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Problem Corner
Solutions are invited to the following problems.  They should be

addressed to Nick Lord at Tonbridge School, Tonbridge, Kent TN9 1JP

(e-mail: njl@tonbridge-school.org) and should arrive not later than 10
March 2019.

Proposals for problems are equally welcome.  They should also be sent
to Nick Lord at the above address and should be accompanied by solutions
and any relevant background information.

102.I  (Isaac Sofair)
In the ‘Four T Puzzle ©’, four T-shaped pieces fit into the large square

shown in Figure 1; they also fit into the smaller square shown in Figure 2 (where
each T-shape touches two adjacent sides of the square).  Find (in surd form) the
ratio of the side length of the smaller square to that of the larger square.

FIGURE 1 FIGURE 2

102.J  (Zoltán Retkes)
Let  be a set of  points in space with the property that every choice

of four points from  are non-coplanar and form a tetrahedron with volume
not greater than .  Show that  lies within a tetrahedron of unit volume.

Pn n ≥ 4
Pn

0.037 Pn

102.K  (Finbarr Holland)
Suppose  is a complex number.  Prove that the solutions of the equation

 are unimodular if, and only if, .

t
t3

z2
+

(1 − t)3

(1 − z)2
= 1 |1 − t| ≤ 1 = |t|

102.L  (Stan Dolan)
The diagram illustrates two ways that 4

congruent equilateral triangles can be made with a
planar arrangement of 9 matches.

Given that  congruent equilateral triangles
can be made with a planar arrangement of
matches, prove that 

T
M

M ≥
3T
2

+
3T
2

.
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Solutions and comments on 102.A, 102.B, 102.C, 102.D (March 2018).

102.A  (Stan Dolan)
For some values of  it is possible to find numbers which:m

• have  digits;m
• are divisible by ;m
• have no subsequence divisible by .m

Prove that the sum of the digits of such a number is divisible by .m
[A subsequence of a number is formed by deleting some, but not all, of

its digits, with leading zeros not being allowed.  Examples of numbers
satisfying the above properties are 252, 8000006 and
2011111111111111111.]

The two solutions received from Jacob Siehler and the proposer, Stan
Dolan, (below) both used the following elegant argument.

Let  be an example of a number satisfying the conditions of the
problem and, for , let  be the number formed by the leftmost
digits of .  If  for some , then the subsequence of
formed by the digits from the  to the  is congruent to
and thus divisible by , contradicting the hypothesis on subsequences.  By
the pigeon-hole principle,  is thus the complete set of
residues .

u
1 ≤ i ≤ m ui i

u ui ≡ uj (mod m) i < j u
(i + 1) th j th u (mod m)

m
{ui : 1 ≤ i ≤ m}

mod m
If it were the case that  with  or 5, then the same

argument shows that , , are all distinct and non-zero,
modulo .  Thus  which is a contradiction.
Since neither 2 nor 5 are factors of ,  is coprime to 10.  Thus

 and  are both complete sets of
residues .  Therefore the sum of the digits of  is

m = f M f = 2
ui 1 ≤ i ≤ m − 1

M m − 1 ≤ M − 1 ≤ 1
2m − 1
m m

{10ui : 1 ≤ i ≤ m} {ui : 1 ≤ i ≤ m}
mod m u

u1 + ∑
m

i = 2

(ui − 10ui − 1) = ∑
m

i = 1

ui − ∑
m − 1

i = 1

10ui

≡ ∑
m

i = 1

ui − ∑
m

i = 1

10ui (mod m) ,

since um = u ≡ 0 (mod m)

≡ 0 (mod m) .
Jacob Siehler completed his proof by noting that  is odd so thatm

∑
m

i = 1

ui − 10 ∑
m − 1

i = 1

ui ≡ −9 (1 + 2 +  …  + m − 1) ≡ 0 (mod m) .

Correct solutions were received from: J. Siehler and the proposer Stan Dolan.
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102.B  (Prithwijit De)
Evaluate the following integrals:

(a)  ∫
 π/2

0

dx
(sin3 x + cos3 x)2;

(b)  ∫
 π/2

0

x
sin3 x + cos3 x

 dx;

(c)  ∫
 π/2

0
cos x ln (sin3 x + cos3 x)  dx.

Answers: (a) ,
2
3

+
8 3
27

π (b)  
π 2

6
ln ( 2 + 1) +

π2

12
,

(c)  .2 ln ( 2 + 1) − 3 +
π
2

This was a very popular problem which attracted a wide range of
approaches depending on the trigonometrical manipulations and
substitutions used.  The solution which follows cherry-picked from those
submitted.

(a)  Denote the integrals in each part by , , .  Then, substituting
 rewrites  as

Ia Ib Ic
t = tan x Ia

Ia = ∫
 ∞

0

(t2 + 1)2

(t3 + 1)2  dt.

But 

(t2 + 1)2

(t3 + 1)2 =
(t2 + 1)2 − t2 + t2

(t3 + 1)2 =
(t2 − t + 1)(t2 + t + 1)

(t + 1)2(t2 − t + 1)2 +
t2

(t3 + 1)2

=
1
3

⎡⎢⎣
1

(t + 1)2
+

2
t2 − t + 1

⎤⎥⎦
+

t2

(t3 + 1)2

so that

Ia = ⎡
⎢⎣
−

1
3 (t + 1)

+
4 3

9
tan−1 2t − 1

3
−

1
3 (t3 + 1)

⎤
⎥⎦

 ∞

 0

=
2
3

+
8 3
27

 π.

Alternatively, Michel Bataille substituted  to obtaint = u1/3

Ia =
1
3 ∫

 ∞

0

(u2/3 + 1)2 u−2/3

(u + 1)2
 du
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=
1
3 ∫

 ∞

0

u−2/3

(u + 1)2
+

2
(u + 1)2

+
u2/3

(u + 1)2
 du

=
1
3

⎡⎢⎣B (1
3

,
5
3) + 2 + B (5

3
,

1
3)⎤⎥⎦

where

B (1
3

,
5
3) = B (5

3
,

1
3) =

Γ (5
3) Γ (1

3)
Γ (2)

= 2
3Γ (2

3) Γ (1
3) =

2
3

π
sin π

3

using standard gamma function formulae.
(With some restrictions on , this method works for integrals of

the form .)

k, m, n

∫
 ∞

0

xk

(1 + xn)m

(b)  The substitution  shows that x → π
2 − x

Ib = ∫
 π/2

0

1
2π − x

sin3 x + cos3 x
 dx

which rearranges to give

4
π

Ib = ∫
 π/2

0

1
sin3 x + cos3 x

 dx

= ∫
 π/4

−π/4

1
sin3 (x + π

4) + cos3 (x + π
4) dx.

But

sin3(x +
π
4 ) + cos3(x +

π
4 ) =

1
2 2

[(sin x + cosx)3 + (cosx − sinx)3]

=
1
2

(cos3x + 3 cosx sin2x)

=
1
2

cosx(1 + 2 sin2x)
so that

4
π

Ib = 2 ∫
 π/4

−π/4

1
cos x (2 sin2 x + 1) dx

=
2

3 ∫
 π/4

−π/4

1
cos x

 +
2 cos x

2 sin2 x + 1
 dx

=
2

3
[ln (sec x + tan x) + 2 tan−1 ( 2 sin x)] π/4

−π/4

=
2

3
⎡⎢⎣2 ln ( 2 + 1) +

π 2
2

⎤⎥⎦ (∗)
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and

Ib =
π 2

6
ln ( 2 + 1) +

π2

12
.

(c)  Integrating by parts,

Ic = [sinx ln (sin3x + cos3x)]π/2
0 − 3 ∫

 π/2

0

sinx(sin2x cosx − cos2x sinx)
sin3x + cos3x

dx

= −3 ∫
 π/2

0

sin3x cosx − cos2x(1 − cos2x)
sin3x + cos3x

 dx

= −3 ∫
 π/2

0
cosx −

cos2x
sin3x + cos3x

 dx

= −3 + 3 ∫
 π/2

0

cos2x
sin3x + cos3x

 dx.

The substitution  shows that x → π
2 − x

∫
 π/2

0

cos2x
sin3x + cos3x

 dx = ∫
 π/2

0

sin2x
sin3x + cos3x

 dx = 1
2 ∫

 π/2

0

1
sin3x + cos3x

 dx,

on adding.
Thus

Ic = −3 +
3
2 ∫

 π/2

0

1
sin3 x + cos3 x

 dx

= −3 +
3
2

 
2

3
⎡⎢⎣2 ln ( 2 + 1) +

π 2
2

⎤⎥⎦ , using (∗) from part (b)

= 2 ln ( 2 + 1) − 3 +
π
2

.

Correct solutions were received from: M. Bataille, N. Curwen, S. Dolan, GCHQ Problem
Solving Group, G. Howlett,  P. F. Johnson, P. Kitchenside, J. D. Mahony, J. A. Mundie,
B. N. Roth, S. Sayadzade (part (a)), V. Schindler, I. D. Sfikas, G. B. Trustrum and the proposer
Prithwijit De.
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102.C  (Peter Shiu)
Let  be an irrational number.  Show that there are infinitely

many Pythagorean triples  with  such that 
0 < α < 1

(a, b, c) a2 + b2 = c2

0 <
a
b

− α <
7
c

.

This interesting result, which quantifies the fact that every right-angled
triangle is as close in shape as you like to an integer-sided right-angled
triangle [1, 2], clearly intrigued solvers.  Jacob Siehler's solution which
follows proves the stronger inequality with  in place of  on the right-hand
side.

4
c

7
c

Let  with domain .  On this domain,  is

strictly increasing with range ; moreover the maximum value of
is  .

f (x) =
2x

1 − x2
[0, 2 − 1] f

[0,  1] f ′ (x)
f ′ ( 2 − 1) = 2 + 2 (∗)

Let  with .  Since  is irrational and  is a
rational function,  is irrational as well.

0 < β < 2 − 1 f (β) = α α f
β

Consider the continued fraction convergents to : these alternate either
side of  and every convergent  satisfies .  There are thus
infinitely many convergents with

β
β m

n |mn − β| < 1
n2

• 0 < m
n − β < 1

n2

• β < m
n < 2 − 1.

Let , ,  be the Pythagorean triple

generated by  so that .  By the mean value

theorem with the bound 

a = 2mn b = n2 − m2 c = m2 + n2

m, n f (m
n ) =

2mn
n2 − m2

=
a
b

(*)

0 < f (m
n ) − f (β) ≤ (2 + 2) (m

n
− β) ,

hence

0 <
a
b

− α <
2 + 2

n2
.

But

c = n2 + m2 < [( 2 − 1) n]2
+ n2 = (4 − 2 2) n2

or

1
n2

<
4 − 2 2

c
.

It follows that

0 <
a
b

− α <
(2 + 2) (4 − 2 2)

c
=

4
c

.
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This solution uses  (from ).β =
1 + α2 − 1

α
2β

1 − β2 = α

Other solvers worked with  and

corresponding to  and ; these solutions often then

gave the bound .

β =
1 + 1 + α2

α
β = α + 1 + α2

2β
β2 − 1

= α
2β

β2 − 1
=

1
α

0 <
a
b

− α <
4 + 8

c
<

7
c

References
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Correct solutions were received from: S. Dolan, GCHQ Problem Solving Group, G. Howlett,
I. D. Sfikas, J. Siehler, G. B. Trustrum, L. Wimmer and the proposer Peter Shiu.

102.D  (Michael Fox)
This problem is about spheres with collinear centres and a common

tangent line.  The line  passes through given points  and
and it is the locus .  The centre of sphere  is the origin.  Its radius
is 1, and it touches  at the point where .  For all natural numbers ,
the centre of sphere  is , its radius is  and it touches  at

.  Each  touches  externally, with .

� (0,  0,  1) (1, m,  1)
(t, mt,  1) S0

� t = 0 n
Sn (cn,  0,  0) rn �

(tn,  mtn,  1) Sn Sn − 1 cn > cn − 1

In any order, show that:
(a) if  is an integer, then so are all the ,  and ;2m2 rn tn cn

(b) the , ,  are integer polynomials in ;rn tn cn m2

(c) if , then .m = sinh u rn = cosh 2nu
Finally, in (c), express  and  in terms of hyperbolic functions.tn cn

Answer: (c)  , .tn =
2 sinh 2nu

sinh 2u
cn =

sinh 2nu
tanh u

Solvers of this attractive problem were evenly divided as to whether
they tackled the parts in order or reverse order. The solution below is a
composite one along the latter lines.

The sphere  with equation  touches  at
 where  has equal roots for .

Sn (x − cn)2 + y2 + z2 = r2
n �

(tn, mtn,  1) (tn − cn)2 + m2t2
n + 1 = r2

n tn

From the discriminant 

m2c2
n = (m2 + 1) (r2

n − 1) (1)
and from the equal roots

cn = (m2 + 1) tn. (2)
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Also, since  touches  externally,Sn − 1 Sn

cn − cn − 1 = rn + rn + 1. (3)
From (1) and (3) we have

m2 + 1 ( r2
n − 1 − r2

n − 1 − 1) = m (rn + rn − 1) .
Setting  and  then givesm = sinh u rn = cosh θn

cosh u (sinh θn − sinh θn − 1) = sinh u (cosh θn + cosh θn − 1)
which simplifies to

sinh (θn − u) = sinh (θn − 1 + u)
so that  or  with  since

 and .  Hence  and .
θn − u = θn − 1 + u θn − θn − 1 = 2u θ0 = 0

c0 = 0 r0 = 1 θn = 2nu rn = cosh 2nu
From (1) and (2),

cn =
coshu sinh2nu

sinhu
=

sinh2nu
tanhu

and  tn =
sinh2nu

sinhu coshu
=

2 sinh 2nu
sinh2u

;

this completes (c).
Now observe that  all arise from a difference equation the roots

of whose auxiliary quadratic are .  Thus  all satisfy the same
recurrence relation  or

 with respective initial conditions
 and .  Parts

(a) and (b) then follow immediately from the recurrence relation and
induction.

rn, tn, cn
e±2u rn,  tn,  cn

xn + 1 − (e2u + e−2u) xn + xn − 1 = 0
xn + 1 − 2 (2m2 + 1) xn + xn − 1 = 0
(r0, t0, c0) = (1,  0,  0) (r1, t1, c1) = (2m2 + 1,  2,  2 (m2 + 1))

The proposer, Michael Fox, noted that, using the standard formulae

expressing  and  as polynomials in , we can

give explicit formulae for the polynomials in part (b):

cosh 2nu
sinh 2nu

sinh u cosh u
sinh2 u

rn = 1 +
n
2

⎡
⎢
⎣( ) M + ( ) M2

2
+ ( ) M3

3
+  …

⎤
⎥
⎦

,n
1

n + 1
3

n + 2
5

tn = 2
⎡
⎢
⎣( ) + ( ) M + ( ) M2 +  …

⎤
⎥
⎦

n
1

n + 1
3

n + 2
5

where .M = 4m2

Those solvers tackling the parts of the problem in order used (1), (2), (3)
to derive the common recurrence relation above for , ,  and then solved
it by the standard method.

rn tn cn

Correct solutions were received from: N. Curwen, S. Dolan, GCHQ Problem Solving Group,
G. Howlett, P. F. Johnson and the proposer Michael Fox.
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