
THE ASYMPTOTIC FORM OF THE
TITCHMARSH-WEYL w-FUNCTION ASSOCIATED

WITH A NON-DEFINITE, LINEAR,
SECOND ORDER DIFFERENTIAL EQUATION

B. J. HARRIS

§1. Introduction. We consider the differential equation

-y"-(Xw-q)y = 0 for 0<x^oo, (1.1)

where w(x) = xa for a > —1, q is a real-valued member of L\jSi, oo) and A is
a complex number with

0<£<arg(A)<7r-£. (1.2)

We are concerned here with the Titchmarsh-Weyl w-function associated with
(1.1) which may be defined as follows.

Let © and q> be the solutions of (1.1) with

0(0, A) = 0, ©'(0,A) = l, ^(0,A) = - l , <p'(0,A) = 0.

The Weyl disc D{X, A) is defined to be the closed interior of the circle
which is the image of the real line under the map

{<p(,X,X)-l;<p\X,X)}

It is known, see [2], [3], [6], [7], [10] and the references listed therein, that
as X increases the discs, D(X, A), nest and as X-KX) converge to either a limit
point or a limit circle. In the limit point case we define w(A) to be the limit
point. In the limit circle case we fix w(A) as a point on the limit circle.

An equivalent, and more constructive definition of D(X, A) due to Atkinson
[3] is as follows.

DEFINITION 1. The Weyl disc, D(X, A) consists of those meC which are
such that the equation

v'=-l-(Xw-q)v2, (1.3)

with v(0, X) = m has a solution, v(x, X),for O^x^X, with

Im{y(^,A)}^0. (1.4)

It is our concern here to find the asymptotic form of the m(X) function
defined above as |A|-»oo in a sector of the form (1.2). This is a topic which
has received considerable attention in recent years following the innovative
approach of [2]. The case a = 0 has been particularly well explored, see for
example [2], [3], [7], [8] and [10].
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The case where w(x) is not, at least asymptotically, a constant has received
less attention. The articles [3] and [9] obtain order of magnitude results for a
general w while [5] derives exact results for an equation of the form

The first term in the asymptotic expansion of the w-function associated
with (1.1) for w(x) = xa(a > — 1) and a general q was found in [6]. We derive
the full asymptotic expansion in this case.

§2. The results. We define v= l/(a + 2) and k = (a + 2)/2 and note, since
a>-\, that 0 < u < l and h<k<oo. Let X{X)=X{\t\) be a function which
satisfies

0 as |A|->oo, (2.1)

|ArX(A)/(log|A|)2"-*oo as |A|->oo. (2.2)

It follows from (2.2) that \X\VX(X)^KX> as |A|-»oo.
The conditions (2.1) and (2.2) will be satisfied if, for example, we set X{X) =

|A|~y where 0<y<v.
By hypothesis ^eL'[0, 8) for S>0 and so, by (2.1), there exists a function

r\(X) such that

j \q(t)\dt=r1{X), (2.3)

o

and 7j(A)->0 as |A|-»oo. We further assume that there exists a K with

We define a sequence of functions {/>(JC, A)} for j=0,.. . , JV, where Â  is
arbitrary but fixed, for xe[0,X(X)] and A satisfying (1.2) with |A|>Ao, as
follows.

Let

where H(
v
]) denotes the Hankel-Bessel function of the first type of order v.

Further define

x w it

r,(x,A)=- q(t)expl2\ro(s,X)ds

X \ X

and fory= 1,. . . , N— 1,

X(A) 1 1 \

rJ+](x, A) = I rj{t, A)2 e x p 2 t \ r k ( s , X)ds \dt.
J \ k=o J /
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THE TITCHMARSH WEYL FUNCTION OF A DIFFERENTIAL EQUATION 211

We note that r0, and hence the subsequent rh are defined on (0, X(K))
rather than [0, X(X)] but we show below that the domain may be extended by
continuity.

THEOREM 1. As |A|->co subject to (1.2)

r,(0, A
o

In the case where m{X) is not uniquely defined, but is a point on the limit circle;
Thereom 1 applies to all such functions.

In the case where we impose more restrictions on q it is possible to give a
more explicit form of Theorem 1.

THEOREM 2. If q is continuous on a right neighbourhood ofO then

as |A|-»oo subject to (1.2) where 0 = arg (A).

In the light of Theorem 2 it would seem likely that, if q were sufficiently
smooth, there exists an asymptotic expansion of m(A) in decreasing powers of
X" which would enable the derivation of an inverse result along the lines of the
main theorem of [8].

Our proof of Theorem 1 proceeds along the following lines. Firstly we
derive a bound for the radius of the disc D(X, A). Such a bound will of course
depend on both X and A where X is constrained by (2.1)-(2.3). We suppose
in the sequel that X=X{X) satisfies the constraints of (2.1)-(2.3). We next
derive the asymptotic form of a member of D(X, A). By the nesting circles
principle m(X) has the same asymptotic form to within the radius of D(X, A)
which is shown to be exponentially small. This approach was first used by
Atkinson in [2].

§3. The radius of D{X, A). It is convenient now, and in the sequel to write

(3.1)

where \i, P > 0, thus fixing the branch of the square root. We note from (1.2)
that

|A|1/2 sin (£/2)<0<|A|1/2cos (e/2). (3.2)

LEMMA 1.

radius (D(X, A)) < c\ A| -"e-
4vpxW2v). (3.3)
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Proof It is known, see [2], [3] and [6] that
x

radius (D(X, A)) = l/(\[<p, cp]{X, A)|) = l/(|Im (A)| \ta\(p(t, X)\2dt),

where (p(t, A) is the solution of (1.1) with >̂(0, A) = 1 and <p'(0, A) = 0. From
[6] we also have that

I ta\<p(t,
o

from which the result follows.

§4. The approximation of a member ofD(X, A). We characterize a member
of D(X, A) by the construction of a r(0, A) where r(x, X) satisfies the require-
ments of Definition 1. If r is a solution of (1.3), we set u= — 1/r so that
Im {u(X, A)} >0 if, and only if, Im {t{X, A)} >0. We also see that

u'=-(Xxa-q)-u2, (4.1)

so that, if u exists and is non-zero in [0,X],

-l/u(0,X)eD(X,X). (4.2)

We seek now to approximate u, which through (4.2), furnishes our approxima-
tion to m(X).

Let r = r(x, A) be a function, to be chosen below in such a way that it is
differentiable on [0, X] and

Im{r(X,X)}^0. (4.3)

Now let u be the solution of (4.1) with

u(X,X) = r(X,X). (4.4)

Strictly we should write ur(x, A) but no ambiguity will arise if we omit the r.
We set a(x, A) = u(x, A) - r(x, A) so that

(4.5)

and

a' = Q-2ra-a2, (4.6)

where

2 (4.7)
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We now define

X

A(X) = sup
\

: r(s, X)ds \dt

{ I
and

B{X) = sup s, X)ds dt

LEMMA 2. If 4A(X)B(X) < 1 for \ X\ > Ao then

\a(x, X)\<2A{X) for |A|>Ao and all X E [ 0 , X ] .

Proof. Our proof is essentially the same as that of the corresponding result
in [2], [7] and [8], and is omitted.

We examine now the means of selecting a function r{x, X) which fulfills the
requirements of (4.3), makes Q small for large values of A, and ensures that
the hypotheses of Lemma 2 are satisfied.

For integral N( ^ 1) we set

r{x, X) = X rn(x, X) (4.8)

and observe that

We choose ro(x, A) to satisfy

Then

We choose r, so that

whence

N N N

y. r'+ y. y rm.

£ r'n+ £ rn £ rm+ £ rB £ rm.
«=2 n=2 m=0 «=0 m=2

, A) = 0,

(4.9)

, A) = - q{t) exp 2 ro(s, X)ds \dt.

\ I

(4.10)

https://doi.org/10.1112/S0025579300011700 Published online by Cambridge University Press

https://doi.org/10.1112/S0025579300011700


214 B. J. HARRIS

Proceeding iteratively in this way we have

1 '•
's tit

2 £ j rk(s, X)ds \dt (4.11)
x x I

fory= 1,. . . , N— 1 and

Q{x,X) = -rN{x,X)2. (4.12)

We note from (4.8), (4.10) and (4.11) that

,X) = ro{X,X). (4.13)

§5. The choice of r0. We set

and it may be verified from ([1], 9.1.27) that (4.9) is satisfied.

LEMMA 3. Im {ro(X, A)} ^Ofor |A| >Ao.

Proo/. We note from (2.2) that

k^oo as |A

Writing z for r ' l * / l 1 / 2 we have from ([1], 9.2.3) that

H{v\z) ~ y/2/(nz)e ~i(z' 1D"~ i<r) as |Z|

and

j y ^ ( ) / ^ < 1 ) ( ) - ' ( 0 - 1 ) ' / 2 / e - * l t / 2 = / as

Thus, Im {ro^, A ) } ~ ^ * " 1 > 0 as |z|->oo where /; is defined in (3.1). It fol-
lows from Lemma 3 and (4.13) that Im {r(X, A)} ^0 for |A| sufficiently large
subject to (1.2).

We now derive bounds for ro(x, A) for xe[0, X]. It is convenient to decom-
pose [0, X(X)] into three regions as follows.

(5.1)

where A and B are positive constants independent of x, and A which will be
chosen later. We derive bounds for ro(x, A) on each of the intervals of (5.1).
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LEMMA 4. There exists a constant A = A(a) such that for
and |A| >Ao subject to (1.2) we have

-H0X*- 1 ^ R e {/•„(*, A)} < - H

and

Proo/. We again write z = )t"VA1/2. It is shown in ([11] 7.2) that there
exist constants C\ and c2 depending only on v (and hence only on a) such that

2 V / 2

— ei(z-v*/2-"/A\\+R{v, z)], (5.2)

nz)

where

for all \z\>c2. (5.3)We set 5 = (1/256) sin (e/2) where £ is defined in (1.2).

By hypothesis \z\ ^k~xAk so, by (5.3), we may choose A so large that

\R(v,z)\^8 and \R(v-l,-z)\^S, (5.4)

for \z\ ^k~lAk. Thus, by (5.2)

- = t

and, by (5.4)

R(v-l,z)-R(v,z)
(5.5)

l+R(v,z)
Writing HlJl\(z)/H^\z) = t + ip, where t and p are real, we have from (3.1)
and (5.5) that, for y4|A|~"^x<X,

ro(x, A) = xk([fit-pp\ + i[np + pt\),

and so, by (5.5),

so that

4f +
64 64

and the first part of the lemma follows. The second part may be proved in a
similar way.

LEMMA 5. There exists a constant B=B(a)>0 such that ifX satisfies (1.2),
\X\>Xoand0^x^B\X\~v then

for positive constants k\ and k2 which are independent of x and A.
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1Proof. We use the inequality T(i)>2 for 0< / and observe that, in the
notation of the proof of Lemma 4, the hypotheses imply that O^lzKAT1/?*.
We use the representation of ([1], 9.1.14) and start from the relation

H(J\z) = i esc (vK){e'v"%(z) -J-V(z)}.

From ([1], 9.1.10) we have that if B is sufficiently small

OO ( ± .

2) ,=<,/!

and

1 1 1.+ y _ x - x
I ,_,4 l\

z\/\2
2"-2

\z\)\22"-2)-

Also, if | z\ ^ 0, and B is sufficiently small

(-z2/2)'

Now,

Thus, from (5.7)

(-z2/4)

-v) \z){T{\-v)

l 1
4 , f , / ! r ( l + / - « ) 2 ,= ,/!

(5.6)

(5.7)

(5.8)

where |£,| <2A:"252B and |£2| <k~2vB/22v'2. It now follows from (5.8) that

Ir(l),^__CSC(O*)/'2

(5.9)

where |<Ti(z)| —•O as |z|-»0. In particular we choose B so small that

We now consider H(o-\(z). If follows as before that
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We note that

°O ( -L , 1

where \E3\^2\z\2, (5.10)

whence

also

and

where |£4| <24-2t)|z|2-2t>. On combining (5.10) and (5.11) we see that

f
) ( 2 ) <

(5.11)

where <r2(z) -»0 as | z| -*0. In particular we may choose B so that | a2(z) \ ^ 1 /256
for 11\ ^ Ao and 0 «Sx <B\ A| ~e. It follows now from (5.9) and (5.12) that, under
these circumstances

+ cr2(z))

(l + cx,(z))

(5.13)

The result now follows from the bounds imposed on ai and cr2.
We notice in particular from (5.13) that

lira ro(x, A) = - (5.14)

LEMMA 6. For B\X\~v^x^A\X\ where A and B are the constants of
Lemmas 4 and 5, and X satisfies (1.2) with \k\ > Ao, ffore exirt constants c4

c5
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Proof. We again set z = A:~'x*A1/2 and note from (1.2) and the hypotheses
that

0<(5<arg(z)<7r/2, (5.15)

and

k~iBk^\z\^k-1Ak. (5.16)

It is known, ([4], 7.9), that //^''(z) is an analytic function with no zeros in
0<arg {z)<n. It follows from (5.15) and (5.16) that there exist constants C\
and c2 with

0<Cl<\H?\z)\<c2. (5.17)

We write H(
v
1ll(z) = H%-v)(z) = ea~v)"iH\ilv(z) from ([1], 9.1.6) and, since

0< v< 1, see that there exist c5 and c6 with

(5.18)

From (5.17) and (5.18) we see that there exist constants M~ and M+ with

from which the result follows.

We summarize the main results of Lemmas 4, 5 and 6, with a slight change
of notation, as follows. If |A| >Ao, subject to (1.2) then

for A\X\~v^x<X, (5.19)

ro(x,A)|<c|Ar for 0<jc^i4|Aro. (5.20)

§6. Bounds for r(x, A). We recall that

X It \

r,(x, A) = - q{t) exp 2 ro(s, X)ds \dt,

and

\
rJ+1(x, A) = \rj(t, A)2 exp 2 £ [0(5, A)<fe rjj, Xfdt.

J \ /=o J /
x x I

It follows from (2.3), (5.19) and (5.20) that there exists a constant c with

|r,(x, A)|^CT7(A) and TJ(A)->0 as |A|->oo. (6.1)
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LEMMA 7. For X satisfying the conditions of (1.2), 0 ̂  x < X and | A| > Ao

forj=l,...,N.

Proof We use induction ony. Wheny= 1 this reduces to (6.1). Suppose
now that the result holds for 7 = 7. By increasing Ao if necessary it may be
shown from (5.19), (5.20) and the induction hypothesis that for |A|>|Ao|,
subject to (1.2).

Re for

and

Re r,(s, A) for

In either case we have that

2Re<| | £ rc(s,X)ds\^c.
J

It follows that
X X

[ r t X 2dt<c [ VW2Jdt,

from which the result follows.

We note in passing that the bounds of Lemma 7 are quite crude in that,
aside from (2.4), they make no use of the fact that X(X)->0 as |A| ->oo. The
result also does not use the fact that the exponent in the integrand is negative
for most of the range of integration.

§7. Proof of Theorem 1. We show now that the r(x, A) chosen above
satisfies the conditions of Section 4. From (4.12) and Lemma 7 we see that

from (4.11) and Lemma 7 that

\r(s, X)ds^c.

(7.1)

(7.2)

It follows from (7.1) and (7.2) that, in the notation of Section 4, 4^(A)5(A) < 1
for A subject to (1.2) with |A|>Ao where Ao is sufficiently large. Thus, by
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Lemma 2,

|<r(*,A)|<ci/(A)2"' for xe[0,X].

In the notation of Section 4 we then have that

and, from Lemma 5,

-M(0, A)"1 = - I 0(°. ^) + O(J?(A)2W|Ar2°). (7.3)
V-o /

It remains to show that rad (D(X, A)) = O(^(A)2W|Ap2u). From Lemma 1 we
need to show that

! A | -vg-4. sin <

But this follows from (2.2) and (2.4).

§8. Proof of Theorem 2. We consider the case N= 1 of Theorem 1. Since
q is continuous on [0, X(X)] if |A| is sufficiently large we have from (2.4) that
7/(A) = o(l) so the error term in Theorem 1 is o(|Ap2").

We recall that

ro(X,A, A X

It may be shown, ([1], 9.1.9) that

Thus, evaluated as an improper integral,

/ \ \ A
exp 2Jro(,,A)* I — r(y),

\ o /

and

x

r,(0, A) = - | q{t) exp | 2 ro(s, X)ds \dt

T(v)
o

X

(8.1)
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We write X = \X\eiB and make the change of variable z = k~}tk\X\1/2 in (8.1) to
yield,

n2\l\-"eive

r,(O,A)=:
/ 'V" 1 (I

x f z4v-\H<
u

1\zew/2))2q((iV~l)2v\X\vz2v)dz. (8.2)

o

We write the integral in (8.2) as I\ +I2 where

z4v-\Hil\zew/2))2q(0)dz,

o

and

For 0^z^k-\X\X\v)W2v we have that 0<|X\~vz2v^cX{X)^0 as |A|->oo, so
the term [...] of I2 is o(l) by hypothesis. Further, from ([1], 9.2.3)

y-vn/2-nm &% b|->oo if 0<arg (y)<K/2,

so

It follows that I2 is o(l) as |A| -*oo. We now write

where

and

k-\x\»")'/2v

Both integrals are convergent, by (8.3) and, since Ar(A)|A|"-+oo as |A|-+oo, Il2

is o(l) as |A|-»oo. We thus have from (8.2) that

(8.4)
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222 THE TITCHMARSH WEYL FUNCTION OF A DIFFERENTIAL EQUATION

It remains only to observe that

lim ro(x, X) = -A V 0 1 V r ( 1 ~ " )
T(v)

It is reassuring to observe that in the case a = 0 so that v=j, the asymptotic
form from Theorem 2 coincides with that of [7].
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