/10.1017/S0305004100023951 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004100023951


30 C. M. HAMILL

But if U" and U'" are the remaining vertices of the tetrahedron containing U and U',
by relations (C) and (E) we have

p(U)p(V).p(V')p(U') = p(U).p(U")p(U'").p(U') = E.

Each operation does, therefore, arise from two distinct e-lines. Since G is transitive
on e-lines, all the operations of this type belong to a single conjugate set. Hence, since
there are 72 e-lines, G contains

III. 36 operations of period 2, products of projections from the two vertices of an
e-line, forming a single conjugate set.

3-2. If LMN is a /c-line, from (B)

[p(L)p(M)f = p(L)p(M).p(M)p(N).p(N)p(L) = E,

so that p(L) p(M) is of period 3. Its square (or inverse) is p(M)p(L), and these are the
only two new operations arising from the /c-line. Since p(L)p{M) keeps fixed the ver-
tices of the polar /c-line and no others, distinct /c-lines give distinct operations. The two
operations arising from a /c-line are conjugate, for p(L) transforms one into the other;
also G is transitive on /c-lines in each system. Hence, since there are 32 /c-lines in two
sj'stems, G contains

IV. 64 operations of period 3, each the product of projections from two vertices of
a /c-line, forming two conjugate sets of 32 operations each.

3-3. From an a-line YY'ZZ' we have two different types of operation. Firstly, there
are operations such as p(Y)p(Y'). By relation (C) there is only one operation of this
type from an a-line, and it is equal to its inverse and so is of period two. By (E), since
the polar a-line is the opposite edge of the tetrahedron containing Y, the polar line
gives the same operation. Nowp(Y)p(Y') leaves fixed the vertices on YY' and those
on the polar a-line, but no others, so each operation arises from just two a-lines, and
this operation is distinct from those of types II and III. Since G is transitive on the
18 a-lines we have that G contains

V. 9 operations of period 2, each the product of projections from two vertices of
the same tetrahedron, forming a single conjugate set.

Secondly, we have operations such asp( Y)p(Z) arising from an a-line. Now by (D),

[p(Y)p(Z)r = p(Y)p(Z).p(Z)p(Y') = p(Y)p(Y').

Thus the operation is of period 4, its square being of type V. Its inverse is p(Z)p(Y)
and, from (D), these are the two operations of this type arising from the a-line. Since
the only vertices left fixed by the operation are those on the polar a-line, distinct a-lines
yield distinct operations. The two operations from an a-line are conjugate, for p(Z)
transforms one into the other. G is transitive on the 18 a-lines, and so contains

VI. 36 operations of period 4 whose squares are of type V, each the product of
projections from two vertices of an a-line, forming a single conjugate set.

It is easily seen that no further operations arise from an a-line, as any product of
projections from three points of such a line can be transformed to one of the types
which has already been considered.
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4. PRODUCTS OF PROJECTIONS FROM COPLANAR SETS OF VERTICES

4 1 . If XLMN is a d-plane, with LMN a K-line, p(X) commutes with each of p(L),
p(M),p(N). We have, therefore, just two new operationsp(X)p(L)p(M) and its inverse
p(X)p(M)p(L) arising from the plane. Now

[p{X)p[L)p{M)f = [p(X)f[p(L)p(M)f = p(M)p(L)

and [p(X)p(L)p(M )]3 = p(X)p(L)p(M) .p(M)p(L) = p(X).

Thus p(X) p(L) p(M) has period 6, and, from the nature of its square and cube, distinct
d-planes give rise to distinct operations of this type. Now p(L) transforms each of the
operations arising from the plane XLMN into the other, and G is transitive on the
d-planesof each system. Hence, since there are 96 d-planes, G contains

VII. 192 operations of period 6, whose squares are of type IV and whose cubes are
of type II, each being the product of projections from three vertices of a d-plane, forming
two equal conjugate sets.

We have now obtained 362 operations of G. Since 362 > \ x 576, we have thus shown
that G = G576.

4-2. We next consider the operations derived from vertices in an w-plane, the polar
plane of the vertex Po. Let the four /c-lines in the plane be L'MN, LM'N, LMN',
L'M'N', and the three a-lines be P2P3LL', P3PXMM', P^NN'. We can find at once
six new operations, the results of permuting L, M and N in the product p(L)p(M)p(N).
Now, by bringing the two factors p(L) together, we see that

[p(L)p(M)p(N)Y = p(L)p(M)p(N).p(L)p(M)p(N)

= p(N')p{M') .p{M)p(N)

= p(M')p(M),

which is of type V. Thus p(L)p (M)p(N) has period 4, and we see that the six operations
are distinct. The only vertices which an operation of this type can leave fixed are Po

and vertices in the plane LMN; p(L)p(M)p(N) leaves fixed in fact just the vertices
Po and P2, and so can arise from just two ra-planes, the polar planes of these two points.
Now

p(L)p(M)p(N) = p(L)p(L')p(M) = p(P2)p(P3)p(M) ^ p(P0)p(P1)p(M),

and this last product is written in terms of projections from vertices in the polar plane of
P2. From this we see that p( L) p( M) p(N) can be written as an operation of the same type
in the polar plane of P2, and does arise from two n-planes. The six operations from a
plane are all conjugate in G, for p(L) and p(L') transform p(L)p(M)p(N) into
p(M)p(N)p(L) and p(L)p(N)p(M) respectively. G is transitive on each of the two
systems of %-planes, and hence contains

VIII. 72 operations of period 4, whose squares are of type V, each the product of
projections from three vertices of an »-plane, forming two conjugate sets of 36 opera-
tions each.

Since there are twelve ?i-planes of each system permuted transitively by G, the order
of the sub-group leaving an «,-plane fixed is -£% x 576 = 48. We have already at least 40
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of these operations, namely (i) the identity, (ii) the projection from the pole of the plane,
(iii) 9 projections from the vertices of the plane, (iv) 6 operations of type III, (v) 8 opera-
tions of type IV, (vi) 3 operations of type V, (vii) 6 operations of type VI, and (viii)
6 operations of type VIII. Also the 8 operations of type VII from the four d-planes
joining the pole of the plane to the four /c-lines in the plane leave fixed the pole of the
plane. Thus we have all the operations which leave fixed an w-plane, and therefore all
the operations arising from projections from vertices in an n-plane.

5. PRODUCTS OF PROJECTIONS FROM NON-COPLANAR SETS OF VERTICES

We consider first the products of projections from four vertices of the same system.
Evidently the only distribution of the vertices among the tetrahedra of the system
giving a product which cannot be reduced to a product of less than four projections, is
to have two vertices from each of two tetrahedra of the system, the projections from
two vertices of one of the tetrahedra being adjacent factors. If the vertices of the three
tetrahedra are Pit Qit Rt (i = 0,1,2,3) we can write every such product in the form
T = p(Pi)p(Pi)p(Qk)p(Ql) (i,j,k,l = 0,1,2,3; i*j, k + l). For a product in the form
P(Qm)P(Qn)P(Pq)P(Pr) c a n De written in the form of T by moving the product
p(Qm)P(Qn) t o t n e right. Also a product in the form p(Pm)p(Pn)p(Rq)p{RT) can, by
moving the product p(Rq)p{Rr) one place to the left, be put in the form

and this can be altered to the required form by moving p(Ps) two places to the left.
Further, since products of type V from opposite edges of a tetrahedron are the same,
any such product can be written in the form T = p(Po)p(Pi)p(Qj)p(Qo)> where
i, j = 1, 2, 3, but PoPcQjQo are not coplanar. Reference to the diagram on p. 27 shows
that this implies i 3=j. As Pt Qt is a /c-line and distinct /c-lines give distinct operations
of type IV we have just 6 distinct operations of the type T. Also the two systems give
the same operations, since p(P0)p{Pi) &n&p(Qj)p(Q0), being of type V, can be expressed
as similar products in terms of vertices of the other system. Now we have

= p(Po)p(Pi)p(Qj).p(Ro)p(Ri)p(Qj)-P(Qo)p(Qo)

= E,

where (ijk) is a permutation of (123). Since these operations leave each tetrahedron
invariant, but no vertices invariant, they are distinct from the operations of period 2
so far obtained. These six operations form a single conjugate set, for

p(P0) lp(Po)p(Pi)p(Qj)p(Qo)] [p(Po)]-1 = p(Pi)p{Pj) PiQj) PiQo)

and p(Q0) [p(Po)p(Pi)p(Qi)P(Qo)]lp(Qo)r1 =

Thus O contains

IX. Six operations of period 2, each the product of projections from four vertices
of the same system, forming a single conjugate set.
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5-2. We now consider the products of projections from three vertices of one system
and one vertex of the opposite system. The product can always be written so that the
three vertices from the same system come two from one tetrahedron and one from
another, the two from the same tetrahedron occurring as adjacent factors. These two
factors then form a product of type V, which can be replaced by a similar product in
terms of vertices of the opposite system. Thus operations involving three A -vertices
and one -B-vertex are the same as those involving three U-vertices and one A -vertex.
Moreover, the product can be arranged so that its first factor is the projection from a
B-vertex and the other three factors are projections from A -vertices. These A -vertices
must lie in an «-plane, so their product is an operation of type VIII. If the .B-vertex
belongs to the tetrahedron which contains the pole of the n-plane, the operation leaves
that pole invariant, and so has already been considered. Thus for a new operation the
.B-vertex must belong to a tetrahedron which does not contain the pole of the w-plane.
A typical operation of this form is T = p(M0) p(P0) p{Q0) piRJ = piM^piP^piP^piQ^.

T* = P(Mo).p(Po)p(P1)p(Qo).p(Mo)p(Po)p(P1)p(Qo)

= p(Po)p(P3)p(Qo).p(Po)P(Pi)P(Qo)

= P(Po)P(Ps)P(Po)P(Pi)P(Qi)P(Qo)

= P(PO)P(P2)P(QI)P(QO)>

which is of type IX, showing that T is of period 4, and is a new operation. Now there
are 36 operations of type VIII from the w-planes of one system, and 8 possible vertices
of the opposite system with each, giving 36x8 operations of this kind. At least 36x2
of these are distinct, as operations with the single vertex belonging to different tetra-
hedra have different effects on the tetrahedra. We find that each operation can be
written in four ways, with the single vertex being each in turn of the four vertices of
a tetrahedron. For example

= P(Mo)p(Q1)p(Po)p(P1)

= P(M2)p(Q3)p(P0)P(P1)

and P(M0)p(P0)p(Pl)p(Q0) = p(M3)p(P2) p{Px)p{Q2)

since p(M3)p(P2)=p(M2)p(P0),

by (D). Thus we have just 72 distinct operations of this type. By considering the effect
of operations such as p{P0), p(Q0) it is easily seen that T is conjugate to

p(M0) Tt (i = 1,2, 3,4,5),

where Tt are the remaining five operations of type VIII from the plane P0P1Q0; also
p(L0) transforms T to p(N0)p(P0)p(P1)p(Q0). Hence, since G is transitive on the
w-planes of a system, G contains

X. 72 operations of period 4, whose squares are of type IX, each the product of
projections from four vertices, three of one system and one of the other, forming a
single conjugate set.

PSP-M.i 3
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34 C. M. HAMILL

5-3. There now remain to be considered the products of projections from four
vertices when two of the vertices belong to each system. If the product cannot be
transformed to an operation already considered, the vertices must all belong to
different tetrahedra, so that the product can be written as the product of two operations
of type IV from /c-lines of different systems. Three cases arise, according as one /c-line
(i) is the polar line of the other, (ii) meets the polar line of the other, or (iii) is skew to
the polar line of the other.

The case (iii) can be transformed to one of the cases (i) or (ii). For, if the operation
isp(P)p(Q)p(L)p(M) where PQR and LMN are /c-lines, then QLM is an ?i-plane and
one of QL, QM, QN is an e-line; without loss of generality, by (B), we can suppose that
QL is an e-line. Then p(Q) p(L) can be replaced by the operation of the same type from
the polar e-line Q'L', where QQ' is an a-line. But then Q' is the pole of the plane QLM,
and so is on the polar line of each /e-line in that plane. In particular it is on the polar
line of L'M. Thus we have the operation written in the form p(P)p(Q')p(L')p(M)
where Q' is on the polar line of L'M.

We now consider the case (i), of which a typical operation is

T=p(P0)p(Q0)P(L0)p(M0).

Since each of p(P0), p(Q0) commutes with each of p(L0), p(M0),

T* = [p(Lo)p(Mo)f[p(Po)p(Qo)f =p(M0)p(L0)p(Q0)P(P0) = T~*

and T is of period 3. By its effect on the tetrahedra, this operation can be seen to be
distinct from the operations of type IV, the only other operations of 0 with period 3.
There are four operations like this from each pair of polar /c-lines, and 16 such pairs,
giving 64 operations in all. We shall see that each distinct operation arises from just
four pairs of polar /c-lines. In the first place, any operation which is the same as T can
be written in the form p{Pi)p{Q1)p{Lk)p{Ml) (by considering the effect of the various
possibilities on the tetrahedra). Since QjLkMl is a d-plane, and distinct d-planes give
distinct operations, no two different expressions for the same operation can involve
the same vertex Pi. Hence each operation can arise from at most four pairs of polar
/c-lines. Secondly,

p(Po)p(Qo)p(Lo)p(M0) = p(Po)p(Lo)p(Qo)p(Mo)

= P(P0)P(M0)P(Q0)P(N0)

= p(P2)p(M1)p(Qo)p(No)

and P(Po)P(Qo)P(L0)p(M0) = p(P2) p(Q3) p(L3) piMJ

= P(P*)P(Qi)P(L2)p(M3).
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Hence each operation does arise from four pairs of polar /c-lines, and we have 16 distinct
operations of this type. The four operations arising from one pair of polar /c-lines are
evidently conjugate, and G is transitive on the /c-lines of a system. We have, therefore,
that G contains

XI. 16 operations of period 3, each the product of two operations of type IV from
polar /c-lines, and thus expressible as a product of four projections, forming a single
conjugate set.

If two /c-lines are such that one meets the polar /c-line of the other, it is evident that
the relation is symmetric. This means that the operations arising in case (ii) can be
written in the form p(U)p(V)p(X)p( Y) where UV and 1 7 are /c-lines, and V is on the
polar line of 1 7 , I on the polar line of UV. We shall consider only products in this
form, of which Tx = p(Q0)p(P2)p(Mo)p(L3) is typical. Now

T\ = p(Qo)p(P2)p(Mo)p(L3).p(Qo)p(P2)p(Mo)P(L3)

= P(Qo)P(P*) •P(Q»)P(P,) • [p(M0)p(L3)f

= p(Po)p(Qo)p(Lo)p(Mo)

since RXL3, R0L0 are polar e-lines. Hence

Tl = p(Po)p(Qo)P(Lo)p(Mo).p(Qo)p(P2)p(Mo)p(L3)

= p(P0)p(L0)p(M0) .p(Pi)p(M0)p(L3)

= p(P0)p(L0)p(P2)p(L3)

= P(PO)P(P2)P(QI)P(QO)-

Thus T\ is of type XI and T\ of type IX, showing that Tx has period 6 and is a new
operation. We find that each operation can be written in twelve ways, with a pro-
jection from each of the twelve vertices of a system as the first factor. For example:

= P(Qo)P(Ls)p(P2)p(N3)

= p(Q1)p(L1)p(Pi)p(N3)

= p(Q1)p(P1)p(M3)p(L1),

and similarly Tx = p(Q2)p(P3)p(M2)P(L2),

and Tx = piQJpWpiMJpiLJ.

Also Tx = P(QO)P(P2)P(L3)P(N3)

= P(Qo)P(Pz)P(Li)p(N3)

= p(P3)p(Ra)P(L2)p(N3),

and similarly Tx = p(R2)p(Q2)P(N1)p(,M2).

There are 16 /c-lines of one system, each of which has nine /c-lines of the opposite system
meeting its polar /c-line, and each pair of suitable /c-lines yields four operations of this
type, giving 1 6 x 9 x 4 products. Since each operation can be written in twelve ways
at least, not more than 48 of these products are distinct. As there are 16 distinct

3-2
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operations of type XI which are the squares of the operations at present under con-
sideration, we have at most three distinct products with the same square.

Now Ti^piBJpiQJpiMJpiLJ and T3 = p(P0) p(R2) p(M0) p(L2) each have the
same square as T1} and the three operations T1} T2, T3 are distinct, for they transform
Mo to L\, L2, L3 respectively. We have, therefore, three distinct operations of this type
with the same square. Now Tx, T2, T3 are conjugate, for Tt is transformed to T2 and T3

by p(P0)p(Q0) and p(Q0)p(Po) respectively. Since the operations of type XI form a
single conjugate set, it follows that the operations of the present type form a single
conjugate set. Hence G contains

XII. 48 operations of period 6, whose squares are of type XI and whose cubes are
of type IX, each the product of projections from four vertices, two from each system,
forming a single conjugate set.

We have now obtained all the 576 operations of the group 0 generated by our 24
projections, expressing each as a product of four, or fewer, projections, and have shown
how they are distributed in conjugate sets. The results are summarized in the following
table, in which n is the least number of projections whose product is of the given type,
and N is the number of operations of that type.

Operations of the group Cr576

Type

I
I I
I I I
IV
V
VI
VI I
VIII
I X
X
X I
X I I

N

1
24
36
64

9
36

192
72

6
72
16
48

Period

1
2
2
3
2
4
6
4
2
4
3
6

Types of the powers
of the operations

—
—

Squares, V
Squares, IV; cubes, II
Squares, V

—
Squares, IX

—
Squares, XI; cubes, IX

n

1
2
2
2
2
3
3
4
4
4
4

Number of
conjugate

sets

1
2
1
2
1
1
2
2
1
1
1
1

My thanks are due to Dr J. A. Todd for suggesting this problem and for much help
in its solution.
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