https://doi.org/10.1017/jfm.2025.407 Published online by Cambridge University Press

J. Fluid Mech. (2025), vol. 1016, A4, doi:10.1017/jfm.2025.407

e de \; ]
2 \ L;%,:\ Q} ?
9 c ,: o ) %4

Large-eddy simulation of the fluid-structure
interaction in aquatic canopies consisting
of highly flexible blades

Bastian Lt’)hrerl and Jochen Frt‘)hlichl

Hnstitute of Fluid Mechanics, Technische Universitit Dresden, George-Bihr Str 3¢, Dresden 01062,
Germany

Corresponding author: Bastian Lohrer, bastian.loehrer @tu-dresden.de

(Received 1 August 2024; revised 25 January 2025; accepted 21 March 2025)

The paper presents a simulation of the turbulent flow over and through a submerged
aquatic canopy composed of 672 long, slender ribbons modelled as Cosserat rods. It is
characterized by a bulk Reynolds number of 20 000, and a friction Reynolds number of
2638. Compared with a smooth turbulent channel at the same bulk Reynolds number,
the canopy increases drag by a factor of 12. The ribbons are highly flexible, with a
Cauchy number of 25000, slightly buoyant, and densely packed. Their length exceeds
the channel height by a factor of 1.6, while their average reconfigured height is only a
quarter of the channel height. Different from lower-Cauchy-number cases, the movement
of the ribbons, characterized by the motion of their tips, is very pronounced in the vertical
direction, and even more in the spanwise direction, with root-mean-square fluctuations
of the spanwise tip position 1.5 times the vertical ones. A canopy hull is defined to
analyse the collective motion of the canopy and its interaction with the outer flow.
Dominant spanwise wavelengths at this interface measure approximately one channel
height, corresponding to twice the spacing of adjacent high- and low-speed streaks
identified in two-point correlations of fluid velocity fluctuations. Conditional averages
associated with troughs and ridges in the topography of the hull reveal streamwise-oriented
counter-rotating vortices. They are reminiscent of the head-down structures related to the
monami phenomenon in lower-Cauchy-number cases.
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1. Introduction
1.1. Motivation, terminology and classification

Flows over and through canopies made up of elastic obstacles are ubiquitous in nature
and constitute a topic of high relevance due to their many roles on various scales,
including atmospheric boundary layers (e.g. forests, crop fields, meadows) (Finnigan 2000;
de Langre 2008), aquatic vegetation (e.g. seagrass meadows, coral reefs) (Nepf 2012a;
Lowe & Falter 2015), animal fur (Favier et al. 2009) and anatomical flows (e.g. cilia in
lungs) (Enuka et al. 2012). The configuration studied in the present paper is inspired by
aquatic vegetation. Aquatic canopies are of great value (Costanza et al. 1997), as they
improve water quality by absorbing nutrients and releasing oxygen (Wilcock et al. 1999;
Schulz et al. 2003), as they mechanically stabilize sediment by reducing bed shear stress
(Sand-Jensen 1998), and being essential components in many ecosystems. Knowledge of
the underlying processes has implications for bio-inspired technologies as well, including
hairy surfaces with optimized properties (Kwak et al. 2010; Alvarado et al. 2017) and flow
control elements (Favier et al. 2009).

Raupach & Thom (1981) provided a systematic description of the fluid-mechanical
issues of canopies, in particular, turbulence and transport in canopies. Finnigan (2000)
covered further mean flow features, turbulent quantities and devised a phenomenological
model inspired by plain shear layers. Recently, Brunet (2020) compiled an overview and a
historical summary. Closely related to the present work, the Nepf group performed a large
body of investigations particularly on aquatic canopies, leading to a comprehensive review
(Nepf 2012a) and more recent work mentioned below.

The complete description of canopy flows involves a large number of parameters,
spanning from purely geometrical to mechanical aspects. The same is true for independent
dimensionless numbers, making it conceptually challenging to construct regime maps and
to associate flow characteristics with individual parameters. Previous efforts in classifying
canopy flows are based on a reduced set of parameters and common behaviours (Nepf
2012a; Patton & Finnigan 2012; Brunet 2020). A first parameter in the characterization of
aquatic canopies is the level of submergence
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which relates the height of the canopy #4 to that of the open channel H. As summarized by
Nepf (2012a), the situation [T, < 1 is termed emergent since plants grow higher than the
water level in this case. Here, the flow is solely driven by a pressure gradient counteracting
the drag of canopy stems, whose wakes shape the turbulence. The submerged situation,
IT, > 1, can be classified into IT; < 5, shallow submergence, and ITj > 10, termed deep
submergence. In both cases canopy-scale vortices are important for the vertical transport
at the canopy edge, but these vortices are more coherent in the situation of shallow
submergence since larger-scale boundary-layer turbulence is not present. The focus of the
present study is the regime of shallow submergence that is common in aquatic systems due
to the strive of plants for solar light.

The nominal Cauchy number is another important dimensionless number. It can be
defined as

SPUPWL
~ EI/L?

relating the drag force on an isolated erect blade to the restoring elastic force. Here, p is
the fluid density, U the bulk velocity of the flow, W the width and L the length of a blade,
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E is Young’s modulus and / the second moment of area. Stiff, upright canopy elements,
hence, relate to a low Cauchy number. A drag coefficient is often included in the numerator
to emphasize this relation. Alternative definitions of a Cauchy number consider the actual
measured drag (Sundin & Bagheri 2019), others increment the quadratic exponent of U
with the Vogel exponent V < 0 to account for drag reduction due to streamlining (Vogel
1994), or they consider sheltering effects (Barsu et al. 2016). With increasing Ca, canopy
elements become more deflected, thereby reducing their frontal area density through
reconfiguration. This leads to drag reduction that saturates once the fully reconfigured
blades pile up on the floor (Foggi Rota et al. 2024b). Increased flexibility also enables
a wavy motion of the canopy edge influencing momentum exchange across the canopy
interface and mixing inside the canopy (Ackerman & Okubo 1993; Okamoto & Nezu
2009; Caroppi et al. 2019). While flexibility reduces the drag discontinuity at the canopy
edge by attenuating the intensity of associated velocity fluctuations, the opposite occurs
inside the canopy. Here, velocity fluctuations are intensified with increasing Ca due to the
increased motion of filaments (Foggi Rota et al. 2024b). With larger compliance of the
canopy at yet higher Ca, the interior region is increasingly shielded from fast downward
velocity fluctuations, with only the strongest of such sweeps able to penetrate. Slow
upward ejections, on the other hand, are less obstructed and, thus, dominate the interaction
between the canopy and the outer region (Foggi Rota et al. 2024b). The present study aims
to explore a case characterized by an extremely elevated Cauchy number, a situation rarely
considered in numerical investigations.

The dynamics of canopy elements was categorized by Okamoto & Nezu (2010a),
Okamoto, Nezu & Sanjou (2016) into four regimes, with increasing Ca: (i) rigid/erect,
(ii) gently swaying, (iii) monami and (iv) strong reconfiguration. The monami (Japanese:
mo = aquatic plant, nami = wave (Ackerman & Okubo 1993; Okubo et al. 2001); or
honami in the context of terrestrial canopies (Inoue 1955)) refers to a collective motion of
the canopy (Ghisalberti & Nepf 2002; O’Connor & Revell 2019; Houseago et al. 2022).
Given the elevated Cauchy number, the present case can be associated with the strongly
reconfigured situation. However, contradicting this classification, Monti, Olivieri & Rosti
(2023) argued that the monami is always present and determining the motion of the blades,
regardless of the Cauchy number. Evaluating the dynamics of canopy envelopes for various
Cauchy numbers Ca € [1, 100] they noticed that spectra of the blade motion peak at a
relatively constant value associated with large-scale structures in the flow, decoupled from
the natural frequency of the blades, and concluded that the collective motion attributed
to the monami instability merely reflects large-scale flow structures. This matches the
observations of Tschisgale et al. (2021), Wang et al. (2022). Foggi Rota et al. (2024b)
confirmed the low impact of the stiffness parameter in this regard, but also acknowledged
the existence of a resonance state, where the natural frequency of the canopy blades
matches that of the turbulent excitation. The question, whether or not, and in what way a
flexible canopy modifies flow structures, is the subject of ongoing debate. In the context of
atmospheric canopies, de Langre (2008) showed that the reduced velocity and the Cauchy
number need to be O(1) for a strong flow—canopy interaction.

The density of a canopy is commonly measured by the frontal area of the vegetation
elements per bed area, also termed roughness concentration (Wooding, Bradley &
Marshall 1973), roughness density (Nepf 2012a) or leaf area index in the context of
terrestrial canopies (Kaimal & Finnigan 1994),
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where h* is the average reconfigured height of the canopy elements, usually defined by the
tip coordinate of the averaged blade geometry, and Ay is the floor area per canopy element.
This dimensionless number characterizes, beyond the individual blade, the contribution of
the blade arrangement to the canopy drag. In the limit of sparse canopies (C44 < 0.1) the
flow resembles the one over a plain solid wall, and near-wall turbulence behaves similar
to k-type roughness (Sharma & Garcia-Mayoral 2018). Dense canopies (Cy4 > 0.23)
generate a pronounced shear layer at their top, thus triggering the development of Kelvin—
Helmholtz (KH) instabilities (Nepf 2012a). Monti et al. (2022) argued that the solidity
alone is not an exhaustive parameter in characterizing the turbulent canopy flow, in that
the inclination of the (rigid) canopy elements can have additional effects not accounted for
by the solidity. They proposed ‘outer quantities’ extracted from the mean velocity profile
to assess the density of the canopy.

1.2. Numerical simulations of canopy flows in the literature

Depending on the scales and quantities of interest different numerical methods have been
devised to simulate canopy flows, with the canopy often represented as a homogenized
porous volume. Especially in the study of terrestrial canopies at the bottom of atmospheric
boundary layers, solving Reynolds-averaged Navier—Stokes (RANS) equations equipped
with a homogenized drag law to replace the canopy is state of the art (Fernando 2010;
Potsis, Tominaga & Stathopoulos 2023). Aquatic canopies, however, given their much
smaller submergence ratio, require the RANS approach to account for the deformability
of the canopy (Velasco, Bateman & Medina 2008; Dijkstra & Uittenbogaard 2010).

When interested in more detailed, time-resolved processes, such as the evolution
of coherent structures, eddy-resolving approaches are needed. To this end, large-eddy
simulation (LES) was employed, either with a stationary canopy (Shaw & Schumann
1992; Schlegel et al. 2015) or a time-dependent but homogenized one (Dupont et al. 2010).
Large-eddy simulation has also been used to study channel flows with rigid, wall-attached
obstacles, such as cubes or dowels (Mathey et al. 1999; Kanda, Moriwaki & Kasamatsu
2004) and many more. These could as well be viewed as abstracted canopies. In other
cases rigid obstacles were specifically designed to mimic low-Cauchy-number canopies
(Stoesser, Kim & Diplas 2010; Okamoto & Nezu 2010b; Chang & Constantinescu 2015).

Geometry-resolving simulations of fluid—structure interaction, i.e. involving flexible
canopy elements, are inherently challenging and costly due to the need to couple a
fluid solver and a structure solver and due to the complex inter-blade flow geometries.
The coupling can be accomplished by a number of different methods, ranging form body-
fitted grids to the immersed-boundary method (IBM) (Peskin 1977; Mittal & Iaccarino
2005; Bungartz & Schifer 2006; Sotiropoulos & Yang 2014). Avoiding the need to adapt
the mesh of the fluid solver, an IBM is particularly well suited for the present study
(Tschisgale & Frohlich 2020).

Simulations of canopies made up of individual, coupled, flexible rods are scarce and
have emerged only recently in the literature. They are listed in table 1 with essential
parameters compared. Here, Rey is the Reynolds number built with the water level H,
Re is the Reynolds number built with the mean effective shear stress of the canopy and
U, the reduced velocity. Of these studies only the simulations of He, Liu & Shen (2022),
Monti et al. (2023) and Foggi Rota et al. (2024b) cover the high-Cauchy-number regime
considered in the present paper. While He er al. (2022) also considered ribbon-shaped
blades, their width-to-length ratio was bigger and they restrained the stem kinematics
to the streamwise—vertical plane, inhibiting any twisting that would lead to spanwise
displacement. A result of the present study, however, is that spanwise displacement can
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Rey Re; Ca U, A

Sundin & Bagheri (2019) 2237-2783 183-200 4.8-28.8 0.1-0.8 1.257 Circle
Tschisgale et al. (2021) 42000 6582 17.5 11.1 0.44 Line
He et al. (2022) 16 596-26 031  ~ 2500-3100 77-3012 0.688-0.296 Line
Wang et al. (2022) 20000-75 000 00 — 0.025-0.4 —
Monti et al. (2023) and 5000 1-500 1.43" Point
Foggi Rota et al. (2024b)

Present study 20 000 2638 25 000 395 0.56 Line

Table 1. Characterization of previous numerical studies of canopies involving resolved, flexible blades,
i.e. Ca > 0. The table lists dimensionless numbers, defined in table 3, below, with Ca the nominal a priori-
determinable Cauchy number. The rightmost column refers to the cross-sectional shape of the blades. Wang
et al. (2022) employed strings of pearls that cannot be described by a single cross-sectional shape. (Compare
with Appendix A for notes on how reported values were determined from the references in cases where they
were not explicitly stated.).

"based on rigid height

be very dominant compared with the other components, thus inducing strong variations
in the canopy shape. Monti et al. (2023) and Foggi Rota et al. (2024b) considered rods
represented as single lines of Lagrangian points with the numerical method defining the
effective cross-section.

1.3. Research questions and structure of the paper

In the present study the flow over and through a canopy consisting of highly flexible blades
is simulated by means of LES, generating data that are highly resolved in time and space.
These are analysed in terms of one-point, two-point and conditional averages. The regime
addressed is characterized by a Cauchy number that exceeds the values employed in earlier
studies of comparable fidelity and resolution.

Central research questions target the flow field in terms of statistical properties
distinguishing between the outer flow, the interior of the canopy and the fluid—canopy
interface. In particular, the differences with respect to immobile blades and low-Cauchy-
number situations are of interest. Another focus concerns the motion of the blades in
the present high-Cauchy-number situation, compared with low-Cauchy-number cases
where this is first mode bending, essentially. The anisotropic cross-section of the blades
also distinguishes the present work from other studies in the literature. Investigating the
interaction of the outer flow with the canopy, i.e. the blades and the interstitial fluid, is one
of the main reasons for the present study. It will be addressed by different methods based
on an appropriate definition of a hull as an interface between the canopy and the outer flow.
This turns out to be versatile and, among others, allows us to analyse the canopy motion
on spatial scales larger than the blades, enabling conditional averaging in a straightforward
manner.

The paper is laid out as follows. Section 2 briefly presents the numerical method,
followed by the definition of the relevant parameters in § 3. Section 4 discusses features
of the instantaneous flow, while §§5 and 6 are concerned with statistical properties of
the flow and of the motion of the canopy, respectively. The flow—canopy interaction
by coherent vortex structures is then studied in §7. Section 8 compiles conclusions
and perspectives. Several appendices provide technical details of methods employed
and further results. The paper is supplemented with a number of videos enhancing the
understanding of the dynamic processes in this highly complex flow.
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2. Numerical method

This section describes the methods employed. The specific values of the physical and
numerical parameters applied are provided subsequently in § 3.1.

2.1. Fluid phase

Fluid motion is governed by the unsteady three-dimensional Navier—Stokes equations for

a Newtonian viscous fluid of constant density,
ou 1
E—{—V-(u@u):—v'o'-i-f, (2161)
0

V.eu=0, (2.1b)

where u = (u, v, w)" is the velocity vector with its components along the Cartesian
coordinates x, y, z, while ¢ represents the time, p the fluid density and f a mass-specific
force. The latter is obtained as

f=fa+ fr. (2.2)

with fg = (f4,0, 0)T, a volume force driving the flow. The second term, fr, results from
the fluid—structure coupling, as described below. The hydrodynamic stress tensor reads

o=0,=—pl+pv28, S=3(Vu+Vvu'), (2.3)

where p is the pressure, | the identity matrix, v the kinematic viscosity and S the strain
rate tensor.

The Navier—Stokes equations were solved with a second-order finite volume approach on
a staggered Cartesian grid for the spatial discretization, and a semi-implicit second-order
scheme for the time integration (Kempe & Frohlich 2012; Tschisgale et al. 2017, 2018).
An LES approach was employed, using the Smagorinsky subgrid-scale model, with the
Smagorinsky constant Cg, to compute the subgrid-scale viscosity vy, so that the stress
tensor in (2.3) is redefined as (Smagorinsky 1963)

0 =0p — Tgsgs, Tsgs = —,OngsZS—f- %tr(rsgs)l- (2.4)

2.2. Blades

The model canopy is composed of elastic, slender ribbons of length L, width W and
thickness 7', with L > W > T. As in Tschisgale et al. (2021), the motion of these ribbons
is modelled by a geometrically exact Cosserat rod, a one-dimensional model suitable
for rods undergoing large deflections that can be considered the geometrically nonlinear
generalization of a Timoshenko—Reissner beam Lang, Linn & Arnold (2011). A Cosserat
rod is capable of representing bending, torsion, as well as extension and shearing (Lang
et al. 2011). The motion of such a Cosserat rod can be expressed by the equations for the
linear and angular momentum (Simo 1985; Antman 1995; Lang et al. 2011)

A
. 0 4
,OsAC——erf, (2.5a)
as
am dc &
ps(l-d)+wxl-w):a—+a—><f+nvz, (2.5b)
s s

where ¢ = ¢(s, t) is the position of the skeleton line in the laboratory coordinate system,
with s the coordinate along the skeleton line of the structure, such that d¢/ds gives the
local orientation of the structure and its second temporal derivative ¢ the acceleration.
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The translational and rotational inertia of cross-sectional segments are given through the
density py of the structure material, the cross-sectional area A of the blade, and the tensor
of inertia I. The angular velocity of the cross-sections of a rod is denoted by w(s, t), while

A
internal forces and torques are denoted by f and 1?1, respectively. The arc-length-specific

. . . v v
forces and torques imposed from the exterior onto the structure are given by f and m,
respectively.

A
The internal forces f and moments m obey viscoelastic material behaviour (Lang &
Linn 2009; Lang et al. 2011). Calculated in the material reference frame denoted by the
index 0, these forces are defined as

A
Jo=C;-e0+2C; - &, mo = C, - ko +2C; - ko, (2.6)
with the Hookean-like matrices
C. =diag(ks,GA, ks,GA, EA), C. =diag(El, El, k,G1I3), 2.7

the strain vector € and the curvature vector k. The geometric properties /1 and I in
(2.7) contain the area moments with respect to the spanwise and the blade-normal axes,
respectively, while /3 is the polar area moment (Linn, Lang & Tuganov 2013). The matrices
C: and C, provide contributions of dissipative internal force and torque. This dissipation,
i.e. damping, was assumed to be negligible due to the elevated Cauchy number. With
fluid drag vastly superior to restoring elastic forces, material damping of the blades was
concluded to be negligible compared with the damping executed by the surrounding fluid,
as in all such studies (Sundin & Bagheri 2019; Wang et al. 2022; Monti et al. 2023; Foggi
Rota et al. 2024b).

The factors ky, , kg, € [0, 1] in (2.7) are Timoshenko shear correction factors that depend
on the geometry of the cross-section and serve to account for the non-uniformity of stresses
and strain within cross-sections (Cowper 1966). The factor k; € [0, 1] approximates the
effect of torsional out-of-plane warping (Linn et al. 2013). In fact, the Cosserat model,
given its one-dimensional formulation, is inherently unable to represent this effect, since
it would require deformable cross-sections. The shear correction factors are a standard
approach to cope with this issue, with numerous expressions for obtaining these values
proposed in the literature (Cowper 1966; Kaneko 1975; Hutchinson 2000; Gruttmann &
Wagner 2001). The effect of warping was addressed, e.g. by Dong, Alpdogan & Taciroglu
(2010); Freund & Karakog¢ (2016), extending Saint—Venant’s theory of uniform torsion
(Simo & Vu-Quoc 1991).

The spatial discretization of the Cosserat rods is accomplished by representing the
structure in the form of straight, possibly twisted, longitudinal segments of length L, as
sketched in figure 1(b). A staggered finite difference scheme is employed, with quaternions
(g in figure 1b) defined at the centre points of the elements, describing their orientation
and angular velocity. Linear velocity and position are defined at the edges of the segments,
as illustrated in figure 1(a) (Lang et al. 2011; Tschisgale, Thiry & Frohlich 2019). The
numerical solution of the structure is advanced in time within the temporal loop for the
fluid. In an inner loop the equations are solved by means of RADAUS (Hairer & Wanner
1996), which is based on an implicit Runge—Kutta method of order 5. Further details are
available in Lang & Linn (2009); Lang et al. (2011); Linn et al. (2013).

2.3. Fluid—structure coupling

Fluid phase and elastic blades are coupled by a no-slip condition at the surface
of the blades. This is accomplished by the IBM of Tschisgale & Frohlich (2020).
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(a) ()

Figure 1. Representations of the flexible blades in the numerical method with an arbitrary element being
highlighted. (a) Geometric representation of the rod elements accounting for their vanishing thickness;
(b) one-dimensional representation of the corresponding discretized Cosserat rod with the staggered locations
of solution variables indicated: O orientation and angular velocity, ® position and linear velocity. (¢) Marker
points employed in the IBM (s), with the surface patch associated with a single marker point at an arbitrary
position x,,; being highlighted. The sketches are not to scale, with the thickness 7 and the length L,
exaggerated.

In this framework, Lagrangian marker points are distributed across the coupled surfaces,
with every point attributed the velocity of its respective location on the ribbon. In each
time step the fluid velocity is interpolated to determine the coupling forces at the marker
points via the so-called direct forcing approach (Mohd-Yusof 1997; Fadlun et al. 2000;
Tschisgale & Frohlich 2020). These coupling forces are spread to the proximate Eulerian
grid points providing the coupling force term fr in (2.2). Both interpolation and spreading
are accomplished with the three-dimensional smoothed delta function proposed by Roma,
Peskin & Berger (1999). The same delta function is used to dampen the subgrid-scale
viscosity near the blades as required by the Smagorinsky model employed.

The blades are very slender, i.e. their thickness 7 is much smaller than the step size
of the Eulerian grid, T < Ag, with A, = /A Ay A;. Hence, each segment of the rod
model is attributed to a quadrangular element of length L., width W and of vanishing
thickness (figure 1a). The precise length of such an element is permitted to vary by
the algorithm employed, as the structure elements can be stretched, but this form of
deformation is negligible in the present application. Immersed-boundary method coupling
is achieved on the basis of [2 L, /Ag-| X [2 W/Ag—| Lagrangian marker points spread
over this element, as illustrated in figure 1(c). Each marker represents the corresponding
surface tile of area S,,; = (Ag/2)2 and is attributed with a mass m;,; = p Sy Ag. The
safety factor of 2 introduced here positions the markers separated by half the Eulerian
step size, ensuring that S,,,; Ay < A3, which is required by the IBM (Tschisgale, Kempe &
Frohlich 2018). Observe that in addition to the situation shown in the illustrative sketches
of figure 1, the cross-sections of the rods are free to rotate, resulting in possibly twisted
and asymmetrically stretched blade elements. This is accounted for when distributing
the marker points by interpolating the orientation of the cross-sections along the blade
centreline as needed. More details of the immersed-boundary coupling are given by
Tschisgale et al. (2018); Tschisgale & Frohlich (2020).

2.4. Structure—structure interaction

When moving inside the canopy, the flexible blades collide very frequently with each other.
This is accounted for by imposing appropriate collision forces on colliding blade segments,
determined via the constraint-based collision model of Tschisgale et al. (2019). To this
end, pairs of blade elements with the shortest distance smaller than 2A, are identified.
For each pair, the relative velocity between the two contact points, one on each element,
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and by the end of the current time step is estimated. This relative velocity accounts for
the current velocity and any expected acceleration of the two elements due to external and
interior loads. If the elements are found to be approaching one another, a collision impulse
is computed and subsequently imposed on both elements in the structure solver, and with
opposite sign, to fulfil the kinematic and dynamic conditions. Since an element can be
involved in more than one collision, the computation of this collision impulse requires an
iterative procedure. A coefficient of restitution equal to zero was used that is motivated
by the soft material considered and the dominance of lubrication forces. In the model,
the tangential components obey the Coulomb friction law. Here, friction coefficients of
zero were employed, which corresponds to slippery contact. In addition to the forces
between the blades upon direct contact, unresolved lubrication forces are represented by
the lubrication model of Tschisgale (2020) if blade segments are closer than 4A,. Both
methods were validated in the respective references, and were successfully employed in
a previous study by the present authors (Tschisgale ef al. 2021). Several enhancements of
the collision model were devised in the course of the present study that will be presented
in a forthcoming publication (Lohrer et al. 2025).

3. Definition of the configuration investigated
3.1. Physical problem

The set-up investigated is based on a configuration previously studied experimentally by
Guiot De La Rochere et al. (2022) and simulated numerically by the present authors
(Lohrer et al. 2022, 2020). In this study, blades made up of low-density polyethylene
(LDPE) plastic film were attached to the base plate of a flume in a newly proposed order
to avoid channelling and other regularities as much as possible. This situation naturally
featured sidewalls. To better address fundamental issues of the interaction between the
outer flow and the canopy, the present configuration was devised by considering the same
canopy in the corresponding fully developed and infinitely extending situation, i.e. without
any sidewalls, such that the flow is statistically homogeneous in both streamwise and
spanwise directions. This lends itself very well to be represented efficiently by periodic
boundary conditions as detailed below. The properties of the blades and their arrangement
were left unchanged with respect to Guiot De La Rochere ef al. (2022). Hence, the problem
of interest is an open channel of height H, with a steady bulk velocity U and a canopy
along the bottom no-slip wall. The relevant physical parameters are provided in table 2
and the placement of the structures is illustrated in figure 2.

The problem is characterized by the dimensionless numbers in table 3, of which the
independent numbers can be determined a priori, whereas the additional dimensionless
numbers were determined a posteriori from the simulation data. The variable % represents
the mean canopy height, constituting the average height of the fluid—canopy interface, and
computed as discussed in § 6.4 below.

The hydraulic density of the canopy is quantified by its roughness density 4. Owing
to reconfiguration, which is flow dependent and not known in advance, this quantity
cannot be determined a priori. To provide a classification at this point, simulation data
reported below are used here. Evaluating (1.3) with 2* = 0.25 H, which is the tip height
of the averaged blade geometry identified in § 6.1 below, yields 4 = 0.43. When, instead,
determined from the averaged instantaneous frontal area of the blades, a larger value of
A=0.56 was obtained, computed as

L

/l:<ALS /ex-n(s, 1) Wds > 3.1
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Variable Value
Flow U 0.129ms™! Bulk velocity
H 156.25 mm Channel height
8y —9.81 ms~2 Gravitational acceleration
0 998.2 kg m~3 Density of the fluid (IAPWS, water at 20 °C)
v 1.003-107°m?s~!  Kinematic viscosity of the fluid IAPWS, water at 20 °C)
Structures L 250 mm Length
w 15 mm Width
T 0.063 mm Thickness
Os 920kgm—3 Density of the structure material
E 0.250 GN m~2 Young’s modulus
G 0.083GNm~2  Shear modulus
ASy 30 mm Streamwise distance between points of fixation
AS; 45 mm Spanwise distance between points of fixation
L, 720 mm Streamwise length of the structure placement pattern

Table 2. Dimensional physical parameters defining the set-up constituted by the fluid and blades that form
the canopy.

L
- P
IHIHIV AS
N iesRdanENEEn et
I'Il'|I|I'"Ill|"I'Il'|I'I"|I||"'I|||"Il'|'|
I'Il'|I|I'"Ill|I'I'IlI|I'I"|||I"II|I|"|I'|'|
[ 1 by [ [ [ [ L] o
1A' Ng'EdNEEdnEddn g n'e B En'e
IEYHEREEREEREERE BN EEREBNREE AS.
IllllIII"IIIllllllllllllllllllllIII"IIII <
RN N R RN EENNE RN E
[N o (R o o LA |
|I|'.||I.'||,I|'|,|I|',|.'|'|,I'|',I
Z/H2_':1:u"'l:.'l'|'|:l'|'|'l:|',"'l:|"'l'|:"|'|'
LI ‘AN oy LTI U 0o R
B0 EBOREODEEBOREODREBONEEBEOR AL
I|||'IIIII'|IIII'II|II'IIII|'IIIII||IIII|II|II'I
3—'|'.':':'|'|':':'I'|':':'l'l':l:'l'll:':'llll:':
RN R NE RN R R NN
II|I|IIIlI|III|||III|||'II|I|II||I|III|||III|II|
lI|I,'|'|I,Il'|'|I|I|','|I|||'|'|||||'|'|I|I|'|'
4 I|I| l||||l||| lllnlllln ||||I
0 1 2 3 4 5 6 7 8 9
x/H

Figure 2. Placement of the structures on the bed, indicated by their root lines.

where Aj; is the bed area per blade (total bed area divided by total number of blades), e,
1s the unit vector in the streamwise direction, r is the instantaneous unit vector normal to
the surface of the blade at a given arc-length position s and (-) denotes the average in time
and over all blades. Either value of A is well above the thresholds provided in the literature,
which is approximately 0.23 according to Nepf (2012b) and 0.15 according to Monti et al.
(2020), so that the present canopy is classified as dense.

The fluid—structure interaction is characterized by the (nominal) Cauchy number Ca
and by the reduced velocity U,. Definitions are provided in table 3. The latter relates the
fundamental natural frequency of the blades to the time scale of the turbulent shear. The
natural frequency of the blades can be estimated as (Han, Benaroya & Wei 1999)

1 |EI/L3 27
fn = s

— o= —:, 3.2
a\ m 1.8752 (3-2)
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Definition Value
Independent Rey =UH/v 20000 Reynolds number based on channel height
Ga=LTWg,/v* —23-10°  Galilei number
Ca=0.5pU? WL/(EIL_z) 25000 Cauchy number
B=ApWTLg,/ (EIL™?) 140 Buoyancy number
AL = LW/ Ay 2.8 Blade-to-ground surface ratio
Ap/p —0.078 Relative density difference
L/H 1.6 Relative length of blades
T/W 0.0042 Structure cross-section aspect ratio
Additional Rer o =z vo(H — Yyo)/V 2638 Friction Reynolds number of overflow
A 0.56 Roughness density according to (3.1)
i, Y'=n/H 0.20 Submergence ratio obtained in simulation
Yoo/ h 0.91 Relative position of displacement height
U =a"'T, /Tx 395 Reduced velocity

Table 3. Dimensionless parameters of the present canopy. Upper part: independent parameter numbers based
on the a priori defined physical parameters in table 2, with Ap = p; — p. Lower part: deduced additional
dimensionless numbers and numbers obtained from the simulation results according to definitions provided in
the text.

where m = mg + m, with my = pg LW T the mass of the structure and m, = ,OLT[(W/2)2
the added mass created by the surrounding fluid (Dong 1978). Owing to the extreme
slenderness of the cross-sections this added inertia accounts for m,/m =99.5 % of
the effective mass. With a flexural rigidity of EI =7.8-10~8 N-m? this gives a period
T, = n_l =139H/U. It turns out that this time scale is far beyond the dominating fluid
time scale, so that it is not physically relevant. The issue relates to the very high Cauchy
number of Ca = 25 000 reflecting the very small stiffness of the blades.

Analogous to Sundin & Bagheri (2019), the forcing time scale of turbulent wall shear
Ty was estimated for the present case based on frequency spectra of wall shear in smooth
channel flows determined by Hu, Morfey & Sandham (2006). There, frequency-weighted

spectra of shear stress components were reported to peak at 7}_1 =0.075 u% /(2w v) for the

streamwise component and 7}»_1 =0.23 u% /(2mv) for the spanwise component in direct
numerical simulations (DNS) of channel flows with 360 < Re; < 1440. As in Sundin &
Bagheri (2019), it is assumed that these frequency peaks apply also in channel flows with
the friction Reynolds number of the present case. Taking the effective friction velocity of
the present case, determined at the virtual origin of the overflow u ,, (cf. § 5.2 below),
gives Re; = Rer y, =2638. This yields a value of Tf*1 =0.075 u%/(2nv) =02H/U.

The reduced velocity then evaluates to U, =a~!T},/ Ty=395. Alternatively, a reduced
velocity can be obtained by analysing spectra of blade tip motion, as done in § 6.3 below.
This yielded U, = 28. Either way, the elevated value of U, suggests a decoupling of fluid
time scales from the natural elastic time scale of the blades, related to the very high Cauchy
number.

The buoyancy number, defined in table 3, compares the buoyancy forces to the elastic
forces. Its value is B = 140 in the present situation so that, in fact, buoyancy provides
a mechanism counteracting reconfiguration, which is much stronger than the restitutive
effect of the elastic forces. On the other hand, it is still small compared with the fluid drag,
as expressed by B/Ca= ApWTL gy/(,o/ZUZWL) < 1.
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Symbol Value

LyxLyxL, 1440 mm x 156.25 mm x 630 mm Domain size

Ny x Ny x N, 2048 x 250 x 1024 Number of grid cells

Ay x Ay X A; 0.703 mm x 0.625 mm x 0.615 mm Grid step size

Ny 672 Number of blades

N, 108 Elements per blade

Np, x Nw 6 x 32 Makers per blade element
ks1, kg2, k¢ 0.83,0.83,7-107° Correction factors for shearing and warping
Cs 0.15 Smagorinsky constant

At 3.125-107%s Time step size

Tuv 88.3s=73.0 HU™! Averaging time

Table 4. Overview over numerical parameters used for the present simulation.

3.2. Numerical parameters

The essential numerical parameters are summarized in table 4. The Cosserat rods were
discretized with N, =108 elements each. A number of Ny, x Ny =6 x 32 marker
points were used on each element of the blades. The correction factors for shearing and
warping in (2.7) were determined according to Freund & Karako¢ (2016), resulting in
ks =k =0.83, and k, =7-107>. The Smagorinsky constant Cs =0.15 was chosen
equal to the value already employed in other LES of canopy flows (Okamoto & Nezu
20100; Li & Xie 2011; Gac 2014; Tschisgale et al. 2021), and similar to 0.17 in
Marjoribanks et al. (2014, 2017).

The computational domain used for the present simulations is a cuboid of
extensions Ly X Ly x L, =9.22H x H x 4.03H in the streamwise, the wall-normal and
the spanwise direction, respectively, containing Ny = 672 blades. Periodic boundary
conditions were imposed in the x and the z direction. The flow was driven by the spatially
constant volume force fy = (f4,0,0)" adjusted in each time step so as to obtain the
desired bulk flow rate. The domain extensions in the periodic directions comply with the
recommendations of Moser, Kim & Mansour (1999); MacDonald et al. (2017). In §7.2
below it is demonstrated that decorrelation of velocity fluctuations was obtained in the
computed flow, providing an a posteriori justification of the period length.

The mesh is almost isotropic and uniformly spaced in all three directions, with Ny x
Ny x N, =2048 x 250 x 1024 cells, corresponding to W/A, = 24.4 cells per width of a
blade. With the inner boundary layer inside the canopy characterized by a friction velocity
of ur; =0.026 U (cf. (5.6) below) the extensions of the grid cells in inner units are AT x
Ay x AT =24 x2.1 x 2.1. Owing to the staggered grid, the first streamwise velocity

information is located at A;’, /2~ 1. The time step size was set to Af =3.125-10"%s,
which resulted in a maximum Courant-Friedrichs—Lewy (CFL) number fluctuating around
Ccrr, =0.28.

Starting at r =0 from some artificial turbulence, and the blades moderately inclined
such that they just fit into the computational domain, the simulation was conducted over
a startup duration of Ty = 80.0s =66.1 HU ~1 {0 establish the fully developed state, with
the first 60.5s=50.0 HU ! using a grid coarser by a factor of 2 in each direction.
After reaching the statistically steady state, statistics were collected over a duration of
T,, =88.35s=73.0 HU~!. With the highly optimized code employed, the production
run took a total of 1.3 Mcore-h on the CPU-based HPC clusters Taurus (ZIH, Dresden)
and CLAIX-2018 (ITC RWTH, Aachen) used for the first and second part of the run,
respectively.
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Time-averaged fluid velocity, pressure and Reynolds stress components were collected
at a sampling rate of 1/(200A¢)=19.4 UH~'. The geometry of the blades, as well
as coarsened velocity and pressure fields were stored at the same sampling rate to
enable complementary, time-resolved analysis in post-processing. The coarsening strategy
involves trilinear interpolation on a homogeneous grid, coarsened by a factor of 2 in each
direction, and with an additional layer of points close to the bottom no-slip wall at the
same distance as the wall-closest cell face centres in the computational grid. As a result,
1407 sets of field data and canopy blade data were produced at constant intervals during
the averaging window for the analysis presented below.

3.3. Validation

The IBM employed for the present study was validated by Tschisgale & Frohlich (2020) on
the basis of three test cases. (i) The first case is the fluid—structure interaction benchmark
case of Turek & Hron (2006) that exhibits the vortex-induced oscillation of a rod in the
wake of an immobile obstacle placed in a laminar flow. The time-dependent displacement
of the tip was shown to agree with a number of other studies from the literature. (ii) The
second case is the configuration experimentally studied by Luhar & Nepf (2011), where a
rod is fixed at one end and placed perpendicular to a constant flow. For several values of the
free-stream velocity considered, the drag force on the rod agrees well with that measured
in the reference experiment. (iii) The third case features an entire canopy at a medium
Cauchy number later studied in detail by Tschisgale et al. (2021). The simulation was able
to reproduce the monami also observed by Okamoto & Nezu (2010a) in their experiments,
and mean profiles of velocity and turbulent shear closely match those measured.

The spatial discretization of the present study was chosen on the basis of the grid
resolution study conducted for this third validation case. The bulk Reynolds number and
friction Reynolds number characterizing this case are included in table 1. The case was
well resolved with 336 equi-sized grid cells normal to the wall translating to W /A, = 12.8
fluid cells per width of a blade in that study versus a ratio of W/A, =24 in the present
set-up. The CFL number employed is significantly smaller than the value of 0.5 found
sufficient by Tschisgale et al. (2021). The subgrid-scale model and the model constant
employed are identical to those of Tschisgale et al. (2021), where halving and doubling
the value of the constant had practically no effect on the results. Additional validations of
the collision model can be found in Tschisgale et al. (2019).

Lacking suitable reference data for the present configuration, it is delicate to assess
the numerical accuracy. For instance, DNS of the present problem are not feasible due to
excessive computational resources required. This results from the fine spatial and temporal
scales present in the interstitial flows between blades and the collisions between them.
Appendix B provides a detailed discussion of this issue.

4. Instantaneous flow
4.1. Two-dimensional views

This section provides an impression of the instantaneous flow before it is analysed
statistically. Visualizations juxtaposing the three velocity components are reported in
figure 3. Large-scale velocity structures of high- and low-speed streaks can be observed,
elongated in the streamwise direction. Their spanwise extent appears to be about H, with a
preference of staggered ordering in x. The vertical plane z = const. in the upper part of the
figure highlights the substantial level of fine-scale turbulence. It also reveals large-scale
velocity patterns hinting towards coherent velocity structures with slow fluid transported
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Figure 3. Instantaneous velocity components at r = 139.1 UH —1: (a) streamwise, (b) vertical, (b) spanwise;
all in perpendicular slices, of which the horizontal plane is located at the height of the mean canopy hull
y=h. (o ) Positions of the slices; ( ) intersections of the canopy blades with the plane displayed; ( )
intersections with the canopy hull height y = y(x, z; t), introduced in § 6.4. Animations of these figures are
provided in movies 1, 2 and 3 of the supplementary material available at https://doi.org/10.1017/jfm.2025.407.
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to the upper boundary. In some regions the blades are pushed towards the bottom wall
(e.g. 1.5 H <x <3.5 H in the centre plane) while elsewhere they move upwards, far
into the outer flow (as seen around x =5H). This is supported by the spanwise plane
(x = const.), where intrusions of blades and slow fluid into the outer flow are well
discernible.

Together with the corresponding plot of u, the spanwise plane of the v velocity in
the left part of figure 3(b) suggests ejections generating streamwise vorticity. Sweep
events are also readily visible. The same holds for the centre plane in the upper part.
The instantaneous spanwise velocity component in figure 3(c) reveals alternating positive
and negative values stemming from large-scale vortices. Close to x =5.5H and further
downstream, for example, inclined patterns of such vortices are seen, reminiscent of what
is known from similar configurations of flows over rough beds (Detert 2008). Also near the
upper boundary, strong spanwise velocity can be observed, partly in conjunction with high
streamwise velocity, e.g. at around x = 3 H, hinting towards splat events. The horizontal
planes of figures 3(b) and 3(¢) illustrate again the high level of turbulence and a fairly large
irregularity of the flow, together with a certain number of coherent events.

In the centre planes, z = 0, of figure 3, the blades take on a relatively streamlined shape
in several places such that their motion is rather limited in the streamwise direction, since
they are already oriented streamwise to a large extent. Vertical movement is restricted by
the bottom wall, and often occurs when blades undulate under passing flow structures.
In contrast, the blades are relatively free to move in the spanwise direction, which they
do when strong high-speed sweeps reach down to the channel floor, displacing canopy
blades to the sides. This is reflected by large patches of elevated spanwise velocity in
figure 3(c) and the accumulation of blades in low-momentum volumes, for example, in
figure 3(a) around x =4.5H, z=2H. Since blades and fluid are coupled through no-
slip conditions, and since the velocity is dominated by the streamwise component, the
interstitial space underneath the blades corresponds to a volume of low fluid momentum,
readily discernible in the upper part of figure 3(a). While the blades are massively pushed
towards the wall in some places, and straightened by this impact of high-velocity fluid,
they also tend to undulate significantly in other places, as seen in the cuts of figure 3,
particularly in the horizontal cuts of figures 3(b) and 3(c¢).

4.2. Three-dimensional views

Figure 4 provides a perspective view at another instant in time. It comprises several
contributions: two-dimensional streamwise velocity along vertical planes at the periodic
boundaries, three-dimensional positions of blades, fluctuations of streamwise velocity and
vortex structures highlighted by isosurfaces of p’ (Robinson 1991; Jeong & Hussain 1995).
Some of the features were annotated by hand to facilitate the discussion. Figure 30 in
Appendix D displays separate pictures of the components with better visibility. In figure 4
and even better in figure 30(a), it can be seen that the blades are bent slightly upwards
in some places, but also bent downwards in a few other locations, not so readily visible
here. Overall, upward bending appears to be more frequent and certainly not uninfluenced
by the slight buoyancy the structures have, with Ap/p = —0.078. Figures 4 and 30(a)
show more clearly than in figure 3 that in some locations, and varying in time, the
blades undergo massive twisting, distortion and reorientation of their centrelines in the
spanwise direction. Figures 4 and 30(a) also show that the motion of canopy elements
can be related to the passing of high- and low-speed fluid, as well as vortex structures.
Some of these prototypical, characteristic vortex structures are annotated in figure 4.
These include spanwise rollers due to the KH instability in the canopy-induced shear
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Figure 4. Annotated flow visualization, showing the geometry of the canopy blades coloured by their surface
height yy, volumes of |u’| > 0.5U (red and blue clouds), the streamwise velocity u in vertical slices, and
iso-pressure surfaces with p’ = —0.1pU? = const., coloured by y. The contours of some of the more distinct
instantaneous vortex structures were drawn by hand on top of the rendering with additional arrows indicating
their direction of rotation. They are classified as KH rollers, head-up (HU) hairpins and predominantly
streamwise-oriented (SO) rollers. An animation of this figure without annotations is provided in movie 4 of
the supplementary material.

layer (Raupach et al. 1996; Bailey & Stoll 2016; Singh et al. 2016). They are ideally
oriented spanwise. At later stages they are observed to rotate around the vertical axis and
the streamwise axis before disintegrating. Sometimes these rollers then become nearly
aligned with the streamwise axis, labelled ‘streamwise-oriented’ in figure 4. Head-up
(HU) hairpins tend to populate low-speed streaks, but are rather delicate and short lived.
This relation between low-speed streaks and hairpins is well known from turbulence
over smooth walls (Theodorsen 1955; Adrian 2007). The combined KH-HU structures
identified by Tschisgale er al. (2021) to account for particularly pronounced sweep events
and associated with the monami are not discernible here.

5. Fluid statistics
5.1. Averaging

Based on our previous experience (Vowinckel et al. 2017a,b), the turbulent velocity field
u(x, t) is now decomposed according to the double-averaging scheme (Wilson & Shaw
1977; Raupach & Shaw 1982). Following Brunet (2020), this reads

u=(u)+ ) +u, (5.1a)
with
(u) = (U)rxz = ((W)1)xz (5.1b)
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the double-averaged velocity field and

u' =u—u),,, (5.1¢)
u:=u— (u), (5.1d)

the deviation from the spatial average and from the temporal average, respectively.

The notation (...) designates the average in space and time, while (...);, (...),;

indicate partial averages in time and over horizontal planes, respectively. With statistical

stationarity as well as spatial homogeneity in horizontal planes, double averaging the
momentum equation (2.1a) yields

8 <u//v//> 82<M>

0=(fa) - % +v 52 + fox (5.2a)

o 1a(p) ")
=28 % + foys (5.2b)
0= fy. (5.2¢)

for the three components. The LES contributions due to 7,5 have been disregarded in this
equation because they are very small compared with the gradients of resolved turbulent
stresses as discussed in Appendix C. The double-averaged pressure gradient is zero in the
present set-up, d(p)/dx =0, since the flow is driven by the mass-specific force f; in the
momentum balance equation (2.1a). The specific force vector fy = (fux, fuy, va)T is an
averaged quantity. It compensates the force due to vegetation drag and is defined as
_ 1 /7 2 "

fv——;(V(p)t)szrv(V () )xz + (fr), (5.3)
where the first two terms on the right-hand side are a consequence of differentiation and
spatial averaging not being commutable (Finnigan 2000). Integration of (5.2a) in y by
accounting for the boundary conditions of the present problem yields

do{u)
H(fq)=— Vo
y

H
—/0 Sox dy, (5.4)
y=0

demonstrating that the average driving force (f;) compensates both viscous wall shear
drag and the drag exerted by the vegetation elements.

In their original definition, double-averaging schemes employ spatial averages that
spare the canopy elements by recognizing the fluid domain as a connected region that is
interrupted by the embedded canopy elements (Raupach & Shaw 1982). In such a context
the first two terms in (5.3) would represent the form drag and the viscous drag force,
respectively. Here, the situation is different due to the numerical method employed. The
blades are dynamically coupled via the IBM coupling force term fi and blade surfaces
are not represented as fluid domain boundaries. Hence, spatial averaging is done over the
entire continuous x—z plane, and the averaged IBM force (fi) carries the mean canopy
drag. As a result, the first two right-hand side terms in (5.3) drop out and

So={/T). (5.5)

This is, indeed, seen with good accuracy when evaluating all terms in (5.3) numerically
from the simulation data.
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Figure 5. Average velocity and Reynolds stress components, with characteristic heights indicated as defined
in the text.

5.2. Profiles of mean flow and Reynolds stresses

Figure 5 presents one-point statistics of the three fluid velocity components. The profile
of the mean streamwise velocity is similar to that of a dense canopy with medium flexible
blades; see, e.g. Tschisgale e al. (2021). Starting at the solid wall, y =0, the velocity
profile is characterized by the internal friction velocity and length scale

Tw o{u)
Uej = [—s Tw=pV—/——
P dy

which can be expected to match the canonical near-wall profile (u)* := (u)/u.; = y*:=
v/ (Kundu 1990). Figure 6(a) provides a corresponding plot in these inner units. The
canonical relation (u)* = y* only holds in a very limited range of the viscous sublayer
where the skin frictional drag dominates the drag of the blades (Monti, Omidyeganeh
& Pinelli 2019). Observing that the classical velocity profile reproduced by the DNS data
features this behaviour, the linear relation holds for the present case up to y™ & 2 where the
present data match the DNS. The canopy layer is further characterized by a lower inflection
point at y = yj;, and an upper inflection point at y = y,;,. Above the mean canopy edge the
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Figure 6. Profiles of mean streamwise velocity. (a) Mean velocity in inner units according to (5.6), (u)* =
(u)/uy,;, over y* =y/(v/uz;). (b) Mean velocity according to (5.8), ()Y = (u)/ur yo, over y©v? = (y —
Yvo)/ (V/uz,v0). The logarithmic profile according to (5.7) is drawn over the same y range as in figure 5. Also
included are profile data from a smooth channel flow at the high Reynolds number Re; = 5186 Lee & Moser
(2015), and data from a canopy flow of (Monti et al. 2020), case DE, which has the same roughness density
A=10.56. Black dots mark intersections with the vertical broken lines.

flow starts to resemble that over a rough wall (Ghisalberti & Nepf 2006), and the velocity
obeys the displaced logarithmic law in a zone above y = 2h (Nepf 2012a),

1 —
(u) :—log(y YU0>+A_AU+

vo >
Uz vo K Er,vo

(5.7)

with the von Kdrman constant «, the displacement height y,,, the smooth channel offset
A =5.5 (Nezu & Nakagawa 1993; Monti et al. 2022), the roughness function AU;;
(Clauser 1954; Hama 1954) and the relations (Nepf & Vivoni 2000; Nepf 2012a; Monti
et al. 2019)

(5.8)

This is illustrated in figure 6(b). The total shear stress T is obtained by integrating (5.2a)
from y to H, giving

H
~ ~ y
Ti=1—p ffvx dj =—H(fa), (1- 7). (5.9)
y=y
where
0
T:i= ,ovﬂ — p(u"v") (5.10)
dy
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is the sum of the laminar and the turbulent shear stress. The length ¢ ,,, plays the same role
as the roughness length in rough-wall boundary layers (Chung er al. 2021). By fitting (5.7)
and (5.8) with k = 0.41 (Nezu & Nakagawa 1993) to the simulated mean flow profile in the
range 2.5h < y < 0.8H, the values y,, =0.18 H, AU} = 15.4, u , = 0.16U were found
for the present case. The given range in y was chosen since the terms in the streamwise
momentum balance (5.2a) are approximately constant in this region (see figure 8). When,
instead, also fitting « the values « = 0.38, y,, =0.13H, AU,fO =17.4, ur yo =0.17U were
obtained. The fitted value of « differs from the canonical value only slightly, to an extent
comparable to the range also observed in conventional wall-bounded flows, e.g. the range
0.38 <k <0.42 for pipe flows (Bailey et al. 2014). Hence, the canonical value of ¥ = 0.41
is used below, while observing that varying the value of « has a relatively large impact on
the displacement height y,,, as noticed by Monti et al. (2019) as well. The value of y,, =
0.18 H determined for the present case is slightly inferior to the canopy height # = 0.20H
obtained in § 6.4. According to the heuristic model of Nicholas et al. (2023), h provides
the upper limit of y,,. While their model was based on cases with rigid canopy elements of
maximum height 4, it was not clear at the start if and how this rule extends to the present
case where the instantaneous canopy height is not constant. The present data, however,
suggest that this model may also hold for the situation of very flexible, slightly buoyant
canopies, at least it does so in the case investigated here. According to Monti et al. (2020)
the relationship y,, > yii complies with the present configuration being located in the
dense regime, which is corroborated by d(u)/0y = 0 at the height of the lower inflection
point, a typical feature associated with the wake zone (Nepf & Vivoni 2000; Poggi et al.
2004; Ghisalberti & Nepf 2006; Sanjou 2016).

The Reynolds shear stress in figure 5(b) has a linear behaviour in the free flow for
y/H Z 0.45 and a nonlinear behaviour inside the canopy for y < y,,. In lower Cauchy
flows reported in the literature, the profiles of —(u”v”) peak at a height of y ~ h*, with

h* = (cy)|,_; (5.11)

the average vertical coordinate of the blade tips (Nepf 2012a; Tschisgale et al. 2021).
Here, —(u”v”) is maximum at a more elevated position, y =0.34H > h* =0.25H,
with the associated maximum magnitude consistent with the values provided by Nepf
(2012a). Normalized by the velocity difference AU := (u)|y—g — (u)| y=yip = 1.34U

1,11

this gives —(u"v )ImM/AU2 =0.010, which is in the range reported, from 0.017 for
a canopy with rigid blades to 0.008 for a canopy with flexible blades and monami
occurring. The quadrant analysis in § 7.1 below indicates that sweeps alone would produce
a peak at y =~ h*, while the peak of the ejection-type contribution is more elevated.
The profiles of (v”v”) and (w”w”) in figures 5(d) and 5(e) have maxima at a similar
height, y =0.34H =h* +0.09 H, or y/h* = 1.36, which compares well with the range
—0.02<(y—h*)/H <0.18, or 098 <y/h* <1.83 reported by Ghisalberti & Nepf
(2002) for (v”v”) based on experiments with flexible blades. The maximum of (u"u”)
in figure 5(c) is lower, near y = h. These profiles of (u), (u”u”), (v"v"), (w”w”) and
(w”w”) are all qualitatively comparable to those found in lower-Cauchy-number flows,
such as the situation with Ca = 17 in Tschisgale ef al. (2021), with the exception of an
additional particularly pronounced peak at y ~ h being present in the low-Cauchy-case

profiles of (u”u”), (v"v"”) and (w”w").

5.3. Canopy drag
The parameter AU, in (5.7) is a first indicator of the friction exerted by the vegetation
layer. In general, it accounts for friction due to roughness and increases monotonically
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Figure 7. Shear stress contributions according to (5.9).

with the surface roughness (Chung et al. 2021). For canopies, where A plays the role of
surface roughness AU, increases monotonically with A (Monti et al. 2020). The outer
velocity profile of case DE of Monti et al. (2020), included in figure 6, underlines this
relationship as it results in the same value of AU, for the same solidity A = 0.56 as in the
present case. Apart from sharing the same value of A, this case is very different, because it
features upright, rigid canopy elements. Monti et al. (2022) found drag to also depend on
the inclination of the rigid blades, but with the dependency vanishing for highly inclined
rods, which is the case here due to the large Cauchy number.

Drag is further investigated by evaluating (5.9). This equation demonstrates that, due to
the vegetation drag, t(y) alone does not obey the linear profile observed in non-vegetated
turbulent channel flows. The individual contributions to the total shear stress are analysed
in figure 7. Laminar stress is negligible throughout, except very close to the bottom wall.
The contribution due to canopy drag dominates turbulent shear stress in the canopy region
for y < yvo. Actually, canopy drag and turbulent shear stress are exactly equal at this
position. The former is quantified by evaluating the friction coefficient based on the mean
driving force ( fz) in (5.4) that compensates the drag of the bottom wall as well as the drag
of the blades:

_ pH(fa)

Cr= . (5.12)
Evaluating (fy) from the simulation yields Cy~ 0.063. It can be used to define a shear
stress velocity u, via
C—2(”’>2—2 Re: \* (5.13)
= v/ Rey ) ’

with Re; =u, H/v and Reyy = U H /v. This gives Re; = (Cf/2)'/?Rey ~ 3550, a friction
Reynolds number that would be characteristic only in the absence of the canopy elements
with the entire driving force acting exclusively against wall shear at the bottom wall.
For reference, the friction coefficient of a smooth turbulent channel flow of equal bulk
Reynolds number is (Pope 2000)

C} ~0.0549(Re})) "> (5.14)

For the present case, this evaluates to C Ve 0.0051 and indicates a significant drag increase

due to the presence of the canopy by a factor of Cy/ CJQ =12.4.
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Figure 8. Individual terms in the double-averaged streamwise Navier—Stokes equation (5.2a), balancing the
spatially constant volume force ( f) driving the flow. The term —d (u'v’) /9y was added for illustration.

Figure 8 compares the different terms of the streamwise momentum balance (5.2a).
Vegetation drag (f,x < 0 in this setting) is the predominant force up to y ~2h ~0.4H,
with a local minimum of the absolute drag at the lower inflection point of the velocity
profile and a local maximum at the upper inflection point. The turbulent shear stress-
induced drag —d(u"v"”)/dy balances the canopy drag and the driving force (fy). Since
(fa4) 1s constant in space, and due to the small contribution of viscous drag, the turbulent
drag exhibits the same behaviour as f,,, just in the opposite direction. Viscous drag is
sizeable only inside the canopy with the expected negative contribution near the bottom
wall. Between the two inflection points, however, the curvature of (u)(y) changes from
convex to concave, so that the viscous drag changes its sign now being positive in this
range, which is unusual.

In figure 9 the canopy drag profile is compared with profiles related to the canopy
density, namely the canopy mean solid volume fraction «, and the height-specific blade
frontal area per base area a that is proportional to the pressure drag. All attain their
maximum around the second inflection point of the velocity profile, y = yy;,. The relative
frontal area a has a narrower distribution than the drag profile, more concentrated over
lower elevations. As a result, this curve cannot be rescaled such that it matches the curve of
the total drag. With the present numerical method it is not possible to distinguish between
pressure forces and viscous forces, since only the IBM force is provided. But the difference
in shape of the two curves of a and f,, suggests that particularly in the upper part of the
canopy a larger portion of the drag is due to viscous forces.

6. Statistics of the canopy movement
6.1. Average blade geometry and shape fluctuations

The instantaneous shape of each blade is described by the position along its centreline
relative to the point of fixation, ¢, = ¢, (s, t), where n is the number identifying the blade
and s € [0, L] is the arc-length coordinate, oriented from root to tip, such that ¢, (0, t) =

(0,0, 0)". The average blade geometry is

1 &
(e) () == > (en)s(5), 6.1)

5 =1
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Figure 9. Average canopy drag profile f,, compared with the solid volume fraction « and the height-specific
blade frontal area per base area a. All quantities are scaled by their respective maximum absolute value that,
for all of them, occurs near the second inflection points of the velocity profile, y,;,. The respective values are
provided in the legend.
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Figure 10. Statistics of the blade position. (a) Mean vertical position of the blade (black line) and PDF of the
blade position in the x—y plane (colour plot); (b) PDF of the vertical position of the blade tip, ¢, (s = L), with
h* :=(cy)ls=L- (c) Mean spanwise position of the blade (black line) and PDF of the blade position in the x—z
plane (colour plot); (d) PDF of the spanwise position of the blade tip, ¢, (s = L).

and the fluctuations of the shape with respect to the time average are
(s, 1) =cn(s, 1) — (cn)(5). (6.2)

Both quantities are reported in figure 10 in terms of shape and probability density
function (PDF). The average centreline is a highly reconfigured, streamlined curve with
a weak upward turn. The latter may be related to the slight buoyancy of the material, but
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Figure 11. Fluctuations of the blade centreline geometry. (@) Variability of the blade centrelines, measured as
the r.m.s. value of the respective fluctuations in shape and in the streamwise, vertical and spanwise position.
(b) Correlation coefficient of the streamwise and vertical shape fluctuations.

collisions between blades may also play a role. A conclusive assessment requires more
analysis and is left for future work. The average spanwise position of the tip relative to the
point of fixation is slightly larger than zero, (c}) ~0.02 H, which is 1 % of L. The Roman
and Arabic numbers in figure 2 indicate different spanwise positions of the blade rows. It is
seen that rows 1, 2, 3 and I, II, III, IV are gradually shifted in the positive z direction bit by
bit. Hence, the pattern is not entirely symmetric with respect to reflection in z, potentially
producing a slight shift of the velocity in the spanwise direction. The computed mean
velocity does indeed have a spanwise component, (w), which is not exactly 0, but a factor
of 100 smaller than (u) (figure 5a). Since the blades are extremely flexible, this may have
induced the slight shift in the positive z direction observed in figures 10(c) and 10(d). It
is, however, very small, so that on average the flow can still be considered symmetric in z
and the evaluation be done on this basis.

Root-mean-square (r.m.s.) fluctuations from the averaged shape of the blades are shown
in figure 11(a) for all three coordinates. Fluctuations in the streamwise direction (c/.c’,) are

overall lowest, followed by the vertical component (c’y c’y) and fluctuations in the spanwise

position (cc]). The latter increase almost linearly with the arc-length distance from the
root. They are smaller than the vertical fluctuations over about a third of the blade length
until s =0.44 H = 0.28 L and then surpasses it with a ratio of about 1.56 reached at the
tip. Here, the geometric confinement by the presence of the bottom wall and by other
blades between a given blade and the wall is an important contribution, as backed by
figures 10(a) and 10(c). While fluctuations of the blades in the vertical direction appear to
be drastically inhibited, spanwise excursions of the blades, in particular if collective, do not
experience the same restriction. Whether and how the cross-sectional shape of the blades
plays a role here must be left for future studies. Streamwise and spanwise deflections are
overall well correlated, with the correlation coefficient of the shape fluctuations in both
directions —p. 1 2 0.5 in figure 11(b). Owing to the reflectional symmetry of the problem

in z, the correlations Peye, and pe ¢, vanish, which has been verified with the present data.

6.2. Modes of blade shape motion

Given its pronounced flexibility, the instantaneous centreline of a blade is expected to
undulate as it interacts with the turbulent overflow. To quantify the relative importance of
contributions at different length scales, the instantaneous shape of each blade, expressed as
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Figure 12. The r.m.s. amplitudes associated with the first ten modes of the blade centreline motion.

/

the deviation from the mean shape ¢’ = (c/,

c/y, cé)T, was decomposed into fundamental
modes ¢, (s),n=1,2, ...,

Nn
¢(s, 1) =) (1) pals) + (), (6.3)
=1

where the vector g/,, = (C} > c/yn, c;n)T assembles the respective magnitudes. With ¢’
being smooth in space, the error truncation & vanishes for N, — co. The mode shapes
¢n(s) were chosen to represent the modes of vibration of an unloaded cantilevered Euler—
Bernoulli beam (Timoshenko 1937; Hadley 2024); details are provided in Appendix E. The
relative importance of the different modes is evaluated in figure 12, comparing the r.m.s.
values of the modal amplitudes. Both vertical and spanwise components are dominated
by the first mode. The amplitudes of the higher modes decrease monotonically with
increasing mode number. Comparing the two directions, first mode deviations from the
mean shape are more pronounced in the spanwise direction than vertically. This is likely
to be just a consequence of the presence of the wall, as discussed above.

6.3. Linking blade tip motion to fluid velocity, effective stiffness

To condense information, the motion of the blades is now investigated by studying the
movement of their tips. This approach is commonly applied to lower-Cauchy-number
scenarios where the position of a tip can be considered representative of the overall
deformation of the blade (Tschisgale et al. 2021; Foggi Rota et al. 2024b). There, an
oscillator model can be used to investigate the coupling between fluid and canopy, as
detailed in Appendix F. The novel issue addressed here is the fact that the blades interact
directly with each other in the present situation as they are closely stacked most of the
time due to their large deformation. The strong inter-blade forces result in an effective
stiffness of the canopy as a whole, much larger than the stiffness of an individual blade.
This effective stiffness is one which would be obtained by replacing the length of the
blade, L, with a shorter length [ in the range h/2 <1 5 h, while maintaining the other
parameters of the blades. This amounts to an increase of stiffness between the single blade
and the reconfigured canopy by a factor of about 8, which is large. Hence, for this type of
canopy, the effect is sizeable and has to be considered when modelling.
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x/H

Figure 13. Instantaneous snapshot of the smoothed canopy hull height at r = 139.1 U H~!, the same instant
as in figure 3. An animation of this figure is provided in movie 5 of the supplementary material.
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Figure 14. Profiles characterizing the vertical distributions of canopy elements. The broken line (.-__) denotes
the horizontally averaged solid volume fraction «, and the continuous line (——) the PDF of the smoothed hull
height ¢5. Both are scaled by their maximum absolute values given in the legend. These occur near the second
inflection point of the velocity profile, y,;,. The symbol P designates a percentile.

6.4. The canopy hull

In low- to medium-Cauchy-number scenarios, the local canopy height is commonly
identified with the height of the blade tips (Tschisgale et al. 2021; Monti et al. 2023).
The situation is more complex with the present configuration, due to the high flexibility of
the canopy blades requiring a more sophisticated approach. To this end, the canopy hull
was defined as the vertical position of the most elevated blade segment for a given position
(x, z) with an appropriate smoothing procedure to fill gaps smaller than the length scale
targeted; details are provided in Appendix G. The canopy hull is denoted y = y(x, z; ¢). It
serves to provide the mean canopy height by averaging in time and space, i.e.

= (3). (6.4)

In the present simulation this yields # =0.20 H, which is the numerical value reported
in the figures above. An instantaneous snapshot of this quantity is shown in figure 13 for
illustration.

The PDF of the hull height, ¢5, is presented in figure 14. The annotated 5 % and
95 % percentiles of y are identical with the equally valued percentiles of y' and y”,
when shifted by &, since (y), ~ (y),, &~ (y) upon statistical convergence. They serve as
threshold heights for the definition of trigger events in the conditional averaging below.
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Figure 15. Profiles related to the Reynolds shear stress. (a) Correlation coefficient of the streamwise and
vertical velocity fluctuations over height. (b) Reynolds shear stress component by quadrants, computed
according to (7.2).

The normalized solid volume fraction «, obtained by horizontally averaging the blade
positions, is shown for comparison. It is strongly concentrated around its maximum value
slightly below the upper inflection point y,;,. The profile of ¢y, in comparison, is broader
and has its maximum below & =0.2H. This results from the rare, far excursions of y
to high elevations, up to 0.6 H. By definition, y is located at a higher elevation than the
mean volume fraction «. From a physical perspective, the uppermost blade determines the
position of the canopy—flow interface to a large extent as it provides a kind of shadow to
the blades and the interstitial flow underneath. This is easily visible, e.g. in the centre plane
plot of figure 3(a) around 5 < x/H < 5.5. Such an approach is deemed more appropriate
than a definition of the interface based on a threshold value of some instantaneous,
smoothed local volume fraction.

7. Coherent flow features
7.1. Quadrant analysis

The Reynolds stresses were reported in figure 5 and discussed in § 5.3. Of these, the
turbulent shear stress (u'v’) is particularly relevant because it represents the turbulent
momentum exchange between the canopy region and the outer flow. Above, it was
demonstrated that (u'v’) ~ (u”v”), so that in the following only the latter is discussed for
convenience. Mathematically, the magnitude of (u”v”) is the result of the two fluctuating
components being statistically anti-correlated. The degree of (anti-)correlation is reported

in figure 15(a) in terms of the correlation coefficient

/N
pu//v// = &

(u//u//> (v//v//> (71)

Its shape is different from (u”v”) due to the division by the magnitude of the u and v

fluctuations, but very instructive. While ‘(u” v’ )} is maximum around y ~ 0.34 H, the
correlation coefficient p,~, has its absolute maximum at a much higher position of
y = 0.5 H. Above the bottom wall, —p,,~ increases approximately linearly, then flattens
between the lower and upper inflection points, remaining about constant in the surrounding
of the upper inflection point before increasing again with height.
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To analyse this interplay in more detail, a quadrant analysis (Wallace, Eckelmann &
Brodkey 1972; Willmarth & Lu 1972) was performed. Defining a Cartesian plane spanned
by u” and v”, instantaneous fluctuations can be associated with the respective quadrants
i € {1, 2, 3, 4} by means of the function

1 fG=DA0W >0 A® >0) (outward interaction),
1 if(=2)AW"<0) AW >0) (eection),
Six,N)={1 if(=3)AW" <0 A @ <0) (wallward interaction), (7.2)
1 ifG=4) AW >0) AW <0) (sweep),
0 otherwise,

so that the total Reynolds shear stress can be decomposed as
4

(W) =" (u"v"s). (73)
i=1
Figure 15(b) shows the magnitude of each contribution over height. Both ejections
and sweeps behave similarly, but differ in the details. The magnitude of sweeps (i =4),
bringing fast outer fluid towards and into the canopy, increases almost linearly from the
upper surface towards the average canopy height, where it attains a maximum slightly
above /. Below this elevation, a fairly linear decrease towards the bottom wall is observed.
The ejections (i = 2) are less vigorous within the canopy, exhibiting a slow linear increase
between yj;j, and somewhat below yy;p, i.e. where (u) is roughly constant (cf. figure 5a).
Then, a stronger increase towards a maximum is seen, at around 0.36 H > #, i.e. above the
canopy. Its magnitude is roughly the same as for the sweep contribution. The contributions
from the other two quadrants behave similarly over y with a maximum around y =h
of magnitude 2.7 times smaller than that of the sweeps. As known from canopy flows
in general, ejections contribute more to exchange of momentum than sweeps above
the canopy, here y < 0.3H ~ 1.5h, whereas sweeps provide a larger contribution than
ejections in the layer below (Poggi et al. 2004; Patton & Finnigan 2012). This dominance
of sweeps is a characteristic of dense canopies, which is not observed in sparse canopies
(Poggi et al. 2004; Patton & Finnigan 2012). While smooth boundary layers also exhibit
a sweep-dominated layer for y* < 15 (Ong & Wallace 1998), in the present situation this
layer is much thicker, as concluded from the value of y™% = (y — yy0)/(v/tt7.10) ~ 386.
The Reynolds shear stress is also given by (Wallace 2016)

00 00
<u//v//> — / /u//v//d)u”,v” du” dv”, (7.4)
—00 —00

where ¢,,7 ,» is the joint probability density function (JPDF) of «” and v”. This quantity
is reported in figures 16 and 17 for three characteristic elevations in and above the
canopy to demonstrate how contributions evolve with height. Representative of the inner
canopy region, at the elevation of the upper inflection point y = y,;, sweeps dominate
the contributions of all other quadrants (cf. figure 15b). The corresponding JPDF in
figures 16(a) and 17(a) peak at u” ~ —(u), v"" = 0, which is concluded to be a signature
of the canopy blades. Since the blades are fixed at the bottom, the velocity at their surface
close to the floor is small. With u” =u — (u),, ~ u — (u) this can be expected to produce
a spike at u” = —(u). With increasing height, ejections start to gain relevance, but sweeps
remain the dominant contribution to —(u”v"”) (cf. figure 15b). At the average height of the
canopy, y = h, |(84u"'v")| is approximately maximum. The peak associated with —(u) is
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Figure 16. The JPDF of the streamwise and vertical velocity fluctuations, ¢, ,~, at constant height. (a) At the
height of the upper inflection point y = yy;; (b) at the average canopy edge y = h; (c) at channel half-height
y = H /2. The broken line (-—_-) in (a—b) indicates u” = —(u).
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Figure 17. Magnitude of covariance integrand in (7.4), [u”v"¢,» v / (u”v")], at constant height. (a) At the
height of the upper inflection point y = yy;p; (b) at the average canopy edge y = h; (c) at channel half-height
y = H /2. The broken line (-—_-) in (a—b) indicates u” = —(u).

still noticeable, but less pronounced (figures 16b and 17b). Further into the outer flow, at
y = H/2, the correlation —p,», is approximately maximum (cf. figure 15a) and ejections
are the predominant mechanism in turbulent momentum exchange (cf. figure 15b).

7.2. Spatial extent of flow structures

Two-point correlations in space were computed to characterize coherent structures in the
flow. The normalized two-point space—time correlation coefficients of two field quantities
p and g read (He, Wang & Lele 2004)

(px,t)gx+r,t+1))
Prms(Y) Qrms () ‘

Starting with the fluid velocity, zero-lag auto correlations of streamwise velocity
fluctuations are provided in figure 18, showing perpendicular slices of the three-
dimensional fields. The streamwise velocity fluctuations are highly correlated in a rather
small volume surrounding the origin, with correlations decaying much faster in the
spanwise direction than in the streamwise direction, resulting in elongated, streamwise-
oriented isocontours. This reflects the convective transport with (#) in the streamwise
direction. In the spanwise direction the volume of positive correlation surrounding
the origin is accompanied by a pair of negatively correlated volumes further outward,
indicating a spanwise neighbourhood of high- and low-speed streaks at a relatively stable
distance. In figure 18(a) the horizontal extent of (anti-)correlated volumes can be seen to
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Figure 18. Two-point auto-correlation of u”. Results are shown for (a) . (y; rx, ry=0,r;7=0), ie.
correlations in horizontal slices; (b) oy (y = h; ry, ry, rz; T =0), i.e. correlations with u” at the mean canopy
height A.

increase with the distance from the no-slip channel floor, and towards the free-slip top
boundary, while low-intensity, long distance correlations in the streamwise direction tend
to be maximum at y & H /2. Figure 18(b) shows the correlation of the streamwise velocity
fluctuations with the reference value taken at y = &, resulting in an inclined pattern such
that with the increasing r, correlation is maximum at increasingly large values of ry > h.
This reflects the presence of velocity structures inclined by a ratio of about 6: 1, known
from smooth- and rough-wall open-channel flows (Nezu & Nakagawa 1993). The graph
also illustrates that substantial coherence with the data at y = & is obtained over the vertical
direction, signifying that the coherent structures located at the canopy edge fill a sizeable
portion of the submergence to some extent reaching even to the upper boundary.

Extracts of p,»,» at the mean canopy height y =/ and in the free stream at y = H/2
corresponding to the usual two-point correlations are shown in figure 19. Based on the
global minima in figure 19(b), the average spanwise spacing between high- and low-speed
streaks can be determined to be around 0.75 H. Concerning the streamwise direction, no
such statistical neighbourhood between high- and low-speed streaks is discernible. While
decorrelated below half the domain length, streamwise correlations do not exhibit the
negative peak that is present in the spanwise direction. Indeed, viewing visualizations of
u” in figure 3(a) and figure 30(b), instantaneous high-speed streaks appear to vary much
more in length than in z. These streaks can become quite long, sometimes reaching the
length of the simulation domain, as appears to be the case in Monti et al. (2020) where
Ly=624H.

Evaluating the auto-correlations of the canopy hull height, also shown in figure 19,
results in a similar picture as that of p,~,~ in figure 18(b). The present results show
that the canopy height is well correlated with streamwise velocity fluctuations. This is
seen in figure 20(b), where the cross-correlation coefficient of the two yields a value of
Py &~ —0.6 at the mean canopy height, only slightly inferior to the maximum absolute
correlation. As a result, slices of pjr,» in figure 20(a) yield essentially the same picture
as p,ry in figure 18(b), just with an opposite sign. Observing the negative sign, this
demonstrates that the canopy hull is governed by high-speed streaks pushing it towards
the ground, whereas low-speed streaks correlate with higher elevations of the hull.

A different view on the spatial extent of flow structures is provided through energy
spectra of streamwise velocity fluctuations. The two-dimensional energy spectra of
these quantities, premultiplied by the wavenumber, are shown in figure 21. Doing so
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Figure 19. Two-point auto-correlations of the streamwise velocity u” at y =h and y = H /2, and of the canopy
hull height y”. (a) Correlations in the streamwise direction; (b) correlations in the spanwise direction. The
curve of pyryn is very close to that of .
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Figure 20. Two-point cross-correlation p5r,~ (¥; rx, rz; T = 0) between the vertical position of the canopy hull
V'(x,z; 1) =y(x, z; 1) — (¥),.(t) and the streamwise velocity fluctuations u” = u”(x, y, z; 1). (a) Evaluated
in perpendicular slices through ry =0, y = h, r, = 0; (b) profile extracted at r, =r, =0.

produces plots in which equal areas under curves of premultiplied spectra represent equal
energies, when plotted against the logarithmically scaled wavenumber (Kim & Adrian
1999), or wavelength. Maxima in these plots are, therefore, referred to as energy sites
in the following (Hutchins & Marusic 2007). They can be understood as wavelengths
where turbulence kinetic energy (TKE) is maximally concentrated, while not necessarily
resembling maxima in the plain spectra. Energy sites of @,/ are located at the canopy
edge, comparable to the maxima in the profiles of (u'u’) (figure 5¢). The corresponding
dominant wavelengths are A, ~2.5H in the streamwise direction and A; ~ 1H in the
spanwise direction, respectively, both at y & h. With increasing y the maximum of k, @,
in figure 21(b) shifts to larger wavelengths, approaching a value of 1, =2H at y = H. The
dominant spanwise wavelengths are consistent with the average spanwise spacing between
high- and low-speed streaks identified above, expecting twice that distance to be related
to the dominant wavenumber. Indeed, the values of 2 arg minrz (Pwurly=Hs2) ~ 1.5H and
2 arg minrz (owrwly=n) ~ 1 H match the wavelengths of maximum ®,,,.

The premultiplied spectrum of the canopy hull height y is shown in figure 22. It
is characterized by a maximum near A, ~2.5H, A; & 1H, identical to the maximum
locations of fluid velocity spectra at y =h. This, once again highlights the close
relationship between streamwise velocity fluctuations and the instantaneous canopy hull
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Figure 21. Premultiplied wavelength power spectral densities of the streamwise fluid velocity component,
evaluated for different heights. (a) Streamwise direction; (b) spanwise direction. Heights are marked with (—.—.)
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Figure 22. Premultiplied power spectral densities of the canopy hull with regard to the streamwise and
spanwise wavelength.

height also observed through their correlation in figure 20(b). Additional spectra and
further details on their computation are provided in Appendices I and J.

7.3. Conditionally averaged sweep and ejection events

The data are now analysed to better understand the dynamic relationship between the
motion of the canopy hull and the flow structures. This is an actively discussed topic
in the literature with multiple conceptual models developed. The most common model
involves a spanwise-oriented KH vortex located near the canopy edge (Nezu & Sanjou
2008; Okamoto & Nezu 2010a; Nepf 2012a), linking the canopy-related velocity gradient
to the velocity profile of classical mixing layers. The theoretical foundation was extended
by Singh et al. (2016) who identified a secondary instability mechanism that usually occurs
simultaneously when considering the properties of common aquatic vegetation canopies.
Instantaneous coherent vortex structures must be expected to exhibit three-dimensional
patterns, more general than the two-dimensional flow patterns resulting from a KH
instability perpendicular to the mean flow, as such a pattern moves with the mean flow and
may be turned around, stretched or deformed otherwise. Indeed, rather complicated three-
dimensional large-scale flow patterns associated with sweeps and ejections were identified
by Finnigan (2000); Nezu & Sanjou (2008); Finnigan, Shaw & Patton (2009); Tschisgale
et al. (2021).
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Inspired by the strategy of Finnigan et al. (2009), Tschisgale et al. (2021) employed a
conditional averaging technique to isolate coherent flow features surrounding patches of
locally strongly deflected canopy blades. This choice of the trigger event served to follow
the patterns created by the monami phenomenon. The same analysis is now applied to the
present data.

Conditional averages were collected following troughs of the instantaneous canopy hull
and ridges thereof. To this end, threshold values y;’, and y, were introduced to determine
particularly low or elevated patches of the hull, termed ‘troughs’ and ‘ridges’, respectively.
Each of the patches related to particularly low or high elevations of the hull are defined as a
region §2. C §2,, in the x—z space. The coordinates of the trigger events are then identified
as the centroids of these patch regions, and the resulting tuples of trigger location, time
and associated patch area are collected in corresponding sets:

Cr={(xc, te, Ae) | xc =centroid(2:) A Ac =area(2.) AVx € 2.:5"(x, 1) <yl },
(7.6a)

Cr={(xc, e, Ac) | xc =centroid(£2.) A A, =area(2.) AVx € 2.:5"(x, 1) 2 y. . } .
(7.6b)

As shown above, the local canopy hull height is determined by the interaction with the
fluid flow field, so that this method can be expected to isolate sweep and ejection events
for example.

The threshold values were chosen as the 5 % and 95 % percentiles of the fluctuating
hull height y”. The respective heights are indicated in figure 14. Different from medium-
Cauchy-number cases, where the tips of the blades define the canopy envelope, even the
smoothed canopy hull remains relatively rough. As a result, the ensemble of events in
the present situation also contains a relatively large number of events with tiny associated
areas A, typically occurring in the neighbourhood of larger ones. These small events were
considered as noise rather than indicators of own flow structures. Weighting events by their
areas ensures that contributions of these side detections are also negligible in the resulting
average. Still, a lower threshold for the size was introduced, demanding

!
Ac 2 Acrir, (77)

with A.;; =4W?. This is physically reasonable and reduces the computational effort
substantially without affecting the result, as detailed in Appendix H.

The conditional averages for C; and C, were computed analogously to Tschisgale et al.
(2021). The procedure reads

. T
xC = (xC’ 07 ZC) ’

Z(xc,tc,Ac)eC Acopxc+r, 1) r:=(ry,y, rZ)T, (1.8)
Z(xCJCsAc>€C AC ’ Iy € [_Lx/z’ Lx/z],

r;€[—L;/2, L;/2],

where ¢ represents the scalar quantity to be averaged, such as pressure p or components
of the instantaneous velocity vector u. Equation (7.8) can be applied to all three-
dimensional fields. The adaption to two-dimensional data defined in §2;, such as canopy
hull information, is straightforward.

The conditionally averaged velocity fields are shown in figure 23 along with the
conditionally averaged hull height. Corresponding profiles above the trigger location
are assembled in figure 24 and three-dimensional views are shown in figure 25. The
conditional averages are symmetric in the spanwise direction. This symmetry results from
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Figure 23. Conditionally averaged flow in perpendicular slices at r, =0, y = max({y).) and r, = 0 as indicated
by the dotted lines. Each slice features streamlines of the in-plane velocity and is coloured by the magnitude
of the respective in-plane velocity, denoted (u). . The solid line (—) in vertical slices represents the average
hull height. (a) Average over trough-centred events, C;; (b) average over ridge-centred events, C,.
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Figure 24. Profiles of the conditional average for the ridge-centred condition (—) C, and the trough-
centred condition (-__) C;. (a) Streamwise velocity, (b) streamwise velocity fluctuation, (c) vertical velocity
fluctuation, (d) turbulent shear stress. Profiles in (a—c) were extracted exactly at the centre of the average
ry =r; =0, in (d) the position is slightly different, with the profile for C, extracted at x =0.1H and that for
C; extracted at x = —0.03H to capture global maxima. For reference, the ordinary average profiles (—._.) of
(u) from figure 5(a) and —(u""v"”) from figure 5(b) are included in (a, d), respectively, as well. The horizontal
straight lines refer to the canopy hull at the same position as the respective curves. — the height of the hull
for C,, ___ height of the hull for C;, —._. the average hull height y = h.

the reflectional invariance of the set-up in z, while instantaneous realizations may be
asymmetrical with only a single pronounced streamwise vortex present, as seen with the
instantaneous vortical structures in figure 4. The averaged hull height at the event centre is
(¥)elr—o=0.06 H for C; and (y)¢|,—q=0.44 H for C,.

The flow situation associated with troughs C;, in figures 23(a), 24 and 25(a), constitutes
a sweep event characterized by a locally increased streamwise velocity ((u'). >0 in
figure 24b), a downwash ((v'). <0 in figure 24c¢), and, hence, elevated turbulent shear
that is maximum between the conditionally averaged and the mean hull height (figure 24d).
The trough in the canopy hull has a spanwise width of 1.04 H measured as the distance
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Figure 25. Conditionally averaged flow structures. The height of the floor corresponds to the averaged canopy
hull height ()., contour surfaces represent velocity fluctuations, with blue denoting (u'). = —0.1U and
red denoting (u’). =+0.1 U, and vortex structures of the conditionally averaged velocity field Ap({u).) =
—0.1 U?/H? coloured by height. (a) Average over trough-centred events, C;; (b) average over ridge-centred
events, C,. To obtain smooth contours, (u'). and (u). were filtered in r, and r, with a Gaussian kernel of
standard deviation 0 =0.17H.

between the neighbouring crests. This trough complies with the velocity induced by the
streamwise-oriented, counter-rotating vortices in the left panel of figure 23(a) that push
the canopy blades apart. These streamwise-aligned vortices in (u). related to C; are also
represented by isocontours of negative A2 ((#)) in figure 25(a). Their overall appearance is
similar to a vortex structure identified by Tschisgale et al. (2021), being constricted near the
trough, then growing to the sides and upwards further downstream. Note that in Tschisgale
et al. (2021) the trigger event was located at the root of the locally most deflected blade.
The actual trough in the resulting conditional mean then occurred at a value r, > 0 instead
of r, =0.

The conditionally averaged flow situation associated with ridges (C;) is shown in
figures 23(b), 24 and 25(b). Here, the flow features an ejection event characterized
by locally reduced streamwise velocity ((u'). <O in figure 24b), a substantial uplift
surrounding r = 0 (figures 23b and 24¢) and substantially increased turbulent shear with
a maximum of yet greater magnitude than that of C;. This maximum is located just below
the conditionally averaged hull height at y & 2h. Streamwise-oriented vortices accompany
the ridge on either side, rotating in opposite directions compared with the sweep event
(left panel of figure 23b). The width of the ridge can be assessed by the distance between
the minima of the conditional hull height on either side (left picture of figure 235), which
amounts to 0.92 H. This is smaller than the width of the mean trough in figure 23(a).

The mean flows obtained by conditioning the two dominating types of events exhibit
marked differences (figure 24a). Very small velocities occur inside the canopy for the
ejections (C,), reaching U/2 only at the boundary with the outer fluid. In contrast, a full
profile is observed for the sweeps (C;) with a much stronger velocity gradient at (y). in
this case.

Neighbouring velocity streaks associated with both events in figure 25 are positioned
with a spanwise distance of ~0.55 H, matching the distance r, at which two-point
correlations are most anti-correlated in § 7.2 above, although the latter was obtained by
averaging over the entire domain, while here averages are conditioned by trigger events.
Furthermore, the low-speed streak associated with C, and the accompanying high-speed
volumes are more pronounced than the high-speed streak with accompanying low-speed
volumes in the pattern for C,. This matches the observations made when inspecting
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instantaneous flow structures in animated visualizations corresponding to figure 4: high-
speed streaks stand out more than low-speed counterparts, meaning that they are more
concentrated and more intense when they appear, while low-speed volumes are larger and
more frequent, but also of lower intensity.

8. Conclusions and perspectives

In the present paper the turbulent flow over and through a canopy composed of densely
arranged, highly flexible strip-shaped ribbons was investigated. The simulation was
performed with 672 blades, each modelled as a Cosserat rod and attached to the flat bottom
wall in a staggered arrangement. Rods and fluid were coupled with an IBM. Collision and
contact between the structures were modelled using a collision model developed by the
present authors in earlier work.

The parameter range of canopy and canopy-like flows is huge due to the abundance of
different characteristic quantities involved. The present study adds to the very few available
scale-resolving simulations that capture the geometries of the individual flexible canopy
elements (Sundin & Bagheri 2019; Tschisgale et al. 2021; He et al. 2022; Wang et al.
2022; Monti et al. 2023). It considers flat cross-sections instead of cylindrical rods, and
an elevated Cauchy number of Ca =25 000 not reached in other studies. This leads to
physical differences addressed in this study.

Section 4 provides the reader with impressions of the instantaneous flow. Statistics of
fluid motion, blade motion and canopy drag are presented in §§ 5 and 6. Owing to the very
high Cauchy number, a rather passive, massively reconfigured arrangement of the blades
is observed. This results from the large nominal reduced velocity U,, which relates the
natural period of the freely vibrating beam to the dominant time scale of the turbulent
flow. However, the analysis of blade motion spectra in comparison with spectra of the
fluid turbulence attributes a much smaller effective reduced velocity to the canopy. The
origin of this discrepancy could be explained with a simple lumped-spring model similar
to the model of Sundin & Bagheri (2019), but adapted to the present situation of the blades
forming a sort of compliant fluid—canopy interface (§ 6.3). This fluid—canopy interface was
captured as the height of the locally most elevated blade at a given x-z coordinate, with
appropriate smoothing applied. The canopy envelope defined this way varies over time as it
interacts with the turbulent flow, exhibiting troughs and crests highly variable in space and
time. Its definition enabled subsequent joint analyses of canopy motion and fluid dynamics
in § 7. Local extrema of the canopy height served as triggers for conditional averaging to
identify flow structures responsible for these events. The resulting conditionally averaged
flow structures essentially correspond to sweeps and ejections. Their spatial extent could
be related to length scales obtained from two-point auto-correlations, and those identified
in the spectra of fluid and canopy motion. The sweeps associated with the trough event
were found to be accompanied by a pair of streamwise-oriented and slightly tilted counter-
rotating vortices, reminiscent of the head-down structure identified by Tschisgale et al.
(2021) for a canopy flow at moderate Cauchy number. In this reference the structure was
linked to the occurrence of the monami phenomenon that is not encountered in the physical
configuration investigated.

The present method offers a vast amount of future perspectives. The uniformity of the
blade geometry could be reduced, e.g. by stochastically determining the length or the
width, or both, and by changing the positioning to be less regular or more regular. This may
enable comparison with the findings of Monti et al. (2023) and Foggi Rota et al. (2024b),
allowing for conclusions to be drawn on the impact of the different blade geometries
employed in both investigations. In particular, the spanwise agility of the present rods
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seems noteworthy and possibly related to the flat cross-sections employed, which is very
different from the circular shapes in the cited studies. Another perspective is to consider
canopy patches with high Ca, as done for rigid blades by Chang & Constantinescu (2015).
This was started by the present authors using streamwise patches and moderate Ca in
Lohrer & Frohlich (2023a). Finally, it would be interesting to consider variants with the
outer flow being modified, since the canopy—flow interface interacts with the outer flow.
One such modification is a case with sidewalls where secondary flow features play a role.
Corresponding simulations have been conducted by the present authors (Lohrer et al.
2020) and are presently being pursued.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2025.407.
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Appendix A. Remarks to table 1

This appendix provides details on how the reported values listed in table 1 were determined
from the references in cases where they were not explicitly stated. Plain variables
correspond to the nomenclature employed in each reference, whereas boxed variables are
derived to match the nomenclature of the present document.

(i) Sundin & Bagheri (2019): the bulk Reynolds number was derived from their equations
(4.5) and (4.6), with the approximation

.L.t

wall 0
——— X Cy. (AD)
p2u} !

[Renl= 357 ot Rl @
HI=N2AD T W T

with u(T)/U0 = ,/c(}/Z =15.66 the value for a smooth channel with Re; = 180
(Hu et al. 2006). The Cauchy number was obtained from

h 2

2
—4 - a 1Y -2
[Ca]=[Ren [ Rez*a 2(7) Tapr (A3)
A

The required ratio i/l =9 is not explicitly provided in the paper and was instead
read from figure 10(b) in that paper. Here, Re; = 180 is the nominal friction Reynolds
number used for normalizing with inner units. The variable Re; reported in table 1 of
the present document refers to the friction related to the canopy, which is

—Re!. (A)
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The reduced velocity in that reference is

T
U |=T"=a"' 2. (AS)
Ty

The Cauchy number provided in Sundin & Bagheri (2019), Q*, is based on the
measured canopy edge drag instead of the nominal drag. This leads to Q* = 3(g)/a =
0.72to 1.92.

Tschisgale et al. (2021): the friction Reynolds number was obtained from
H — ym ym L* L
Re, :Re-[ H = Ké¢ (1 — Efﬁ . (A6)

As in § 3.1, the reference time scale associated with the channel flow turbulence was
estimated with the value from Hu et al. (2006):

2wy 2 H? _
= S = —Re; 2. (A7)
0.075U2 ~ 0.075 vy

The reduced velocity follows with

~!0.075 ReZ
U, == Ny (A8)

fn 27‘[0[ Rey fn f]

(iii) He et al. (2022): in this publication, dimensionless numbers are based on a friction
velocity, determined as
1d
u*:\/———p(H h). (A9)
prdx
where H is the channel height and 4 the physical length of the blade. With the
definition of (5.9) this corresponds to
w* = /[T Jy=n/ps (A10)
The mean bulk velocity is not provided in the paper, but could be extracted from
figure 6(a) in He et al. (2022), resulting in
H -
—*= /idy—{43 5.5,7.8,8.7) for Ca=1{0, 5, 30, 80}, (A11)
u u
y:
which permits us to determine the bulk Reynolds number
H
= —=—-Rer = {12913, 16596, 23 326,26 031} _for Ca={0, 5. 30, 80}.
u
(A12)
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The friction Reynolds number according to (5.8) is

Urvo ((H —|Yvo |)
Py H — [ )

(A13)
v
B H = ) (H = )
_ - .
With
1 d
wh e H =) h
Rep=— = (Al4)
Vv Vv

it follows that

H—|yvo |H—|yvo | Yvo 3/ h -2 g

It would be possible to compute / H from the velocity profiles in figure 6(a) in
He et al. (2022) but, for the sake of simplicity, it was approximated with / H~

h./ H, the value of which is provided via table 4 in He et al. (2022). With Re; = 1000
and H/h =3 for all cases and A,/ h from table 4, this gives

22 h\"1/2
Re; |~ Re; <1 — E) (1 — E) 7= {2000, 2486, 3043, 3144} (A16)
for Ca={0, 5, 30, 80}. The Cauchy number in their paper is defined as
%2
bh
= &’ (A17)
EI/h?

which differs from the definition in (1.2) employed in the present paper due to the
lack of the prefactor 1/2 and since it is based on their friction velocity instead of
the bulk velocity. Hence, for comparison, the Cauchy number matching (1.2) was
determined as

2
1 (U

[Ca]=> () Ca=1{0,77,907, 3012} for Ca={0, 5, 30, 80}. (A18)
u

Appendix B. Grid refinement study

The numerical grid used in the present study was devised on the basis of the validation and
grid refinement study conducted in Tschisgale & Frohlich (2020); Tschisgale et al. (2021).
This case is similar to the present one and the same numerical method was employed. The
physical parameters are listed in table 1. The Reynolds number in terms of Rey as well as
Re; was about twice as high, the roughness density close and the Cauchy number much
lower. In Tschisgale et al. (2021), resolving the width of the blades with W/A, =12.8 or

1016 A4-39


https://doi.org/10.1017/jfm.2025.407

https://doi.org/10.1017/jfm.2025.407 Published online by Cambridge University Press

B. Lohrer and J. Frohlich

(a) (b)
1.0 ; 1.0
N e Coarse
0.8 0.8 - | ——— Medium
—— Fine
0.6 0.6
y/H y/H
H 04 -
h/L
0+—=——— 0 :
0 0.5 1.0 1.5 0 0.02 0.04
(u)/U () U?

Figure 26. Profiles obtained in grid refinement study of Tschisgale ef al. (2021). (@) Mean velocity; (b)
resolved turbulent shear stress. The horizontal line indicates the average height of the reconfigured canopy.

Coarse Medium Fine
Ly/H xLy/HxL;/H 6.1 x1x3.0 6.1 x1x3.0 6.1 x1x3.0
Ny x Ny x N, 512 x 84 x 256 1024 x 168 x 512 2048 x 336 x 1024
Ny 672 672 672
W/A, 3.2 6.4 12.8
CcrL 0.5 0.5 0.5

Table 5. Cases for grid refinement of Tschisgale et al. (2021), a channel flow with a free-slip rigid lid boundary
at the top, periodic boundaries in horizontal directions and flexible ribbons attached to the bottom plate. Here
Ly, Ly, L; denote the extents of the domain in the streamwise, vertical and spanwise direction, respectively;
Ny, Ny, N, denote the number of cells in the spatial discretization of the fluid domain; Ny is the number of
ribbons; W is the width of the ribbons. A; is the step size of the Eulerian grid in z; Ccry is the time-averaged
maximum CFL number; all other parameters were conserved between the cases.

even W/A, = 6.4 yielded well-converged profiles for the mean velocity profile and the
Reynolds stresses, as seen in figure 26.

Based on the fact that in Tschisgale et al. (2021) the channel height was larger by a factor
of about one third of the present case and the horizontal extents of the domain only a little
larger by 11 %, the same number of grid points were used horizontally, together with a
proportional reduction in Ny (§ 3.2). Hence, the physical size of the Eulerian grid cells is
about the same for a Reynolds number reduced by a factor of 2. Since the width of the
present blades is W = 15 mm against W = 8 mm in Tschisgale ef al. (2021), the resolution
of the blades is now W /A, =24 instead of 12.8, which is about twice as much.

Since the Cauchy number is different in the present case, so that the canopy behaves
differently, grid sensitivity was further assessed for this situation on the basis of four
additional simulations. Although, He et al. (2022); Monti et al. (2023) argue that a
grid resolution study for low Ca number conditions also applies to high Ca cases. The
additional simulations were configured like the production case described in §§ 3.1 and
3.2, except for the parameters specified in table 6. Fluid statistics obtained with these
cases are compared in figure 27. The case Coarse is identical to the production run,
apart from the grid coarsened by a factor of 2 in all directions. The same grid resolution
was employed for a simulation with a domain of halved extension in the two horizontal
directions, case Sm_coarse. Differences in the results are very small, demonstrating that

1016 A4-40


https://doi.org/10.1017/jfm.2025.407

https://doi.org/10.1017/jfm.2025.407 Published online by Cambridge University Press

Journal of Fluid Mechanics

Coarse Sm_coarse Sm_medium Sm_fine
Ly/HxLy/HxL;/H 923x1x4.04 4.62x1x202 4.62x1x2.02 4.62 x 1 x2.02
Ny x Ny x N, 1024 x 125 x 512 512 x 125 x 256 1024 x 250 x 512 2048 x 500 x 1024
Ny 672 168 168 168
W/A, 12.2 12.2 24.4 48.8
CcrL 0.3 0.25 0.24 0.41

Table 6. Cases for the present grid refinement study. Nomenclature as in table 5.

(b)

T T T
0 05 10 15 0 001 002 0 005 010
(u)/U (") U? 12(uf'uf) /U

Figure 27. Grid sensitivity study for the cases in table 6. (a) Average streamwise velocity; (b) resolved
Reynolds shear stress; (¢) resolved TKE. Black curves: profiles as indicated on the axes; grey lines: mean
canopy height &.

the grid refinement study can, indeed, be carried out on the smaller domain, as it focuses
on the small-scale components of the flow. Hence, the subsequent investigations were
conducted with the smaller domain. The corresponding cases Medium and Fine each
employ grids further refined by a factor of 2 in each direction. Comparing the three, it can
be observed that the mean flow profile saturates from medium to fine, with a maximum
absolute difference of approximately 0.05 U. Comparable values for the Reynolds stress
components are obtained, with the maximum absolute difference between the resolved
shear stress measuring 0.0034 U? ~ (0.0058 U)?, which is about 18 % of the present
result. The difference in the TKE is smaller, about 9 %. It should be noted that the CFL
number of the case Sm_fine was doubled with respect to the other cases to save computing
time for this simulation, otherwise it would be more costly than the production run. The
increased time step is prone to damping velocity fluctuations of fluid and blades, so that
the profiles of Sm_fine in figures 27(b) and 27(c) are likely to be underestimated.

Appendix C. Quality of LES

The present simulation is a high-resolution LES, as in Frohlich et al. (2005), close to a
DNS. Assessing the quality of an LES is not trivial and has received much attention in the
past, see, e.g. Salvetti et al. (2011), and several methods to evaluate the resolution of an
LES simulation have been proposed. Geurts & Frohlich (2002), for example, introduced
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Figure 28. Instantaneous snapshot of subgrid-scale activity in the production run. White areas result from the
subgrid-scale damping near the blades (§ 2.3).

the activity parameter

.
Q= (€res) + (ssgs>’ (€D
where
ou; ou;
Eres = 1)Sij Ej’ Esgs = ngsSij E (C2)

are the resolved dissipation and modelled subgrid dissipation of kinetic energy,
respectively. The limit Q. =0 indicates a DNS and Q, =1 an LES at infinite Reynolds
number. For an eddy-viscosity subgrid-scale model, Q. can be approximated by (Celik,
Cehreli & Yavuz 2005)

o {vses)
Qs ~ W, (C3)

which can be determined more easily.

Figure 28 displays an instantaneous snapshot of this quantity in the production case
illustrating that Q, is below 0.1 in large parts of the domain and up to 0.3 only in a few
places. This is quantified in figure 29(a) that reports statistical data: the overall mean value
of Q¢ is 0.11 and 95 % of the values are below ~ (.23, as shown in the top picture. The
picture below provides the distribution of Q. over height, with slightly larger values in
and near the canopy and smaller values above. The observed magnitude of Q. indicates
very good LES resolution. Figure 29(b) shows the impact of the subgrid-scale term on
the mean drag in comparison to the purely viscous term. Both peak between yj;, and yyp
and very close to the bottom wall. It is obvious that the magnitude of the subgrid-scale
contribution to the drag is smaller than that of the viscous contribution throughout. The
latter, by itself, is already much smaller than the other two contributions to the drag, as
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Figure 29. Metrics of the subgrid-scale activity and its impact. (a) The PDF of Q. over height, together with
mean value (—) and Pos9,(Q¢) (—.—.). The diagram in the upper part shows the PDF of Q. evaluated over
all y. (b) Double-averaged force due to the diffusive term and due to the subgrid-stress model.

seen in figure 8, so that the subgrid scale is uninfluential in this respect, in particular, it
totally vanishes around the upper edge of the canopy and above.

Appendix D. Additional views of instantaneous flow

Figure 30 shows the flow at the same instant as in figure 4, displaying the different
flow visualization features of that figure in separate subfigures for better visibility. In
figure 30(c), contours of low pressure serve to visualize vortices. This criterion was chosen
due to its focus on larger structures. More sophisticated approaches, such as contours of A3,
were found to fill the domain with fine-scaled vortices, rendering it impossible to discern
larger structures visually. The different scales selected by the different criteria result from
the fact that they relate to different derivatives of the velocity (Frohlich 2006).

Appendix E. Modal analysis of blade deformation

The mode shapes ¢, (s) were chosen to represent modes of vibration of an unloaded
cantilevered Euler-Bernoulli beam, i.e. solutions of the Euler-Lagrange equation
(Timoshenko 1937; Hadley 2024)

@n(s) = cosh(k,s) — cos(k,s) + oy (sinh(k,s) — sin(ky,s)), (Ela)
_ cos(k, L) 4 cosh(k, L)

. . : (E1D)
sin(k, L) 4 sinh(k, L)

with the arc length s € [0, L]. They comply with the boundary condition at the clamped
end, s =0, and are maximum at s = L with |¢, (s = L)| =2. The wavenumbers «, were
determined by solving the frequency equation (Timoshenko 1937)

cosh(k, L) cos(k, L) +1=0 (Elo)

numerically.

Figure 31 reports the shape of the modes ¢, for n =1, 2, 3, 4, 10 together with the
related wavenumber k,. With the minor role played by the elasticity of the beams in the
present high-Cauchy-number setting, these modes are not expected to match the physics
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Figure 30. Flow visualizations at  =74.7 U H~! (same instant as in figure 4). The three figures show the
geometry of the canopy blades coloured by their surface height yy, and the streamwise velocity u in vertical
slices. Additional features are: (a) volumes of |u’| > 0.5U (red and blue clouds); (b) iso-pressure surfaces with
p' =—0.1pU? = const., coloured by y. An animation of figure (c) is provided in movie 6 of the supplementary
material.
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Figure 31. Modal shape functions of a cantilevered beam according to (E1).
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Figure 32. Instantaneous deviation of the vertical centreline position from the mean c;, =cy — {cy), and modal

reconstruction according to (6.3) for an arbitrary instant in time. (a) Deviation c’y (s, t); (b) instantaneous
histogram of nodal amplitudes. An animation of this figure is provided in movie 7 of the supplementary
material. The equivalent animation for the spanwise component of ¢, is shown in movie 8.

of the problem. They were employed here as they constitute a well-known, well-structured
set of basis functions. Furthermore, for the vertical and streamwise position, they are not
applied to the shape itself, but to the deviation of the shape from its mean.

The time-dependent amplitudes associated with the different modes, ¢/, (¢), were
obtained from the temporal data of the blade shapes, ¢'(s, ), by solving a linear
system, discretized with N, elements corresponding to the nodes of the discretized
blade centrelines. This was done for every time step and for every component of ¢’.
Having identified the coefficients ¢/, (¢), the instantaneous shape of the centreline was
reconstructed, as illustrated in figure 32 for a single component and an arbitrary instant ¢.
Figure 32 illustrates that, once the mean centreline is known, the motion of the blades
can be very well represented by employing the first 10 modes for each component. The
instantaneous shape is well captured and the corresponding histogram shows very good
decay. By generating corresponding videos it was verified that the figure is representative.

For a single instant ¢, and considering the discretization of the blade centreline into N,
elements, (6.3) yields a system of linear equations

y=A-x+b (E2a)

for each component of ¢’, such that the vector y contains the observed instantaneous shape
fluctuations, the matrix A contains the values of the evaluated modal shape functions, the
vector x contains the unknown modal amplitudes and b is the error vector to be minimized,
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Figure 33. Distributions of the modal ratios of the different modes, based on data from all blades and the
entire time span. Vertical lines show the range of instantaneous values of the modal ratios, (E4). Shaded bodies
indicate the distributions, their width measuring the probability density. The inner horizontal bars mark the
average value. (a) Vertical deflection; (b) spanwise deflection.

e.g. for ¢/,

Ae,n = 0n(Se), Xp = C;n, Ye = C,/g (Se), be = &5 (Se). (E2b)
The desired vector x containing the modal amplitudes is then determined by minimizing
the mean square error, i.e.

(A-x—y)2—>min = X (E3)

for the given right-hand side y at this instant.

Figure 33 provides further information on the statistics of the modes. This figure
assesses the relative importance of the modes by evaluating their so-called modal ratios,
i.e. the ratio of the amplitude with respect to the maximum of all modal amplitudes (Binyet,
Huang & Chang 2018). As an example, for the component c’yn, this reads

Ry, () =—"" (E4)
c’ ‘

max (¢,

m

The stronger fluctuations in the spanwise direction compared with the vertical direction
noted in figure 12 are reflected by the larger r.m.s. values of ¢,. The further modes, n > 1,
are more pronounced vertically than in the spanwise direction, with the amplitudes of
mode 2 similar and amplitudes n > 3 in the vertical direction about twice those of the
spanwise motion. Higher modes, and especially the second and third mode, have higher
average modal ratios for vertical deflection compared with the spanwise motion, i.e. they
are more often the dominating modes.

Appendix F. Reduced model for the canopy

The components of the tip velocity of an arbitrary blade in the canopy are shown in
figure 34. The streamwise velocity fluctuations exhibit lower amplitudes than the other
components, and all three signals appear to contain features with different frequencies.
To elucidate this issue further, power spectral densities of the tip motion velocity
components were computed. Figure 35 reveals that, overall, spanwise motion is more
energetic than vertical movement, in line with the relative intensity of streamwise and
spanwise modes in figure 12. In the upper frequency range, for f Z U/H, however,
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Figure 34. Lagrangian velocity components of the tip of an arbitrarily selected single blade. Results are shown
for (a) ¢x/U (b) ¢y/ U (c) ¢,/ U, all for the averaging time span Ty,. (d-f) Same data as (a—c), restricted to the
last 20 washout cycles.
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Figure 35. Power spectral densities of the Lagrangian blade tip velocity components, ensemble-averaged over
all blades. (a) Double-logarithmic plot; (b) linear axes. The vertical dotted line (........ ) represents the flow-
through frequency of the bulk flow, U/L,.

the opposite is observed. The three spectra peak at ( fr, fry, frz) ~ (0.6, 0.4,0.3) UH™'.
These flapping frequencies are considered to result from the interaction of the canopy with
the turbulent outer flow, independent of the natural frequency of the blades in vacuo. This
is supported by the observations in Foggi Rota et al. (2024b), where the dynamics of blade
tips in canopies with Ca € [1, 500] were investigated. For lower values of Ca, flapping was
identified to occur predominantly with the natural frequency f, of the blades, whereas for
higher values of Ca, a turbulence-dominated regime was encountered, characterized by
the dominant frequency of the turbulence f;. In this latter regime, f,, < f; and the flapping
frequency fr~ f;. Inserting (1.2) into (3.2) gives

I =otil\/%,0U2Wm_1 Ca~'ocvCa™!, (F1)

which indicates that high-Cauchy-number cases can typically be associated with a
turbulence-dominated regime.
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In the present case, the frequency fr ~03UH ~! related to the spanwise motion of
the blades is slightly lower than fr, ~0.4UH ~1 associated with vertical motion. Both
oscillations seem to be independent since they do not exhibit an integer ratio suggesting
that the spanwise movement responds more to large-scale turbulent structures than vertical
excursion. In particular, KH-like vortices, generated in the shear layer near the canopy
edge, are linked to the vertical deflection of canopy blades (Nepf 2012a). The fact that
S = 2 ff; results from the geometrical effect that upon bending in z the tip exhibits
one minimum in the z position per period and two minima in the x position. Similar
to the value here, f; ~ 0.5 U H~! was identified in Foggi Rota et al. (2024b) based on the
flapping frequency f, for the higher-Cauchy-number cases studied in that reference.

At lower frequencies the asymptotic trend of the spectra in figure 35 is @ o f2, which
has also been observed in Foggi Rota et al. (2024a,b); Monti et al. (2023). A theoretical
foundation for this behaviour can be derived analogous to Jin, Ji & Chamorro (2016). To
this end, the translational oscillation of a blade segment near its tip is approximated with
a reduced model in the form of the ordinary differential equation (ODE)

mé¢+dc+kc=F,, (F2)

where ¢ is the position of a blade segment along the direction of interest, m a mass
associated with the considered blade segment, F, the instantaneous force due to fluid
forcing, k a stiffness parameter and d a damping parameter. The Fourier transform in time
gives

. F{F o
Flcl= , =2nf. F3
e} —mw? +k + iwd w=2mf )
The energy spectrum then is

IF(S)? = 1F(F)? Q% (@), (F4)

with the squared transfer function

() % -

0% () = o/ , wp =+/k/m. (F5)

2\ 2 2
d?
(1-(2)) +(2)
Essentially, the same relationship is established with the lumped-spring model proposed
by Sundin & Bagheri (2019). The asymptotic behaviour of Q7 is

2
y @
Q2 w<Lw, k_2 - f2,
for the low- and high-frequency limit, respectively.

The spectrum of the coupling force is expected to be proportional to the temporal
(i.e. one-dimensional if the Taylor hypothesis is employed) spectrum of the streamwise
fluid velocity, which is shown in figure 36, evaluated at several heights. These spectra are
approximately constant in the range of lower frequencies, f < 0.1U/H, then decay with
fB for f 2 0.5U/H. Observing in figure 35 that ®¢: o f 2 in the same low-frequency
range, it follows from equations (F5) and (F6) and f2 = f9+2 that the effective natural
frequency experienced by the blades must also be above f ~0.1U/H. This is a value
far superior to the natural frequency determined with (3.2), and it implies also a lower
effective reduced velocity below a~!/(0.1 U/H Ty) ~ 28. The theoretical proportionality
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Figure 36. Frequency power spectral density of the streamwise fluid velocity component.
Dee o | F {¢}> o £73/372 at higher frequencies can be compared with @ oc f~5/3=2 in
Monti ez al. (2023) and @ « £~ in Foggi Rota et al. (2024a,b).

In § 4 it appeared that the blades form a dense hull of densely stacked blades as suggested
by the value of A = LW/A; =2.8, where A; = LyL;/N; is the average base area per
blade. That is, if all blades were to lay flat there would be 2.8 layers of blades on average
covering the entire x—z-range. The average stacking height is reduced by the fact that the
blades are not densely stacked, i.e. 4 > 0, but it is still expected to be larger than 1. This
motivates the choice of the inertial parameter in (F2) as an added mass that accounts for
the mass of the canopy—flow interface per structure, when associated with a fluid layer
that matches the width W of a blade. The damping parameter was chosen similarly and
the stiffness was set to that of a bending beam of length / (Sundin & Bagheri 2019):

m=pA;W, (FTa)

d=+/AspvCyq, (F7b)
3E]

k()= i (F7c)

The resulting response curves are shown in figure 37. Demanding the o f2 part to be in
the range of f $0.1U/H, an effective bending length of /2 <1 S h is required, which
is plausible.

Hence, the very simple model for the motion of the canopy, based on the ODE (F2),
links the dynamics of the blades to the streamwise fluid velocity spectrum in a meaningful
way, when parameterized according to (F7). The required effective stiffness is related to
the canopy height and, thus, higher than the stiffness in (3.2) where the natural frequency
of an isolated beam is computed. Therefore, the natural frequency associated with the
canopy is also higher, or the effective reduced velocity decreased, compared with the
values determined a priori.

Concerning the behaviour for w > w,, the spectra in figure 35 drop much faster than
anticipated and approach zero around the frequency f = 10 U/H. This limit seems to be
imposed by the width W of the blades. Since the acceleration of a blade segment results
from external forces integrated along its width, this amounts to a low-pass filter of the
forcing exerted by turbulent fluid motion. Indeed, U/ W = 10 U/H. In contrast, no such
behaviour is reported in Monti et al. (2023; Foggi Rota et al. (2024a,b), where the rods
differ from the present case in that they have an isotropic cross-section not resolved but
created by an IBM with a single line of Lagrangian points.
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Figure 37. Evaluations of the model response function (F5) for multiple lengths / of the effective bending
part of a blade parameterized according to (F7). The drag coefficient was set to C4 = 1. Grey lines mark the
corresponding natural frequencies.

(@) ®)

Figure 38. Schematic sketch of canopy blades with their tip positions (crosses) and the associated hull (dashed
lines) indicated. (a¢) Medium Cauchy case where the positions of the tips define the hull geometry. (b) Large
Cauchy case where the position of the tips is not a reliable indicator of the hull surface.

Appendix G. Definition of the canopy hull

Compared with a low-Cauchy-number canopy, the definition of the interface between the
canopy and the outer flow becomes much more intricate for situations with a high Cauchy
number, where the blades behave somewhat similar to flags, but not entirely since mounted
perpendicularly to the flow on the bottom wall. Both situations are illustrated in figure 38.
In the former case, to create a continuously defined envelope, the height associated with
the tip coordinates can be interpolated to intermediate positions, effectively constructing a
surface passing through all tips. This procedure essentially translates into the construction
of a hull or, more precisely, a concave hull, similar to an alpha shape (Edelsbrunner &
Miicke 1994), since the tip of a blade is its most elevated position, and since it is,
furthermore, guaranteed that no other blade segment is above a tip. The term ‘hull’
accounts for the fact that this surface encloses the cloud of points associated with all
structure elements. It is conceived as an interface between the canopy and the outer flow
(Tschisgale et al. 2021; He et al. 2022).

The present authors have developed a more general way to define such an interface,
termed ‘hull’ here, in a physically meaningful way. This is non-trivial since at each
horizontal position the uppermost blade introduces a sharp boundary between the outer
flow and the interstitial, and sideward motion of the blades can generate large troughs. The
situation is characterized by substantial nonlinearity with any averaging process. Hence,
it was decided to first generate an instantaneous hull before any further treatment, e.g. by
averaging, is performed. This appendix describes the technical details of the construction
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Figure 39. Schematic sketch showing the principal steps in the construction of the smoothed canopy hull. (a)
Initially detected hull (filled with grey) in a cross-section. (b) After smoothing. The vertical lines in both plots
symbolize the discrete nodes at which the hull is extracted. For visibility, the distance between the vertical lines
at points z; is much larger here than in the actual data set.

to make the paper self-contained. Most of the text stems from the non-archival conference
contribution (Lohrer & Frohlich 2023b) of the present authors.

The strategy of defining the canopy hull is now outlined with the help of figure 39. The
index h is used to identify quantities related to the hull.

(1)

(i)

(iii)
(iv)

Starting point is a homogeneous, isotropic two-dimensional grid in the x—z plane,
containing Ny , X N j points (x5, z5) and covering the area L, x L, (vertical lines
in figure 39a).

At each point (xp, z5) all points on the blades with the same (x;, z;) position are
identified. Then, the point with the largest y coordinate is selected. This value is
denoted y (red dots in figure 394). The operations in this step were implemented using
efficient hierarchical algorithms not discussed here. The blades can end between two
points of the (xj, z5) grid, but this grid is very fine, so that the effect is negligible.
Figure 39 exaggerates this issue on purpose. Only 5 points per blade width W are
used there for better visibility, instead of 24 in the simulations. The present treatment
is preferred as it avoids extrapolation and further complexity.

After step (ii), there may be points of the (xp, z5) grid above which no blade is
present. These points are given the value y = 0.

The preliminary hull 3 obtained in this way exhibits large jumps, in particular at
the tip of elevated blades and surrounding positions where the ground is uncovered.
A physically more meaningful shape is obtained in the final step by an appropriate
smoothing process. Denoting i and & the indices in the N, j x N j grid and m the
iteration index this reads

2 (50m) 5(m) 2 (50m) 5 (m)
A7 (yi+l,k + yi—l,k) Ay (yi,k—H + yi,k—l)

Vik = , Gla
ik 2AZAD T 2alt A (Glay
~(m+1 - _
yi(,’z+ ) = max {yi(,'z), y;‘fk} ) (G1b)
which is applied for m=1,2,..., Ni. The initial condition is yV) =% and

y = yWVi) the final y coordinate of the hull. The second step, (G1b), ensures that y
only increases, so that the hull is always above or at the height of the blades. Equation
(Gla) is applied with periodic boundary conditions in x and z. It can be interpreted
as a diffusion process, so that without the maximum operation in (G1b), iterating
(G1) would be equivalent to Gaussian filtering. Although altered by the maximum
operation, this analogy is still useful for choosing the number of iterations. To impose
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Figure 40. Cumulative distributions of event areas before filtering out small events: (a) C;, (b) C,. The grey
annotations illustrate the impact of the chosen minimum event area A,y = 4w,

a standard deviation o of the Gaussian filter requires

Ny = {0—2 (i + iﬂ (G2)
it A}% A%

iterations. Here, a value of o = W/2 was employed, resulting in N;; = 66.

The hull defined by steps (i)—(iv) constitutes a geometric object y = y(xp, z5,), a discrete
surface with the obvious continuous limit by refinement of (xp, zj). Figure 13 shows the
smoothed canopy height y at an arbitrary instant in time. Once the hull is defined, y and
corresponding averages (y), and (y),, are available on a regular Cartesian Ny x Ny j
grid. This concept is highly favourable because all subsequent post-processing steps can
then be executed on this regular grid, i.e. with a very simple data structure. Beyond the
pure geometry of the canopy, a further perspective is to formulate other quantities ¢ at the
surface of the hull as detailed in Lohrer & Frohlich (20235), but not used here.

Appendix H. Filtering small events in conditional averaging

In § 7.3 the method for conditional averaging was presented. During the study it turned out
to be advantageous to remove small events from contributing to the conditional average.
These are not very pronounced and, hence, do not contribute much information but are
costly to treat.

A minimal threshold for the area of the event according to (7.7) was employed. With
Acrir = 4W?2, 57 % and 82 % small events were removed from C; and C,, respectively. The
removed events would otherwise contribute to the conditional average by 15 % and 18 %,
respectively, as indicated in figure 40.

Appendix I. Spectra of fluid velocity

The aim of this section is to quantify the amount of kinetic energy contained in the
turbulent fluctuations of the fluid and its spatial distribution. The profile of the fluid
TKE K = ((u'u’) + (v'v") + (w'w’)) /2 is provided in figures 5(c) to 5(e). Here, the spatial
spectra are analysed. The spatial spectrum E of the TKE was determined from (Pope 2000)

E= % ((pu’u’ + (pv/v/ + ¢w’w’) , (H)

where @/, ,/,y, and @, are temporally averaged, spatial power spectral densities of
the velocity fluctuation components. To this end, one-dimensional energy functions are
considered, developed with regard to the streamwise and spanwise wavenumbers k., K
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Figure 41. Spatial spectra of TKE with regard to the streamwise wavenumber «,, and contributions of the
three velocity components, all extracted at selected heights. (a) Spectra at the height of the lower inflection
point of the streamwise velocity profile, y = yjp; (b) spectra at the mean canopy edge, y = h; (c) spectra in the
logarithmic region of the mean streamwise velocity profile.

(Pope 2000). For the streamwise component, this reads

-~ 2
Dy (k3 ¥) = Lx<2 |u/ (kx3 ¥, 25 t)| >H, Ky >0, (I2a)

-~ 2
By (c: y) = LZ<2 |7 ez x, yi 1) )xt, ;> 0, (12b)
Dy (Kx, K73 y) = LXLZ(4 |L7 (Kx, K25 t)|2>t, Ky, kz > 0. I2¢)

Note that the dimension of &, depend on its arguments. For example,
the dimension of @,/ (ky, k;;y) differs from that of @,/ (kyx;y). This is
necessarily so since both are related via integrals over wavenumbers. In particular,
(u'u')(y) = Qr) 72 [ P (e, k23 y) dicy dic; = ) ™" [ Dy (s y) dicy - In (12) the
fields o/ (Kx3 ¥, 2), W (kz; x,y) and w (kx, kz; y) are the discrete Fourier coefficients of
u'(x; t), computed along the periodic directions x and z, as indicated by the respective
wavenumber dependence, reading (Bartlett 1950; Cooley & Tukey 1965; Pope 2000)

Ny—1

~ . 2
Wk y,zit)=— Y ulm, y, 2 De ¥ e =" ke [[=Ny/2]: [N:/2]],
N, L,
m=0
(I13a)
N,—1
- 1 —ikyzn 27Tl
Wik x, yi) = D ulryozns e, = T, 1€ [ T=Ne/21: INz/21 ]
Zz n=0 Z
(I3b)
—1 Ny—1
Wk, K23 ¥ r)-—— Z D sy, 2 1) €T (I3¢)
m=0 n=0

Here, Ny and N, denote the number of grid points used in post-processing. The spectra are
reported in figures 41 and 42 with regard to the streamwise and spanwise wavenumbers,
respectively.

A sizeable anisotropy is noted between the different velocity components, particularly
at low, energetic, wavenumbers, with @1, > @1,y > Dy (figures 41b, 41c, 42b, 42c).
Inside the canopy, at y = yj;,, the spectra are overall less energetic (figures 41a and 42a),
but the spanwise low-wavenumber component is damped less than the other components
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Figure 42. Spatial spectra of TKE with regard to the spanwise wavenumber &, and contributions of the three
velocity components, all extracted at selected heights. (a) Spectra at the height of the lower inflection point
of the streamwise velocity profile, y = yj;»; (b) spectra at the mean canopy edge, y = h; (c) spectra in the
logarithmic region of the mean streamwise velocity profile.

such that here the spanwise velocity spectra becomes dominant over some extent of the
spectra. This results in the surge of (w'w’) surrounding the lower inflection point in
figure 5(e). It is supposed to be a result of the blades being pushed far apart when a
sweep generates a trough in the canopy (figure 30a). In addition, spectra at this height
show traces of the so-called spectral shortcut process described by Finnigan (2000).
According to this mechanism the canopy absorbs TKE at larger scales and produces
energy at smaller scales through the wakes of individual blades. This manifests itself in
reduced spectral energy at low wavenumbers and increased values at higher ones, as can be
seen for @,y (kx5 y = Viip) in figure 41(a) and @,/ (k;; y = Viip)s P (k25 Y = Yiip) in
figure 42(a). The effect is rather weak and limited to the near-wall layer since the spectral
shortcut loses relevance with increasing Ca (Foggi Rota et al. 2024b). Peaks of E (k)
and @, (k) reflect the streamwise distance between neighbouring blade stems, which
is 2AS, (figure 2) due to the staggered placement, translating into «x ~ 2.6 2r/H) ~
2w/ (2ASy).

Spectra extracted at y =& and at 0.75 H in the logarithmic region show a pronounced
proportionality o x —>/3 for wavelengths 27t/ H Sk < 10w/ H (figures 41D, 41c, 42b, 42¢)
complying with the Kolmogorov —5/3 spectrum (Pope 2000). At y = A the anisotropy
established in the range of low «; persists across this inertial range (figure 42b), while
spectra with regard to «, tend to collapse towards higher wavenumbers. At y =0.75 H,
for higher streamwise wavenumbers, the spectra of v’ and w’ collapse, whereas for
higher spanwise wavenumbers, the spectra of u’ and v’ coincide. They are superior to the
spectra of the remaining, wavenumber-aligned components, @,/ and @, respectively
(figures 41c and 42c¢). This is remarkable as it is not observed in a classical flat-plate
boundary layer.

A different view on the spectra is provided in figure 43, showing the one-dimensional
energy spectra premultiplied by the wavenumber. Doing so produces plots in which equal
areas under curves of premultiplied spectra represent equal energies, when plotted against
the logarithmically scaled wavenumber (Kim & Adrian 1999) or wavelength. Maxima in
these plots are therefore referred to as energy sites (Hutchins & Marusic 2007) in the
following. They can be understood as wavelengths where TKE is maximally concentrated,
while not necessarily resembling maxima in the plain spectra. Energy sites of &,/
are located at the canopy edge, whereas those of @, and &, are found at some
distance above it, comparable to the maxima in the profiles of (u'u’), (v/v") and (w'w’).
The corresponding dominant wavelengths in the streamwise direction are approximately
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Figure 43. Juxtaposition of the premultiplied wavelength power spectral density of the three velocity
components. (a—c) Wavelength in the streamwise direction; (d—f) wavelength in the spanwise direction. Heights
are marked with (—.—.) /2, (c---) Yo, (....oe ) Yiip» Yuip-

A ~2.5H,0.7 H and 1.4 H, respectively. Spanwise wavelengths associated with energy
sites of the three velocity components are 1, ~ 1 H, 0.7 H and 1 H for «’, v' and w’,
respectively.

Appendix J. Spectra of canopy hull height

The same analysis is now applied to the height of the canopy hull, y, introduced in § 6.4.
Figure 44 shows power spectral densities of this quantity, computed analogous to (12)
and (I3).

Figure 44(a) reports the spectra themselves, while figures 44(b) and 44(c) provide
the premultiplied ones. Both plain and premultiplied spectra have spikes at k, H/(2m) ~
H/ASx ~5.2 and twice that value, which reflects the streamwise spacing between rows
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Figure 44. Spatial power spectral densities of the canopy height y. (a) Plain spectral densities with regard
to the streamwise and spanwise wavenumber; (b) spectra premultiplied by the respective wavenumber; (c)
two-dimensional spectral density.

of blades. The maximum of ®@55(k;) at k; ~ 0.8 (27 /H) identifies a spanwise coherent
structure with a wavelength of A, ~ 1.25 H, corresponding to the maximum at 4, ~ 1 H
in the premultiplied spectrum of figure 44(b). The significance of the former wavelength
is supported by visualizations of the instantaneous canopy hull height in figure 13 and the
corresponding animation, where streamwise-oriented ridges are frequently spaced with a
distance of approximately this wavelength, as well as by the troughs and ridges of the
conditionally averaged flow discussed in § 7.3 (figures 23 and 25). In contrast, Monti et al.
(2023) observed a smaller value of A, ~ 0.6 H remaining relatively constant in the upper
range of the considered Cauchy numbers, Ca € [10, 100], despite the relative submergence
being larger with H — h 2 0.9 H in that reference. Regarding the streamwise direction,
kxPy5(kx) has a peak at kx ~ 0.4 (27 /H) that is equivalent to A, ~ 2.5 H in the present
data. This extends the trend of Monti ef al. (2023) where values of 0.7H $ A, S 2H were
observed for cases with Ca € [1, 100]. Also in figure 13, troughs elongated along x are
easily visible and much less clearly restricted in the streamwise direction compared with
the spanwise direction. For the spectra of the fluid velocity, a Kolmogorov-type power-law
behaviour was observed, in particular at y = h (figures 415 and 42b). Here, the spectra
have to do with the vertical position of the hull, massively influenced by the physics of the
blades and their collisions. For frequencies «, below the blade tip frequency mentioned,
a behaviour o<k 3 may be conjectured. For ®y5(kz), a similar behaviour ok~ 3 seems to
occur over a somewhat shorter interval in ;.
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