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1. Introduction. 1-1. Let Son be a given infinite series and {sn} the sequence of its
partial sums. Let {pn} be a sequence of constants, real or complex, and let us write

The sequence-to-sequence transformation

tn = S Pn-vsJPn = 2 P,_,a,/Pn (Pn + 0) (1-1-1)
K = 0 V = 0

defines the sequence {£„} of Norlund means (9) of the sequence {sn}, generated by the
sequence of coefficients {j)TC}.|The series ~Lan is said to be summable (N,pn) to the sum
s if limfm exists and is equal to s, and is said to be absolutely summable (N,pn), or

m->-°o

summable |iV,pn|, if the sequence {tn} is of bounded variationt(8) that is,

In the special case in which

-l\ F(n + a)

the Norlund mean reduces to the familiar (C, a) mean ((6), section 4-1).
The regularity conditions for the (N,pn) method are ((6), section 4-2)

S \pk\ ^K\Pn\, pJPn->0. (1-1-3)

1-2. Let/(<) be a periodic function, with period 2n and integrable in the sense of
Lebesgue over (— n, n). We assume, as we may without any loss of generality, that the
constant term in the Fourier series of f(t) is zero, so that

f(t)dt = O
n

oo

and f(t)~ 2 {ancosnt + bnsinnt) = £ An{t).

t Symbolically, {«„} e BY; similarly by '/(a;) e By(7i, A;)', we shall mean thatf(x) is a function
of bounded variation over the interval (h, k) and {/*„} e B means that {/<„} is a bounded sequence.

X Throughout this paper K denotes a positive constant, not necessarily the same at each
occurrence.
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We write throughout:

x + t)+f(x-t)-2f(x)};

^ f'c - u ) *~ l $w d u (a

(a) J o

r (a+ l)t~a <Da(<) (a ^ 0) in particular,

fW)**, WO = t-^t);
Jo
A*-1pfc — A^~1jpfc+1, where j is some positive integer;

Bn=(n+l)pJPn;

v=0

An,k(t)= {sin(n-Jc)t}l(n-ky,

r = \jrjf\, that is, the greatest integer not greater than njt.
A summability method is said to be iia-effective (a > 0), if it sums the Fourier series

of/(() at every point t = x, at which

rt
{t-uY~l<j)*(u)du = o(«*),f

Jo
' 0

as £ -> 0.
1-3. Concerning the |O| summability of Fourier series, Bosanquet has established

the following theorem.
THEOREM A (2). If<f>a(t)eBV(0, n), then the Fourier series of f(t), att = x, is summable

\C,p\,for every J3 > a > 0.
In the special case in which a = 0, Theorem A becomes a particular case of the follow-

ing theorem of Pati.

THEOREM B (11). If (p(t)eBV(0,n), and {pn} is apositive sequence and {Rn}eBV and
{Sn}eBV, then the Fourier series off(t), att = x, is summable \N,pn\.f

Regarding the Norlund summability of Fourier series, Astrachan proved the follow-
ing theorem.

f Formerly Varshney (13), had obtained Theorem B, assuming Pncn = 0(1), instead of
{Sn}eBV. In (11), Pati has established the equivalence of these two results and has also
proved Theorem B as such. An alternative proof of Varshney's theorem is contained in (12).
The case ' {pn} is monotonic non-decreasing' of Theorem B has been proved independently by a
new and shorter technique by the present author in (3), while the case ' {pn} is non-increasing' is
disposed of by a new and shorter technique in (5) by the author.
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THEOREM C (cf. (l), Theorem I). A regular method (N,pn) is Ka-effective (0 < a < 1),
if the generating sequence {pn} satisfies the following conditions:

*\Pn\l\P«\ <> K, (1-3-1)
n

s^ l A ^ I / l P j s£ K, (1-3-2)

k(n-k)\A*pk_2\l\Pn\ ^K, (1-3-3)

n
fci

where p _ x = p _ 2 = 0.
Theorem 0 implies inter alia that a regular (N,pn) method sums the Fourier series

oif(t) tof(x), at every point t = x, at which

provided the generating sequence {pm} satisfies the conditions (l-3-l)-(l-3-4).
I t is well known that generally bounded variation is the property associated with

absolute summability in the same sense in which continuity is the property associated
with ordinary summability. Naturally, therefore, it is expected that corresponding to
Theorem C of Astrachan one might get a theorem for the |-ZV,̂ >m| summability of
Fourier series under the hypothesis: 0a(t)ei?F(O,77-),O < a < 1. The object of our
Theorem 1 is to prove such a theorem. Further, replacing the hypothesis (2-1-3) and
(2-1-4) of Theorem 1 by the hypothesis {pn} is non-decreasing, {pn+1—pn} is non-
increasing and (2-1-5), we have obtained Theorem 2 which covers Theorem A when
a = 1, whereas Theorem 1 covers the case a = 1, fi > 2.

2. The main results. 2-1. We establish the following theorems.

THEOREM 1. / / $$) eBV (0, n) and {pn} is a positive sequence such that

{Rn}eBV, (2-1-1)

{Sn}eBV, (2-1-2)

S \&Pk-i\ = 0(PJn) (2-1-3)

and S \&Pk-2\ = 0{PJn*), (2-1-4)

then the Fourier series off(t), att = x, is summable \N,pn\.

THEOREM 2. / / (fr^fyeBV(0,n) and {pn} is a positive monotonic non-decreasing
sequence such that {pn+1—pn} is non-increasing, {Rn}eBV and

S ^^K(njPn), (2-1-5)

then the Fourier series off(t), att = x, is summable \N,pn\.
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Bemarks. It may be remarked that an equivalent form of our Theorem 1 is one
where the hypothesis {Sn}eBV is replaced by {8n}eB. This follows when one refers
to a recent paper by the present author (4), where it has been pointed out that the
hypothesis {Sn}eBV is actually equivalent to the apparently lighter hypothesis
{Sn} e B , whenever {Rn} eBV and {pn} is a non-negative sequence. And as shown in (3),
{Bn} eBV implies {#„} eBV, whenever {pn} is a positive non-decreasing sequence. It may
also be observed here that our condition (2-1-4) is equivalent to the condition

2 (n- (2-1-6)

if {j)n} is non-negative and {Rn}eB. That (2-1-4) implies (2-1-6) is obvious for any
{pn}. And that if {pn} is a non-negative sequence and {Rn}eB, (2-1-6) implies (2-1-4)
is apparent from the following reasoning, kindly suggested by the referee. If (2-1-6)
holds, then

In n
2 (2n-ft)|A«pfc_a| > 2 (^n -

fc=0 fc = O

n

n 2
fc = O

and therefore n

2
fe=O

*-sl = O(PJn*).

Now if {Rn}eB and {j?n} is a non-negative sequence, then
2 n - l

log (P2JPn)= 2

2n-l

since by Lemma 6, Pfc+1/Pfc = 0(1). Thus P2JPn = 0(1) and the hypothesis (2-1-4)
follows.

The condition (2-1-6) would suggest itself in the context of Lemma 8-1 of Astrachan
(l), wherein he erroneously infers the truth of (2-1-6) from some of the hypotheses of
Theorem C. Thus in Astrachan's Theorem C the condition (2-1-6) needs to be explicitly
stated.

2-2. We require the following lemmas for the proof of our theorems.

LEMMA 1. If{Pn} is a positive sequence, then uniformly in 0 < t < n,

2 Pfccos(n-k)t < Kt~xPv.

Proof. Since in this case Pn is monotonic increasing, by Abel's Lemma, we have

Pv maxPkcos{n~k)t

LEMMA 2. If fyn}is a positive sequence, then uniformly inO <t

for 0
k=0

v < n.
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Proof. Applying Abel's Lemma as in the proof of Lemma 1 and observing that

2 K K, we get the result of Lemma 2.

LEMMA 3. Let x #= 1, then

=o
a _x = a_2 = 0.

Proof. Let us write

akx
k-2

[ n »+l m + 2 "I

S akx
k-2 S 0^3*+ S afc_2x

fc

&=0 fc=l fc=2 J

since A2afc_2 = ak_2 — 2ak_1 + ak and a_x = a_2 = 0.

LEMMA 4. If {pn} satisfies the conditions (2-1-3) and (2-1-4) and {Bn}eB, then uni-
formly in 0 < t < 77.

Proof (cf. (l) Lemma 9-2). Let us write

/ik = (n- k)pk, n_x = /t_2 = 0.
Then, for 0 < jfc ^ »,

Also ^ n = 0,

Now, by Lemma, 3, we have

Thus, rewriting fik =

5 (
U=o

Ktr*
I fc=c

|
fc=0

using the hypotheses (2-1-3), (2-1-4) and the fact that {Rn}e B.

LEMMA 5(ii). / / {pn} is a positive sequence such that {Rn}eBV, then the assertion:
{Sn}eBV is equivalent to: Pncn = 0(1), n = 0,1,2,....

32 Carob. Philos. 65, 2
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LEMMA 6 (11). //{pn} is a positive sequence such that {Rn}eB, then PJPn-i = 0(1),
as n -> oo.

LEMMA 7. If {qn} is non-negative and non-increasing, then for 0 < a ̂  b < oo and
0 < t s£ n,

pikt
k=a

where r = [1/t] and Qm = g-0 + 2i + ••• + 9V
This Lemma may be proved by following the technique of proof of Lemma 5-11 in

McFadden(7).

LEMMA 8. If{j?n} is apositive, monotonic non-decreasing sequence such that {Rn}eBV,
then uniformly in 0 < t < n

1
±j p p

n-\ sin (n — k) t
(n-k)

Proof. If {j?n} is positive and monotonic non-decreasing, then (n+ l)pn ^ Pn and
therefore {Tn}eB. Hence {R^eBV implies {Tn}eBV and the result of Lemma 8
follows from ((3), proof of S ^ K on p. 815).

3. Proof of the main results. 3-1. Proof of Theorem 1. We have

n-l IP p \

p=0 \rn -Tn-l/

I n-l
2 (

For the Fourier series of f(t),

2 C

" J O

SO that K~^n-l—~\ ^(*)|p~5— 2 (PnPk~PnPk)c0S(n~l

Thus, in order to prove our theorem we have to show that

«».

r
Jo

i, t) dt

uniformly in 0 < t < n, where

?(».*) = D 4 — " 2 (PnPk-PnPic) COS (n-k)t.

Integrating by parts, we get
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But

I "Jo" I Jou i^9(n'u))du)dm

I uig^g{n,u)\du = [ug{n,u)^Q-\ g(n,u)du

= tg(n, t) - g{n, u) du.
Jo

Thus, we have

<j>{t)g(n,t)dt=\(j>1{t)\ g{n,u)du\ + \tg(n,t)-\ g(n,u)du\<!</>$
J0 I JO ]t = n JO I J o )

And

I c* r ri n cn
S I <P(t)g{n,t)dt < 0i(<)2 (̂TO,M)d% + {S !*?(».*)I}|#i
» IJo L n Jo |J«=ff Jo n

Since by hypothesis, |d^1(<)| < ^,itsunicesforourpurposetoshowthat,uniformly
Jo

in 0 < t < n,

n | J O

and

which is equivalent to showing that

„ 1
±J p p
n •'n.xn—1

S (-P»yfc-
k=o

and

(3-1-1)

(3-1-2)

(3-1-3)

(3-1-4)

We first proceed to establish (3-1-4). We have

£-f?)p4oos(n-*)«

VV (5*-J2JP* cos (»-

n - 1

\ \

n - ll
P/l; (TO — i ) COS (TO —

say.
32-2
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By changing the order of summation and applying Lemma 1, we get

fe=0

n-1

Pkcos{n-k)t

cos («.-

|

\
y=0

\ARV\ Pv , by Lemma 6,

since by Lemma 5, hypotheses (2-1-1) and (2-1-2) imply that cnPn = 0(1). Thus,

Sj < K, (3-1-5)
by virtue of the hypothesis (2-1-1).

Now we observe that

+ * Sft(»-i)e*

say.

But

Now 1 " - 1

~. by Lemma 4,

since by Lemma 6, Pn\Pn-.x — 0{l).
Thus we have S < j£.

Following the technique of proof for S < K, we write

(3-1-6)

TO—fc

+
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By changing the order of summation and applying Lemma 2, we get

J i — 2 J VS A2J, 2 n — k

as in the proof of Sx

Next, we write
J2 < li

+

n - 1

2 2>fe sin (TO — k) t

n - 1

pksin(n-i

say.

Now, |sin(w-&)<| ^ nt, for 0 ^ k < n, therefore

21 ^ 2^ ^ i ^J ^fc — ^4 •

n,=l x ^ _ i fc=0 n-\

We write by Abel's transformation

7 1 - 1 M - l

sin (w —;

508

by the hypotheses (2-1-3) and (2-1-1).
Thus

since by Lemma 6, Pm/PTC_j = 0(1).
We have, therefore

. ! »

2 ' ^ K (see also (10) and (11)). (3-1-7)

Combining (3-1-5), (3-1-6) and (3-1-7), we get (3-1-3) and (3-1-4), and this completes
the proof of Theorem 1.

3-2. Proof of Theorem 2. As in the proof of Theorem 1, in order to prove Theorem 2,
we have to show that uniformly in 0 < t < n, (3-1-3) and (3-1-4) hold under the hypo-
theses of the theorem.

Now (3-1-3) follows directly from Lemma 8.
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Next we consider (3-1-4). Following the technique of proof used for showing that
S < K, in section 3-1, we observe that uniformly in 0 < t < n, Sx ^ K, by virtue of the
hypotheses: {Bn}eBV and °° 1 n

k=n+l -»fc r»

the latter of which implies Pacn = 0(1), since {pn} is a positive sequence.
In order to prove that S2 < K, we write by Abel's transformation

2 *>fc(n-*)«« = T*

= (1 - e^)-1 f"s A{pfc(n - jfc)} - " s 1 A{pfc(n -
U=o A:=O

fc=o

Thus

fS1 S
fc=o i>=

n - l
pk(n —k) cos (n — k)t

ft=O

le-i»j | r

^11
n - l

s
n - l

A;=0
n - l

m a x <,i«
] •

M l '
: ^ T U I 2 ) 0 - I -

(by Lemma 7 and Abel's Lemma, since {pv+1— pv} is non-negative,
non-increasing and {pn} is non-decreasing)

hKnpT+1 + KPnT]

since {jpn} is non-decreasing.
Thus we have finally

Z. 1
— &) c o s ( w ~

r n - l fc=O

— ^) cos (n — k) t

Pn

n=r+l n= T +l

n = l LT+1

by the hypotheses {Rn}eB and (2-1-5) and Lemma 6.
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This completes the proof of Theorem 2.
The analogues of Theorem 1 and Theorem 2, for the conjugate series and the

derived series of the Fourier series have been obtained very recently by the present
author.

My warmest thanks are due to Prof. T. Pati of the University of Jabalpur, for his
kind suggestions during the preparation of the present paper. I am also thankful to
the referee for some useful comments in respect of presentation.
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