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We shall present this paper in the framework and terminology of differential topology
though all our arguments are valid in the piecewise linear case also, under local un-
knottedness hypotheses. In particular we use R? for Euclidean space of dimension
p,8P-1 for the standard unit sphere in it, and DP for the disc which it bounds.

Kosinski proved in (5), with certain restrictions on p and g, the following theorems.

I Let T be a submanifold of SP+2+1, diffeomorphic to 8P x S9. Then the closure of one
of its complementary components is diffeomorphic to DP+1 x S4.
II LetT,,T,beasinI. Thenthereisadiffeomorphism hof SP+a+1with h(Ty) = T.

IIT Let 8,, S, be submanifolds of SP+e+l, diffeomorphic to SP. Then Sp+a+l_ S,
and SP+etl — 8, are diffeomorphic.

The present paper is motivated by the observation that all three theorems can be
improved. To fix notation, we mention:

Leva 1. Let T7%2 be a submanifold of SP+e+L, with the homology of 8P x 82, and such
that each component has Abelian fundamental group. Then Sp+etl T splits as the dis-
joint union of two open sets, with closures C, and C,, each with boundary T. C, is a
homology SP, and if p = 1 also a homotopy SP (similarly for q).

We shall call a manifold imbedded in a sphere, and diffeomorphic to a product P
of a sphere with a disc or sphere, unknotted if there is a diffecomorphism of the larger
sphere throwing the manifold onto the standard imbedded copy of P. A manifold
diffeomorphic to the product of two spheres we call a torus. Now, with the notation of
Lemma 1, our first main result is

THEOREM 2. Assume p+g+1 =+ 4.

(A) Suppose C, is a homotopy SP. If p+q+1 =25, 0r if ¢ = 1let T be « torus. If
p = land g = 3, assume the conjecture below. Then C,, is diffeomorphic to SP x DI+,

(B) Suppose p,q + land, if p+q+1 = 5, that T is a torus. Then T' is an unknotted
torus.

(C) Suppose q =1, and that T is a torus. If p = 3, assume the conjecture below.
Then T is unknotted if and only if C, is a homotopy S™.

Conjecture. Any h-cobordism of 8% x 8 to itself is diffeomorphic to 83 x S1x 1.

It should perhaps be mentioned that although we formulate the conjecture in
geometric terms, we have succeeded in doing the geometry, and reducing the problem
to a purely algebraic (commutative) one. In particular, there is no connexion whatever
between our conjecture and the unsolved cases of the Poincaré conjecture.
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We now consider a submanifold 8§ < §7+2, diffeomorphic to S?. It is not hard to see
that the normal bundle is necessarily trivial, so the boundary 7 of a tubular neigh-
bourhood is diffeomorphic to 87 x 8. We then have

THEOREM 3. Let p + 2. Then 8 is unknotted if and only if T is.

CoLLorarY 3-1. If p + 2,3,8 is unknotted if and only if SP+2— 8 is a homotopy
circle. If p = 3, this holds if the conjecture above is true.

When p > 4, this corollary is due to Levine ((6)). (Levine excludes the case p = 5,
but Browder has pointed out an easy way to fill the gap in the argument.)

Proof of Lemma 1. Let T be a submanifold of SP+2+!, with the homology of S» x S¢;
p,q > 0. By Alexander’s duality theorem, C = §P+¢+1 T has two components, and
H(C) vanishes for 7 + 0, p,q; if p+q, H,(C)~Z, H/(C) ~Z, whereas if p =g,
H,(C) ~Z +Z. Let the components be C' and C”. Neither can be acyclic, for if ¢’
was, its closure would be an acyclic manifold, and its boundary a homology sphere.
So one component is a homology p-sphere, the other a homology ¢-sphere; we label
their closures C, and C,.

The case p = ¢ = 0 is trivial (7' consists of four points lying on a circle); if p > 0,
g = 0 a similar argument shows that we have three components; two acyclic (with
union C,, say), and a homology 8?7, C?. This reduces us to the case above, as again
0C, = T = 0C,. Alsoif p = 1, the Schonflies theorem (in the plane) shows

C,~8'x D', C,~8%x D2

Now return to the general case, and suppose 7,(7") Abelian. If p,q > 2 this shows
that T' is simply connected; van Kampen’s theorem now shows that C, and C, are
simply connected (for 1 = m,(8?+¢+1) = m,(C,) % 7,(C,)), so they are homotopy spheres.
A similar argument goes if p > 2, ¢ = 0, as each component of 7' is simply-connected.
Finally, let p > 2, ¢ = 1, so my(T") ~ H\(T') ~ Z. The commutative diagram

my(T) —> ﬂl(oq)

]
H\(T)—=> H,(C,))
shows that 7 (7') is a ‘retract’ of 7,(C,); hence m,(C,) is a retract of
1y (Cp) # nyym(Cy) = my(8P+eHY) = {1},
so C, is simply connected, hence a homotopy S?.

Proof of Theorem 2. We have already considered the cases p +¢+ 1 < 2; the cases
p+q+1 = 3 are due essentially to Alexander ((1)).

Now suppose p > g and p+q > 5. Then p+g+1 > 2¢+1, so (if C, is a homotopy
S%) we can imbed 87 in C, by a homotopy equivalence. Moreover, §? unknots in
Sp+a+1 (this is due to Whitney ((10)) if > g and to Wu ((11)) if p = ¢), and in particular
has a trivial normal bundle. Since the codimension p+1 > 3, and the dimension
P+ g +1 > 6,aresult of Smale ((7), Theorem 4-1) shows that C, is a tubular neighbour-
hood of 82, and hence an unknotted D?+1 x §2. Hence also T' = 87 x S7 is unknotted,
and C, diffeomorphic to S? x Dz+1.
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In the case p + ¢ = 4, the only gap in this argument is the appeal to Smale’s theorem,
and the only gap in Smale’s argument is the assertion that an A-cobordism between
87 x 82 and itself is diffeomorphic to a product. But for p = ¢ = 2, this has been proved
by Barden ((2)); for p = 3, ¢ = 1itis our conjecture above; for p = 4, ¢ = 0it wasshown
by Smale ((7)) that ‘a contractible 5-manifold with boundary diffeomorphic to §%is
diffeomorphic to D%’, from which the result follows.

We have now proved parts (B) and (C) of the theorem, and all cases of part (A)
except ¢ = 1, p > 3, when C, is necessarily a homotopy 87, but unknotting need not
occur. In this case we assume 7' diffeomorphic to 87 x . Introduce corners on 2C,
so that 7' is the product of S and a square. Then C,, is an k-cobordism of manifolds
with boundary (diffeomorphic to 87 x I — the ‘ends’ of the square) which, on the
boundary (the ‘sides’ of the square) is a product. Hence the %A-cobordism is also &
product in a neighbourhood of the sides. Remove the sides and apply Smale ((7),
Theorem 3-1): it follows if p+2 > 5 that C, is a product, S x I x I. Removing the
corners again, we have 87 x D2.

We now give an alternative proof of this last case, valid for p > 3, modelled on
Alexander’s proof when p = 1, and not depending on any conjecture. Let xzeSP.
Then x x §! is null-homotopic in C,; as dim C, > 5, x x S* bounds an imbedded disc
D?in C,,. This disc has a tubular neighbourhood D? x D?in C,, meeting 7' in D? x S'.
Also, since the group §0,, = 80,,,; and hence acts on S?, we can change the diffeo-
morphism of 7' on SP x 8! so that the framing induced by the tubular neighbourhood
above coincides with the product framing of ' x 8! in 87 x 8. Now delete DP x §!
from T, and replace by 8P—1 x D?, thus giving a manifold U, and round the corners.
U is diffeomorphic to a sphere S#*1, so (by Smale again) bounds a disc DP+2?in C,,.
Now C,, is obtained by attaching D? x D? to DP+2: we assert that the attaching sphere
871 x 0 bounds a disc in U, so is unknotted. Hence C,, is a D?-bundle over S?; since it i3
parallelizable, C, ~ 87 x D% In fact, let I be an arc in D? joining 0 to a point
y €St = 9D2. Then 871 x 0 bounds the disc (SP-1x I) v (DP x y)in U.

Remark. If p > q = 1, then SP x 8% can knot in SPHa+1,

Examples are known ((3)) of imbeddings of 87 in S?*2 (p > 1) whose complement
has non-Abelian fundamental group. If T is the boundary of a tubular neighbourhood
of 87, the corresponding 7, (C,) is also non-Abelian, so 7' is knotted.

Proof of Theorem 3. In one direction this is trivial; if § is unknotted, then 7' certainly
is. Conversely, suppose 7' unknotted. The unknotting gives a diffecomorphism of 7
on an unknotted S? x 81; for z € 81, SP x  is then unknotted. Our idea is to prove S
diffeotopic to SP x z.

As T is the boundary of a tubular neighbourhood of S, we have a diffeomorphism
of T on 8 x 8, and § is diffeotopic to S x z. We now need

LemMa 4. Let M and N be connected closed manifolds, b a homeomorphism of M x S*
on N x 8Y with hy m (M) = m(N), z € S1. Then there is an h-cobordism W imbedded in
N x 8t x I, with ends (M x z) x 0 and (N xz) x 1.

Assuming this, we proceed as follows. We can regard S7+2 as formed of the tubular
neighbourhood S x D2, a collar neighbourhood 7 x I, and the complement DP+! x S*.

42 Camb. Philos. 61, 3

https://doi.org/10.1017/50305004100039001 Published online by Cambridge University Press


https://doi.org/10.1017/S0305004100039001

662 C.T.C. WaLL

Taking S? and 8 for M and N in Lemma 4, we obtain an A-cobordism W in 7' x I.
If I is an arc in D2 joining O to x, consider the union AP+ of §x I, W, and D?+1 x x:
this is a contractible manifold bounded by § in §7+2 (and can easily be made smooth
by rounding corners). But if p > 4, the fact that AP*! is contractible with boundary
diffeomorphic to 87 implies that AP+! is diffeomorphic to D?+1; since DP+1 unknots
in 87+2 it follows that S is unknotted.

The case p = 3, as usual, offers more difficulty. Let us write £* for a homotopy
n-sphere, A” for a compact contractible nz-manifold. Then we will prove

LeMMA 5. (i) Let 4 = 0A] = 0A}. Then there is a diffeomorphism of A% on A} inducing
the identity on Z4.

(ii) Any two imbeddings of Z4 in S° are equivalent by a diffeomorphism of S5.

(iil) Any two imbeddings of A* in S5 are equivalent by a diffeomorphism of S°.

(iv) Let 90A* = §3. We can imbed A in S° with its boundary unknotted.

It follows immediately from (iii) and (iv) that any 3-sphere in 83, which bounds a
contractible 4-manifold in 83, is unknotted; this completes the proof of Theorem 3.

Proof of Lemma 4. Our model S is the unit circle in the complex plane; we may take
x = 1. Define e: R! - §'by e(f) = e2"%; this is the projection of the universal cevering.
Also, for ¢ € R, write T'(t) = t+ 1. Then T generates the group of deck transformations,
isomorphic to 7,(8*) = Z. We also write e: N x R - N x 81 for the product with the
identity, and correspondingly for 7'; p,: N x R — R for the projection.

Since h, m,(M) = m,(N), he factors through e, he = eh’. Since M is compact, for
some %, po(Th'(M)) = T(p,h'(M)) consists only of positive numbers. Write 2" = T%h/'.
Now N = N x 0 certainly separates N x R; for the same reason so does 2"(M), which
is disjoint from N. Hence there is a submanifold V of N x R with boundary 2"(3) v N.
It is now easy to check that V is an h-cobordism (e.g. Hy(V,N) = H (VuNxR—,
N xR —). But N x R— is a deformation retract of N x R; so is

Vo(NxR—)=h(MxR-).

Also, p,(V) is non-negative.
Define F: N xR, - N x8S'xIby
¢
F(n,t)= [n, e(t),m].
Since t/(1+#) is strictly monotone, this is (1 —1); hence F|V is an imbedding. Also,
F, (M) < h(M)x 1. For me M, write FA"(m) = (h{m), u(m)). Now define

GMxI—->hMyxI cNx8xI by G(m,t)=(him),t+(1-—t)u(m)).

This again is clearly an imbedding, and G(m, 0) = (k(m), u(m)) = FA"(M). So F(V)and
G(M x I) fit together along F(M): their union is an A-cobordism, of F(¥) = N x1x0
to G(M x 1) = h(M)x 1.

Wenow check that theimages (V)and G(M x I)overlaponlyalong F(3{)= G(M x 0).
Butfort¢ > 0, the point G(m, t) has the same coordinates in IV x St as G/(m, 0) = Fh"(M),
and a larger coordinate in . Thus if it lies in the image of F, it must be the transform
of Fh"(M) by some T%: ¢ > 0. But if 1 > 0, TA"(M) is clearly not contained in V;
it is connected and disjoint from éV(= N x 0 v &"(M)) so it is disjoint from V.
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It follows that we can take W as F(V)u G(M x I), where the corner along F(M)
must be rounded (e.g. by the Cairns-Hirsch theorem).

Proof of Lemma 5. (i) Attach A}, 2¢x I, and Aj. The result is a homotopy 5-sphere
so according to Kervaire and Milnor ((4)) bounds a contractible manifold. This gives
an h-cobordism of A; and A,, which is a product on the boundary hence (Smale ((7)))
a product.

(ii) Given two imbeddings, let the closures of the complementary domains be A,
Ajor A, A;. By (i), we can extend the ‘identity’ of 24 to diffeomorphisms

A~ A, Al A,

so the imbeddings are equivalent under a diffeomorphism of §5.

(iii) Let ¢ be the double of A%. Any imbedding of A% in 8% induces one of X4, for
the imbedding must have trivial normal bundle, and so extend to an imbedding of
A*x I, which has boundary 4. (ii) now implies (iii).

(iv) Form X4 from A% by attaching D* along the boundary. By Kervaire and Milnor
{(4)) or Wall ((8)), %% bounds a A5. The double of A% is a homotopy 5-sphere, hence ((7))
diffeomorphic to 85 Thus 4 imbeds in 85, so there is an imbedding of A% in 8% with
0A* bounding a D* in 85, and hence unknotted.

It now seems appropriate to make a few comments on our conjecture.

Conjecture. Any h-cobordism H of 8* x S to itself is diffeomorphic to 83 x §1x I.

We have already drawn several consequences from this, the most interesting of which
seems to be the unknotting criterion (3-1) for imbeddings of 8% in 8°. We have also
made several steps towards a proof of the conjecture, which may be summarized as
follows.

Step 1. If we can find an h-cobordism of H to 8% x S x I, which is a product along
the edges, the result will follow—essentially by Mazur’s s-cobordism theorem (see
(9), 6:3). So attach two ‘edges’ §3x 8! x I to the boundary components of H, and a
further 83 x 8 x I to join them up (giving W) and try to prove W bounds a homotopy
8% x St

Step 2. Does W bound a framed manifold which retracts on S% x 81?2 The a priori
obstruction to this lies in Z,+ Z,, but this turns out to be irrelevant. We then do
surgery on F to make the retraction ¢: F — 8% x 8! 3-connected.

Step 3. If we can make ¢ 4-connected, it is a homotopy equivalence, and we are
finished. But 7,(¢p) = H,(¢) turns out to be a subgroup of H,y(F) and a free module
over the group ring of 7,(F); Poincaré duality defines a non-singular skew-Hermitian
form on this module, and a study of this form will be necessary before we can complete
the proof.
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