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Abstract
Towhat extent can intellectual humility be formalized?One natural idea links humility to open-mindedness,
captured by a regularity principle: no coherent hypothesis should get probability zero. While debates over
regularity often concern infinities, my objection is different. Regularity is feasible only for ideally rational,
logically omniscient agents. Yet on a common view, humility involves appreciating our limitations—
including our failure to be such agents. So whatever its merits for ideal cognition, regularity is a poor model
for human humility. Indeed, taking it as such would itself be un-humble, by failing to appreciate our own
epistemic limitations.
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1. Introduction
Epistemology concerns topics like rationality, evidence, knowledge, and related notions. Formal
epistemology approaches these topics using formal tools, such as those of probability theory and
logic. Much recent work in epistemology concerns the relationship between formal and informal
approaches to the subject matter. For instance, what connections are there between the formal
epistemologist’s notion of degree of belief or subjective probability and the informal, pretheoretical
notions of belief and knowledge?1 What lessons concerning the epistemic norms that apply to
computationally limited creatures like us can be learned by studying the idealized, perfectly rational
agents characteristic of formal epistemology?2

My aim in this article will be to offer a provisional, pessimistic judgment concerning one attempt
at bridge-building. Intellectual humility has beenmuch discussed in recent informal epistemology.3

And one important aspect of humility—open-mindedness—might seem like a promising target for
a (partial) formal regimentation. We might think an open-minded agent does not completely rule
out coherent hypotheses. Failing to rule out a hypothesis is naturally represented as assigning it
some positive probability, so it’s natural to suggest that the informal idea of a humble, open-minded
agent corresponds to the formal idea of a probability function that assigns some probability n > 0 to
each coherent hypothesis H. Ultimately, I’ll argue against this suggestion.

Here’s how the article will be structured. In Section 1, I’ll introduce a popular account of
intellectual humility (Whitcomb et al., 2017) and will motivate the idea that open-mindedness is
plausibly an important part of intellectual humility, so understood. I’ll also review some
influential arguments that rational agents are open-minded or “regular” in the formal sense that
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they do not assign probability 0 to any coherent hypotheses. I’ll go on to discuss the literature in
formal epistemology on regularity, largely to distinguish extant objections from the objection that
I’ll ultimately offer. In Section 2, I’ll review an influential objection not to regularity per se, but to
the Bayesian, probabilistic framework for representing rational belief more generally. As the
objection goes, making extensive use of probabilistic reasoning is intractably complicated for
computationally limited agents like us, so formal frameworks in which beliefs are represented as
probabilities and learning is represented as Bayesian conditionalization have few descriptive or
normative lessons for human cognition. I’ll argue that this line of thought is better understood as
an objection to a particular (popular) interpretation of the Bayesian framework, which requires
regularity, rather than to the framework itself, which does not. Finally, in Section 3, I’ll sketch a
two-stagemodel of cognition in which a rational agent facing a decision or inference problem first
constructs a “small-world” to analyze and then analyzes it using probabilistic tools. I’ll explain
how cognition so understood can make extensive use of probabilities while not being intractably
complicated and violating regularity where it does use probabilities. In this sketch, the distinction
between appropriately open-minded agents and dogmatically close-minded ones shows up at the
hard to formalize the first stage of cognition, rather than the second stage, where probabilities are
in play.

2. Humility
According to Whitcomb et al. (2017), humility in general is having the right stance toward one’s
limitations. Intellectual humility in particular, then, is having the right stance toward one’s
intellectual limitations (p. 8). What is the right stance? It depends on the limitations, but in general,
having the right stance toward one’s intellectual limitations will involve both understanding what
those limitations are and calibrating one’s beliefs and behavior in light of them. One intellectual
limitation common to all humans is fallibility. AsDescartes reminded us, there are few, if any, topics
or questions on which we cannot inadvertently slide into an error. What’s involved in taking the
proper stance toward our fallibility? In Whitcomb et al.’s terms, what does it take to “own” our
fallibility? A natural thought is that owning one’s fallibility is incompatible with being certain in any
fallibly formed beliefs. If my eyesight is fallible, then I should not be certainmy eyes aren’t deceiving
me. If my powers of inference and deduction are fallible, then I should not be certain that some
conclusion I’ve drawn using those powers is correct. Owning one’s fallibility, then, requires open-
mindedness about the possibility that one has made a mistake.

And if fallibility is ubiquitous, then there will be few, if any, topics about which we can be certain,
compatible with our being intellectually humble. Christensen (2007) offers an argument very much
along these lines, though he puts things in terms of a tension between certainty and rationality,
rather than certainty and intellectual humility:

Suppose I’ve never made a mistake in balancing my checkbook or in any other demonstrative
reasoning. Surely that does not license me in being certain that such mistakes are impossible.
And as long as such mistakes are possible, it is hard to see how I can be certain that they have
not occurred. Even if my reason for doubt is slight, and, so to speak, metaphysical—so slight
that in ordinary cases, I would not bother to think about it—still, it would seem irrational to
be absolutely certain that I had not come to believe a false claim due to a cognitive mistake.
And thus it would seem irrational for me to be absolutely certain of [the conclusion of some
demonstrative reasoning].

A closely related argument that intellectual humility—or rationality, or reasonableness, or
open-mindedness—is incompatible with certainty appeals to the need to make room for learning.
Roughly, the idea is that if you are certain that some hypothesis is false, then you will not be in a
position to recognize anything as evidence in favor of it. But any coherent hypothesis could turn out
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to gain support from one’s future evidence, so one should not rule it out to start with. Lewis (1980)
gives a pure version of this argument:

Let C be any reasonable initial credence function…I should like to assume that it makes sense
to condition on any but the empty proposition. Therefore I require that C is regular: C Bð Þ is
0, and C AjBð Þ is undefined, only if B is the empty proposition, true at no worlds… The
assumption thatC is regular will prove convenient, but it is not justified only as a convenience.
Also it is required as a condition of reasonableness: one who started out with an irregular
credence function (and who then learned from experience by conditionalizing) would
stubbornly refuse to believe some propositions no matter what the evidence in their favor
(Lewis, 1980, p. 271).4

AndCarroll (2017) offers a sort of hybrid of the argument from fallibility, and the argument from
learning:

… your degree of belief in an idea should never go all the way to either zero or one. It’s never
absolutely impossible to gather a certain bit of data, no matter what the truth is—even the
most rigorous scientific experiment is prone to errors, andmost of our daily data-collecting is
far from rigorous. That’s why science never “proves” anything; we just increase our credences
in certain ideas until they are almost (but never exactly) 100%. Bayes’s Theorem reminds us
that we should always be open to changing our minds in the face of new information…
(2017).

These arguments can seem pretty compelling. What resistance have they met with in the
philosophical literature? By and large, objections have concerned difficulties with infinity.5 To use a
well-worn example, imagine a fair lottery on the natural numbers—one number will be picked, and
each number has an equal chance of being picked. For any given number, you cannot be sure it will
not be picked. You can imagine learning that it was picked, after all. So by the arguments above, your
degree of belief that some number, say 100, is picked but cannot be 0. But if this means your degree
of belief that 100 is pickedmust be some positive number, thenwe quickly face a paradox. Either you
make invidious distinctions among numbers that by stipulation have the same chance of being
picked6 or you assign each number the same positive probability k of being picked, and end up with
a probability that some number is picked which is, incoherently, greater than 1. After all, however,
small k is, there’s some finite m such that km > 1.

Advocates of regularity who discuss this problem, such as Lewis (1980, p. 271), accordingly tend
to appeal to infinitesimal probabilities—probabilities that are greater than 0, but smaller than any
real number k. They then hold that in a fair lottery on the natural numbers, each number has an
infinitesimal probability of being picked. Their opponents argue that even the appeal to

4While Lewis explicitly restricts his endorsement of regularity to initial credence functions—he allows that rational credence
functions will become irregular as subjects learn from experience—most writers who endorse versions of regularity take it to
have broader scope. And I think Lewis’ restriction is hard to motivate. Here’s one coherent possibility: I become certain of a
proposition that was actually false. By Lewis’ lights, it’s hard to see how a rational agent can ever get evidence that will make her
confident of this possibility; after all, if an agent updates by conditionalization on E, and is now irregular, she will not be able to
recognize any future evidence against E. But from her initial, a priori standpoint, it’s at least possible that she should make a
mistake in becoming certain that E is true. If she thinks, ex ante, she might mistakenly become certain that E is true, it’s hard to
see why, ex post, she should feel comfortable completely excluding the possibility that her confidence in E—here, E stands in for
any proposition she’s learned—is misplaced. But then the same learning argument that Lewis uses in defence of regularity for
initial credence functions can be extended to apply even to noninitial credence functions.

5See Easwaran et al. (2021), section 6.3) for a helpful survey, especially the supplement on God’s lottery.
6By “invidious distinctions,” I refer to probability assignments that decay quickly enough so that the whole space can have a

probability of 1, for example, you could assign 1 a probability of 12 being picked, 2 a probability of
1
4, and so on.
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infinitesimal probabilities cannot save the defender of regularity from the paradox.7 My own
sympathies are with the opponents of regularity; I do not see any way to “quarantine” the difficulties
with infinities that clearly beset straightforward statements of a regularity principle. But I also
recognize that many readers will find this line of objection unconvincing. Infinities are weird! They
lead to paradoxes! Maybe we should be strict finitists.8 We certainly should not reject otherwise
compelling principles just because they break down in infinitary cases. I discuss this debate only to set
it aside. The objection to regularity that I’ll ultimately raise does not crucially depend on any reasoning
about infinity. But to get there, we need to take a detour via amore general objection not to regularity,
but to representing degrees of belief using probabilities in the first place. Ultimately, my response to
that objection will invoke a picture of probabilistic reasoning that thoroughly rejects regularity.

3. Complexity
An influential objection to the Bayesian, probabilistic framework for representing belief and
learning is that it is psychologically unrealistic because updating even a modestly complex body
of belief by Bayesian conditionalization is computationally intractable. This line of thought is often
associated with Harman (1986):

I assume that, as far as the principles of revision we follow are concerned, belief is an all-or-
nothing matter. I assume that this is so because it is too complicated for mere finite beings to
make extensive use of probabilities (p. 27).

Harman supports this assumption with an argument to the effect that the Bayesian con-
ditionalizer faces a problem of combinatorial explosion; as her corpus of beliefs gets bigger, the task
of updating it by conditionalization gets much harder, very quickly. While Harman’s argument for
this claim was relatively informal, a few years later, computer scientist George Cooper (1990)
proved that exact Bayesian inference is NP-hard, arguably vindicating Harman’s suggestion.

Within philosophy, friends of probabilistic frameworks for thinking about belief and learning
have tended to respond to considerations about the intractability of Bayesian inference by talking
about ideals and idealization. Even if learning by conditionalization is not feasible for limited agents
like us, it still represents a kind of rational ideal, and one that is useful for us to the extent that we can
understand our own cognition as better or worse approximating it.9 As I’ll ultimately offer a very
different response to worries about the intractability of probabilistic reasoning, I first want to say a
bit about why I do not find this response satisfying.

There’s an old joke that runs as follows. A tourist lost in a village in Scotland asks a local how to
get to Aberdeen. The local responds: “Well, I wouldn’t start from here.” I suggest that ifHarman is
right that belief is an all-or-nothing matter for humans, then ideals concerning how to reason with
degrees of belief are unhelpful in much the same way as the local’s advice to the tourist is. It’s no
accident, perhaps, that David Christensen—one of the main philosophical defenders of the picture
of Bayesian inference as a normative ideal—does not accept that humans do not have degrees of
belief. Rather, as I understand him, he thinks we do have degrees of belief, and what’s humanly
intractable is ensuring that those degrees of belief are probabilistically coherent, and/or updated
over time by conditionalization.10With thismetaphysical picture of belief, we can imagine how a set

7For example, see Williamson (2007) and Pruss (2013). Hájek (2012) offers an interestingly different objection to regularity
—namely, that it makes trouble for decision theory, since it leads to the result that all of our options must have infinite—or
worse, undefined—expected utility. This is because there are coherent hypotheses in which we face gambles with infinite
expected utility, and if regularity holds, we must assign those hypotheses some positive probability.

8For example, see Wright (1982).
9See, for example, Christensen (2004).
10This is how I interpret (Christensen, 2004, section 4.4).

4 Daniel Greco

https://doi.org/10.1017/can.2025.10015 Published online by Cambridge University Press

https://doi.org/10.1017/can.2025.10015


of degrees of belief that does not satisfy various coherence constraints might still get closer to
satisfying them over time, and thus, how a picture of fully rational reasoning with degrees of belief
could be a helpful kind of aspirational ideal.11

But here I want to offer a reply onHarman’s behalf, andwhich I take to be congenial with what he
wrote elsewhere.12 In both economics and philosophy, the conceptual apparatus of subjective
probabilities and utilities was introduced via representation theorems, which say, roughly, that if
people’s choices obey certain constraints, then they can be understood as having a probability
function that represents their opinions, and acting so as to maximize the expectation (relative to
their probability function) of a utility function that represents their values.13While this approach is
not without opponents, and is probably more popular in economics than philosophy,14 I think it’s
fair to refer to it as the orthodox approach to decision theory. And it requires that degrees of belief
satisfy both synchronic and diachronic coherence constraints. Roughly, what thismeans is that ifwe
want a broadly functionalist metaphysical picture of degrees of belief where representation
theorems characterize the relevant functional roles, then we cannot easily accept that we have
degrees of belief but they do not behave (even approximately) the way representation theorems say
they do.15 And if Harman is right that it’s utterly intractable to update a large corpus of belief (which
we have) by conditionalization, we should worry that any degrees of belief we might have could not
behave even approximately the way representation theorems say they do.

So if we think the lesson to draw from Harman is that we do not have mental states that come
anywhere near satisfying the constraints they’d need to be degrees of belief, then we should also
think that norms about how to ideally reason with degrees of belief just aren’t that relevant for
us. Developing the skeptical line of thought, it’s hard to see why a framework that describes an ideal
of reasoning with degrees of belief should have any lessons concerning how to evaluate our own
reasoning, which uses very different basic materials. To use a perhaps strained metaphor, knowing
what ideal flight with flexible, flapping bird wings looks like might tell you almost nothing about
how to design an airplane with rigid, immobile wings.

The response to Harman I’ll consider is in important ways concessive; I want to grant to
Harman the idea that norms for how an ideally rational agent would update an intractably vast
corpus of degrees of belief are so far removed fromhuman feasibility as to be uninteresting. But we
can remain interested in norms of belief updating and decision-making thatmake extensive use of
probabilities without accepting the picture Harman attacks. There is a tight connection between
Harman’s target—the picture of Bayesian norms describing how an ideal reasoner updates a vast
corpus of belief—and regularity, because regularity forces the corpus of beliefs that an agent is
updating to be vast. If it’s coherent to suppose that I’ma brain in a vat, then regularity requires me
to assign some small probability—perhaps infinitesimal—to this possibility. But quite a lot of
hypotheses are coherent. If all coherent hypotheses must be assigned a positive probability, then
by necessity the event space over which probabilities are distributed will be huge.16 So, if we take
Harmanian worries about computational tractability seriously, and try to respond to them by
describing how probabilistic reasoning could be done using tractably small probability spaces, we
are certain to end up describing a species of probabilistic reasoning that does not conform to a
regularity principle.

11See, for example, Staffel (2019).
12For example, see Harman (1982).
13See, for example, Ramsey (1931), Von Neumann and Morgenstern (1947), Savage (1954)
14See Easwaran (2014).
15See, for example, Houtman and Maks (1985) and Varian (1991) for two ways of characterization how choices can

approximate the constraints necessary for them to be representable as involving utility maximization. Both concern just utility,
however, and not probability.

16This is a bit quick—I’ll consider and reject a counterargument involving catch-all hypotheses in Section 3.
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Ultimately, that’s where I’ll go. I’ll first try to show that everybody—not just the Bayesian—faces
the problem of describing how updating beliefs can be tractable. In particular, I’ll argue that the
notorious “frame problem” is fruitfully viewed as a more general version of the problem of the
complexity of updating probabilistic beliefs. In this more general setting, the problem is how an
agent identifies a representation of her practical situation—one that contains enough relevant
information for solving it to be fruitful while still being compact enough to be tractably analyzable
—as the one to subject to some decision-making rule. This problem arises no less for an agent who
reasons with all-or-nothing beliefs than for an agent who reasons with degrees of belief; reasoning
with a large enough corpus of all-or-nothing beliefs is also intractably complicated. But if the
problem can be solved for all-or-nothing belief, it can arguably be solved in a very similar way for
degreed belief.17 Ultimately, however, the solution will be incompatible with insisting that degrees
of belief conform to a regularity principle.

While the original statement of the frame problem is due to McCarthy and Hayes (1981), I’ll
work with the broader formulation in Dennett (1990), who presents it in the form of a parable,
which I’ll quote in full:

Once upon a time there was a robot, named R1 by its creators. Its only task was to fend for
itself. One day its designers arranged for it to learn that its spare battery, its precious energy
supply, was locked in a roomwith a time bomb set to go off soon. R1 located the room, and the
key to the door, and formulated a plan to rescue its battery. There was a wagon in the room,
and the battery was on the wagon, and R1 hypothesized that a certain action which it called
PULLOUT (Wagon, Room, t) would result in the battery being removed from the room.
Straightaway it acted, and did succeed in getting the battery out of the room before the bomb
went off. Unfortunately, however, the bomb was also on the wagon. R1 knew that the bomb
was on the wagon in the room, but did not realize that pulling the wagon would bring the
bomb out along with the battery. Poor R1 had missed that obvious implication of its
planned act.

Back to the drawing board. ‘The solution is obvious,’ said the designers. ‘Our next robot must
be made to recognize not just the intended implications of its acts, but also the implications
about their side-effects, by deducing these implications from the descriptions it uses in
formulating its plans.’ They called their next model, the robot-deducer, R1D1. They placed
R1D1 in much the same predicament that R1 had succumbed to, and as it too hit upon the
idea of PULLOUT (Wagon, Room, t) it began, as designed, to consider the implications of
such a course of action. It had just finished deducing that pulling the wagon out of the room
would not change the colour of the room’s walls, and was embarking on a proof of the further
implication that pulling the wagon out would cause its wheels to turn more revolutions than
there were wheels on the wagon - when the bomb exploded.

Back to the drawing board. ‘Wemust teach it the difference between relevant implications and
irrelevant implications,’ said the designers, ‘and teach it to ignore the irrelevant ones.’ So they
developed a method of tagging implications as either relevant or irrelevant to the project at
hand, and installed the method in their next model, the robot-relevant-deducer, or R2D1 for
short. When they subjected R2D1 to the test that had so unequivocally selected its ancestors
for extinction, they were surprised to see it sitting, Hamlet-like, outside the room containing
the ticking bomb, the native hue of its resolution sicklied o’er with the pale cast of thought, as
Shakespeare (and more recently Fodor) has aptly put it. ‘Do something!’ they yelled at it. ‘I

17I make a similar criticism not of Harman’s argument against probabilistic frameworks for representing belief, but of a
similar argument offered by Johnson et al. (2023), in Greco (2023a, 2023b).
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am,’ it retorted. ‘I’m busily ignoring some thousands of implications I have determined to be
irrelevant. Just as soon as I find an irrelevant implication, I put it on the list of those I must
ignore, and…’ the bomb went off (pp. 1–2).

While Dennett’s discussion is rich and hard to summarize, one of themain points hemakes is
that positing that humans have a language of thought (LOT), a la Fodor (1975), does less work in
explaining how wemanage to intelligently cope with our environments than it might initially seem.
R1, R1D1, and R2D1 all have languages of thought that they can use to represent propositions about
their actions and the consequences of their actions. Still, they cannot intelligently act. While this is
not meant to be an argument that an LOT is not a necessary piece of the puzzle, it is meant to show
that in the absence of a solution to the frame problem—the absence of some story about how an
agent manages to use their LOT to pose and analyze the right questions—we have not rendered our
ability to flexibly respond to our environments in real time all that much lessmysterious by positing
an LOT.

I want to use the parable tomake a similar point to Dennett’s, but where the target is not the LOT
hypothesis, but instead the hypothesis that human beliefs are all-or-nothing, rather than degreed. In
Dennett’s parable, each of R1, R1D1, and R2D1 is working with all-or-nothing and yes-no beliefs,
rather than probabilities. Still, they either miss important implications of their beliefs or get bogged
down in trivialities. It’s not at all obvious what a solution to the frame problem would look like—or
even whether it might be somehow circumvented rather than solved18—but a natural thought is
that, somehow, intelligent agents manage to focus their cognitive resources on the right questions,
such that answering those questions and acting on that basis is both computationally feasible, and
practically fruitful. In effect, this natural thought amounts to positing a two-stage model of
cognition in which the first stage is a black box that somehow solves the frame problem—that is,
it identifies some set of questions as the relevant ones to answer—and the second stage analyzes the
questions that the first stage has outputted, and then uses the answers to those questions as the basis
for action. Once we conceive of things this way, I suggest that it’s not clear why the second stage
could not involve something that looks verymuch like textbook decision theory and expected utility
maximization. If everyone—whether they think we have all-or-nothing beliefs, or degrees of belief
—needs to appeal to a cognitive black box19 that somehow identifies a tractable set of questions for
analysis, it’s not clear why those questions could not concern probabilities and expected utilities,
rather than yes-no questions about the consequences of actions.

Before moving on, I want to preempt a natural concern. On a natural interpretation of Harman’s
argument, the problem is that probabilistic reasoning becomes very hard very quickly, so that even
not-very-complex bodies of degreed belief are intractably hard to update by conditionalization. So,
one might think that even if our frame-problem-solving black box gave us reasonably small
problems of Bayesian inference to work with, they would still be intractable; so it must instead
give us some yes-no questions to answer. This does not fit nicely with the lesson Cooper himself
drew from his proof that computing exact posterior probabilities is NP-hard, however. Rather than
concluding that probabilistic inference is hopeless, he concluded that “research should be directed
away from the search for a general, efficient probabilistic inference algorithm, and toward the
design of efficient special-case, average-case, and approximation algorithms” (Cooper, 1990,
p. 393). And the subsequent literature in computer science has vindicated this suggestion—
approximate Bayesian inference is now a rich field.20 Roughly, the lesson, as I understand it, is
that so long as you are willing to settle for methods for updating degrees of belief that give you
output probabilities that are close to the true Bayesian posterior probabilities, then reasoning with

18Tyler Brooke Wilson (2025) considers and rejects the suggestion that modern machine learning methods show how the
frame problem can be bypassed rather than solved, and I find his discussion persuasive.

19It does not need to be a black box. It’s just that we currently do not have a great story about how it works.
20See Alquier (2020) for a survey.
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probabilities need not be computationally intractable. So, there’s no obvious obstacle to the
suggestion floated in the previous paragraph, as long as we are content to settle for the idea that
the second stage of cognition is approximately, rather than perfectly, Bayesian.

In the next section, I’ll flesh out the idea of a two-stage model of cognition, drawing on the
distinction between small worlds and grand worlds, drawn by Savage (1954).

4. Small Worlds
Long before Harman or Cooper worried about the tractability of Bayesian updating, Savage (1954)
grappled with very similar concerns in the context of decision theory. Savage endorses a policy of
contingency planning, summarized by the proverb “look before you leap.” But he immediately
qualifies his endorsement:

Carried to its logical extreme, the ‘Look before you leap’ principle demands that one envisage
every conceivable policy for the government of his whole life (at least fromnow on) in itsmost
minute details, in the light of the vast number of unknown states of the world, and decide here
and now on one policy. This is utterly ridiculous, not—some might think—because there
might later be cause for regret, if things did not turn out as had been anticipated, but because
the task implied in making such a decision is not even remotely resembled by human
possibility. It is even utterly beyond our power to plan a picnic or to play a game of chess
in accordance with the principle, even when the world of states and the set of available acts to
be envisaged are artificially reduced to the narrowest reasonable limits.

Though the ‘Look before you leap’ principle is preposterous if carried to extremes, I would
none the less argue that it is the proper subject of our further discussion, because to cross one’s
bridges when one comes to them means to attack relatively simple problems of decision by
artificially confining attention to so small a world that the ‘Look before you leap’ principle can
be applied there. I am unable to formulate criteria for selecting these small worlds and indeed
believe that their selection may be a matter of judgment and experience about which it ia
impossible to enunciate complete and sharply defined general principles (p. 16).

Savage does not appeal to considerations about combinatorial explosion or computational
complexity to defend the necessity of confining one’s attention to “small worlds,” nor does he
identify probabilistic reasoning in particular as the source of the intractability of grand-world
reasoning. And he’s right not to. To stick with one of his examples, grand-world reasoning about
chess would not involve working with any probabilities. Ultimate consequences in chess—check-
mates and stalemates—follow with certainty from ultimate board positions, and intermediate
board positions followwith certainty from player decisions. But it’s still intractable—for humans or
computers—to play chess in the grand-world style, by considering the entirety of the game tree and
using backward induction to select the optimal move at each point.

So, the lesson I take from Savage is that some kind of two-stage strategy for solving a decision
problem—first, artificially confine one’s attention to a tractable simplification of the problem and
then solve it—is forced on us regardless of whether the decisions we face concern probability or not.

But—and we are now finally circling back to regularity—in the special case where the tractable
problems we solve in the second stage do involve probability, I’ll suggest that our probability
assignments will inevitably violate a regularity principle, at least in spirit. Why should this be? One
thought—too quick, but on the right track—is that the space of possibilities we consider in our
small-world problem will have to rule out some coherent hypotheses. For instance, if we are
deciding whether to call a bet in a game of poker, we are likely to think about a small world that
includes each of the standard possibilities for what cards our opponents are holding, but which does
not include possibilities in which they are holding nonstandard cards (e.g., an earl of quills, or a
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countess of clovers). Since it’s coherent to imagine that someone is holding a card other than one of
the standard 52, assigning such possibilities probability zero amounts to violating a regularity
principle. One might object that there’s a difference between assigning such possibilities probability
zero, and simply ignoring them—leaving them out of the model. I think this objection rests on a
misunderstanding. It’s an axiom of probability theory that the state space, Ω, must be assigned
probability 1. It’s a quick consequence of the axioms that the complement of the state space, 0=, must
be assigned probability 0. In any given probability model, the event 0= can be interpreted as “none of
the above.”And the fact that itmust be assigned probability 0means that a pokermodel that “ignores”
nonstandard possibilities does assign them probability 0, albeit as a class rather than case by case.

A natural suggestion at this point is that small-world probability assignments can avoid violating
regularity by using a “catch-all” event—one which, by stipulation, occurs when none of the rest of
the events considered in the small world occur.21 As long as the catch-all is assigned some positive
probability, then it would seem as if we have not violated regularity—if it turns out that your
opponent was playing some elaborate practical joke which involved using nonstandard cards, that
hypothesis wasn’t ruled out—it was already accounted for, indirectly, in the catch-all.

There are familiar reasons to be unsatisfied with the use of catch-all hypotheses in the context of
Bayesian confirmation theory. In general, it’s very hard to motivate any specific assignments of
probability to a catch-all hypothesis, let alone assignments of conditional probabilities of evidence given
the catch-all; while we can offer considerations that bear on how likely we should be to make various
astronomical observations given thatNewtonianmechanics is true, or given that general relativity is true,
it’s much harder to say what the probabilities for observations should be given that some hypothesis
other than any of the ones we have yet thought of is true. Similarly, in a decision theoretic context, it’s
very hard to motivate any assignments of payoffs to actions, given that the true state is the catch-all.

But I think we can sidestep these debates to argue that, whatever the merits of using catch-all
hypotheses to leave room for hypotheses we have not imagined, they still do not really amount to a
way of saving the spirit of the regularity principle. Imagine a small-world decision problem in which
an agent A is considering two options, a1 and a2, with different payoffs depending on two states of the
world, S1 and S2, along with a catch-all hypothesis C, for which she reserves 1% probability. This
situation is represented below, with the question marks representing the difficulty of saying how
fruitful various actions should be, conditional on some unimagined possibility turning out to be true.

While there are obvious difficulties with using such a small-world problem as a guide to action—
how are we supposed to calculate expected utilities and decide what to do, given the unknowns?—I
think we can also argue that the problem does not really respect the spirit of regularity. The decision
table represents it as certain that if a1 is chosen and the state of the world is S1, the agent will receive a
payoff of 1. But it’s hard to see how we could interpret a1 and S1 such that the possibility of a different
payoff, given that act and that state, is incoherent or impossible. Certainly, if the states are familiar
states like, for example, what cards the opponent is holding, and the actions are familiar actions like
calling a bet, it will be coherent to imagine that even though your opponent is holding worse cards
than you, calling his bet will result in a loss (e.g., maybe he’ll get so angry that he shoots you).

It seems to me the only way to avoid this problem is to pack enough detail into our states and
actions that they really do jointly fix outcomes (which will also have to be impossibly detailed) with

S1 (0.49.5) S2 (0.49.5) C (0.01)

a1 1 0 ?

a2 0 1 ?

21For a helpful, recent survey on the problem of new theories, in which such “catch-all” hypotheses are considered as a
response to a problem for Bayesian epistemology, see Aronowitz (2025).
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necessity. But once we do this, states will be so specific and fine-grained that it will no longer be
appropriate to call what we are working with a “small”world; any decision problemwhere states are
individuated sufficiently finely to avoid the worry in the previous paragraph will have so much
detail as to be intractable to solve.22 So to insist for the sake of respecting regularity that actions,
outcomes, and states should be specified with enough detail that we are not ignoring any
possibilities by treating actions and states as together necessitating outcomes is itself to fail to take
adequate account of our cognitive limitations.

Moreover, I want to suggest that once we accept what I’ve called the two-stage sketch of decision-
making—that decision-making involves first somehow settling on a small-world problem, and then
solving it—the motivation for thinking that small-world problems themselves should assign
probability to a catch-all hypothesis is substantially diminished. Assigning some probability to a
catch-all is meant to be a way of guaranteeing that we do not wrongly rule anything out. But a more
attractive response to the risk of wrongly ruling things out, I suggest, is openness to revising which
small-world model we are using, rather than insisting that all belief updating should be broadly like
Bayesian conditionalization—updating within a model that’s alreadymade some allowance for the
situation we find ourselves in. To insist that all updating should be modeled by a process like
conditionalization—perhaps somehow involving a catch-all hypothesis—is to fail to respect our
cognitive limitations. An agent is in a position to update by conditionalization when she’s already
anticipated some piece of evidence and has formed a contingency plan for how to respond to it. An
agent who is limited in what evidence she’s able to anticipate thus will not always be able to update
by conditionalization. Because we cannot anticipate all possibilities, sometimes, rather than
conditionalizing on evidence we have already made room for in our small-world model, we need
to go back to the drawing board and come up with a new small-world model that can adequately
account for the force of the previously unanticipated evidence.

This suggests me a more promising place to locate the kind of the open-mindedness character-
istic of human intellectual humility that we have seen cannot be captured by a formal regularity
principle. An intellectually humble human will not be too wedded to the small-world framing
assumptions she uses to tackle a decision problem. That is, she’ll have the right stance toward the
fact that she is cognitively limited in what possibilities and evidence she can imagine. I admit that
this is frustratingly vague as an account of the virtue of open-mindedness. But that vagueness is an
unavoidable consequence of the fact that we do not, as yet, have an adequate account of what I’ve
called the first stage of decision-making; our various formal decision theoretic methods tell us how
to solve a given small-world decision problem, but not how to decide which small-world problem to
solve, or when to revise such decisions. If the kind of the open-mindedness characteristic of
intellectual humility manifests itself in this hard-to-formalize stage of inquiry, rather than in the
stages that are better modeled using extant formal tools, it’s no surprise that we lack a crisp
characterization of it.

An optimist might think there’s still an attractive, at least semiformal characterization of
intellectual humility that survives the concession that obeying regularity is computationally
intractable. While it’s not the case that a rational agent never assigns coherent hypotheses
probability zero, it is the case that for any coherent hypothesis a rational agent assigns probability
zero, and there’s some circumstance she could find herself in that would lead her to reconsider and
start assigning it positive probability.

This thought strikes me as a potentially promising line of investigation, but no more than that. In
the absence of a story about how rational agents do or should construct small-world decision

22Savage (1954) was well aware of the difficulties here:
…what are often thought of as consequences (that is, sure experiences of the deciding person) in isolated decision situations

typically are in reality highly uncertain. Indeed, in the final analysis, a consequence is an idealization that can perhaps never be
well approximated. I therefore suggest that we must expect acts with actually uncertain consequences to play the role of sure
consequences in typical isolated decision situations (p. 84).
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problems—it’s not even clear what we should characterize as the inputs to the process—it seems
premature to insist on constraints like the one just mentioned.Maybe if we had a clear picture of how
we do solve the frame problem, we’d also see that some hypotheses are “unreachable” for us23—we’d
never start assigning them positive probability—but we’d also regard that as acceptable, because a
different approach to solving that frame problem that would let us start assigning positive probability
to those hypotheses would be, on the whole, worse for us. I have no idea.

5. Conclusion
I’ve argued that the open-mindedness central to intellectual humility cannot plausibly be captured
by a regularity constraint on credences, given our cognitive limitations. Rather, open-
mindedness—understood as the right stance toward our own fallibility—likely manifests in the
way we approach the first-stage task of constructing tractable small-world models. But this task is
not, as yet, remotely well understood.

Future work might take up the challenge of modeling or empirically investigating this first stage.
What cues lead us to include or exclude outcomes, evidence, and world states in a small-world
model? What prompts us to reconsider those inclusions and exclusions? If we can characterize the
heuristics or patterns that guide these judgments, and in particular when they go well, we might be
able to improve on pretheoretical, informal characterizations of open-mindedness.
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