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Geometric Weil representation: local field case

Vincent Lafforgue and Sergey Lysenko

ABSTRACT

Let k be an algebraically closed field of characteristic greater than 2, and let F'= k((t))
and G = Spy,. In this paper we propose a geometric analog of the Weil representation
of the metaplectic group C~}(F ). This is a category of certain perverse sheaves on some
stack, on which CNJ(F ) acts by functors. This construction will be used by Lysenko
(in [Geometric theta-lifting for the dual pair SQgyu,, Spa,, math.RT/0701170] and
subsequent publications) for the proof of the geometric Langlands functoriality for some
dual reductive pairs.

1. Introduction

1.1 This paper and the following paper [Lys07] form a series, where we prove the geometric
Langlands functoriality for the dual reductive pair Spy,, SQ,,, (in the everywhere non-
ramified case).

Let k =F, with ¢ odd and set O = k[[t]] C F' = k((t)). Write Q for the completed module of
relative differentials of O over k. Let M be a free O-module of rank 2d with symplectic form
A2M — Q and set G = Sp(M). The group G(F) admits a non-trivial metaplectic extension

1—>{:|:1}—>é(F)—>G(F)—>1

(defined up to a unique isomorphism). Let ¢ : k — @2‘ be a non-trivial additive character and let
X : Q(F) — Qp be given by x(w) =1 (Resw). Write H = M & Q for the Heisenberg group of M
with operation

(m1, a1)(ma, as) = (m1 + ma, a1 + az + swlmi, ma)), m; € M, a; € Q.

Denote by Sy the Weil representation of H(M)(F') with central character x. As a representation
of @(F ), it decomposes Sy, = Sy odd P Sy even iNto a direct sum of two irreducible smooth
representations, where the even (respectively, the odd) part is unramified (respectively, ramified).

The discovery of this representation by Weil in [Wei64] had a major influence on the theory
of automorphic forms. Among numerous developments and applications are Howe duality for
reductive dual pairs, particular cases of classical Langlands functoriality, Siegel-Weil formulas,
the relation with L-functions, the representation-theoretic approach to the theory of theta-series.
We refer the reader to [Ger77, How79, LV80, MVW87, Pra98] for the history and further details.

In this paper we introduce a geometric analog of the Weil representation Sy. The pioneering
work in this direction is due to Deligne [Del82], where a geometric approach to the Weil
representation of a symplectic group over a finite field was set up. It was further extended
by Gurevich and Hadani in [GHO05, GHO04]. The point of this paper is to develop the geometric
theory in the case when a finite field is replaced by a local non-archimedean field.
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GEOMETRIC WEIL REPRESENTATION

First, we introduce a k-scheme L4(M(F)) of discrete Lagrangian lattices in M (F) and a
certain po-gerb Lq(M(F)) over it. We view the metaplectic group G(F) as a group stack over k.
We construct a category W (Ly(M(F))) of certain perverse sheaves on Lg(M (F)), which provides
a geometric analog of Sy even. The metaplectic group G(F) acts on the category W (Lq(M(F)))
by functors. This action is geometric in the sense that it comes from a natural action of G(F)
on Ly(M(F)) (cf. Theorem 2).

The category W(Ed(M (F))) has a distinguished object Sy corresponding to the unique

non-ramified vector of Sy even-

Our category W(Zd(M (F))) is obtained from Weil representations of symplectic groups
Sps, (k) by some limit procedure. This uses a construction of geometric canonical intertwining
operators for such representations. A similar result has been announced by Gurevich and Hadani
in [GHO5] and proved for d =1 in [GHO04]. We give a proof for any d (cf. Theorem 1). After this
paper had been written we learned about a new preprint [GHO7], where a result similar to
our Theorem 1 is proved for all d. However, the sheaves of canonical intertwining operators
constructed in loc. cit. and in this paper live on different bases.

Finally, in § 7 we give a global application. Let X be a smooth projective curve. Write Qx for
the canonical line bundle on X. Let G denote the sheaf of automorphisms of Ogl( <> le( preserving
the natural symplectic form A2(0% @ Q%) — Qx.

Our Theorem 3 relates Sy;p) with the theta-sheaf Aut on the moduli stack ]§1\1/11G of
metaplectic bundles on X introduced in [Lys06]. This result will play an important role in [Lys07].

1.2 Notation

In §2 we let k=1, of characteristic p > 2. Starting from §3 we assume that £ is either finite
as above or algebraically closed with a fixed inclusion F, < k. All the schemes (or stacks) we
consider are defined over k.

Fix a prime ¢ # p. For a scheme (or stack) S write D(S) for the bounded derived category of
¢-adic étale sheaves on S, and P(S) C D(S) for the category of perverse sheaves.

Fix a non-trivial character 1 : [, — @Z, and write £, for the corresponding Artin—Shreier
sheaf on A'. Fix a square root Qg(%) of the sheaf Q/(1) on Spec F,. Isomorphism classes of such
sheaves correspond to square roots of g in Q.

IfV— S and V* — S are dual rank n vector bundles over a stack S, we normalize the Fourier
transform Foury, : D(V) — D(V*) by Foury(K) = (py+)1(§*Ly ® pj, K)[n](n/2), where py, py-
are the projections, and £ : V xg V* — Al is the pairing.

Our conventions about Z/2Z-gradings are those of [Lys06].

2. Canonical intertwining operators: the finite field case

2.1 Let M be a symplectic k-vector space of dimension 2d. The symplectic form on M is denoted
by w(-, -). The Heisenberg group H = M x A! with operation

(m1, a1)(ma, ag) = (m1 + me, a1 + az + %w(mh ma)), m; €M, a; €A
is algebraic over k. Set G =Sp(M). Write L(M) for the variety of Lagrangian subspaces in M.
Fix a one-dimensional k-vector space [J (purely of degree d mod 2 as Z/2Z-graded). Let A be the
(purely of degree zero as Z/2Z-graded) line bundle over £(M) with fibre 7 @ det L at L € L(M).

Write £(M) for the gerb of square roots of A. The line bundle A is G-equivariant, so G acts
naturally on L(M).

o7
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For a k-point L € £(M) write L° for a k-point of £(M) over L. Write
L=L&k.

This is a subgroup of H (k) equipped with the character x, : L — Q} given by x1(l, a) = ¢(a),
l€L,ack. Write

My ={f:H(k) = Q¢| f(lh) = xL()f(h), for l€ L,h € H}.

This is a representation of H (k) by right translations. Write S(H) for the space of all Q-
valued functions on H (k). The group G acts naturally in S(H). For L € L(M), g € G we have
an isomorphism Hj; — H,y, sending f to gf.

The purpose of §§ 2 and 3 is to study the canonical intertwining operators (and their geometric
analogs) between various models H, of the Weil representation. The corresponding results for a
finite field were formulated by Gurevich and Hadani [GHO05] without a proof (we give all proofs
for the sake of completeness). Besides, our setting is a bit different from that in loc. cit., as we
work with gerbs instead of the total space of the corresponding line bundles.

2.2 For k-points L°, N° ¢ E(M ) we will define canonical intertwining operators
FNO’LO Hr — Hn.
They will satisfy the following properties:
L4 FLO,LO = ld,
o Fpono 0 Fyo po = Fro po for any R%, N°, L0 € L(M);

e for any g € G we have g o Fio 1o ogl= gNO,gL0-

In Remark 2, §3.1, we will define a function F< on the set of k-points of £(M) x L£(M) x H,
which we denote by Fio ro(h) for h € H. This function will realize the operator Fio o by

(Fyo o f)(h1) = /h ) Fyo ro(hihy ') f(ho) dho.

All our measures on finite sets are normalized by requiring the volume of a point to be one.
Given two functions f1, fo : H — Qy, their convolution fi * fo : H — Qy is defined by

(f1x f2)(h) = /GH fi(hv ™Y fo(v) dv, he H.

The function Fio o will satisfy the following properties:

o Fyo ro(nhl) = xn(R)xL()Fyo ro(h) for L€ L,n € N, h € H;

o [ynogro(gh) = Fyo ro(h) for g€ G, h € H;

e the convolution property: Fro 1o = Fro nyo * Fiyo o for any RO, NO L0 ¢ Z(M),

e under the natural action of g on the set £(M)(k) of (isomorphism classes of) k-points,

Fpno 1o is odd as a function of NO and of LY.

2.3 First, we define the non-normalized function F! N H— Qy. It will depend only on N, L €
L(M), not on their enhanced structure.

o8
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Given N, L € L(M), let xnr : NL — Q; be the function given by

xnr(iil) = xn (@) xL(l),

which is correctly defined in the sense that x NL(’Z: ‘depends not on the pair (7, [) but only on
their product in the Heisenberg group. Note that NL = LN but xyr # xrn in general. Set

~ XNL(h) ifhENE,
F h) =
N (h) {0 otherwise.

Note that xrr, = xr.

Given L, R, N € L(M) with NN L= NN R=0, define §(R, N, L) € Qy as follows. There is
a unique map b: L — N such that R={l+b(l)e L& N |l € L}. Set

o(R, N, L):/ ¢(;w<l,b(l)>> dl.

leL

This expression has been considered in [Lys06, Appendix B].
LEMMA 1.

(a) Let L, N € ﬁ(M) If LN N =0 then FL7N * FN,L :qszAFL,L.
(b) Let L, R, N € £L(M) with NN L=NNR=0. Then Fpy * Fx 1 =q*'0(R, N, L)Fr .

Proof. (b) Using L& N =N @& R= M, for h € H we get

(Fpn * Fnp)(h) = ¢! /

~ xan(hvHxap(v) dv:qd+1/ XRN (h(=7,0))xnL(r, 0) dr.
veEN\H reER

Because of the equivariance property of F R,N * F N,L, we may assume that h = (n,0),n e N. We
get

(FR,N * FN,L)(h) = ¢! / . Xrn((n, 0)(=r, 0))xnr(r,0) dr

= gt / bl m) v r,0)dr. (1)

The latter formula essentially says that the resulting function on NN is the Fourier transform
of some local system on R (the symplectic form on M induces an isomorphism R = N*). This
will be used for geometrization in Lemma 2.

There is a unique map b:L — N such that R={l+b(l)€ L& N |l € L}. So, the above
integral rewrites

(Fry * Enp)(h) = ¢?tt - (w(l, n))xnr(l +b(1),0) dl

— 0 [ttt (b0, gt.00) ) 0.0)) d

= [ w(wlton) + Gt b) ) 2)

Note that if R =L then b=0 and the latter formula yields item (a).
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Let us identify N = L* via the map sending n € N to the linear functional [ — w(l, n). Denote
by (-, -) the symmetric pairing between L and L*. By Sublemma 1 below, the value (2) vanishes
unless n € (R+ L) N N =Imb. In the latter case pick l; € L with b(l;) =n. Then

Xrr(n, 0) =y (—gw{l, b(lh))).
So, we get for L' = Ker b,

(FRN *FN,L)(h) :qd+1+dimL’XRL(h)/ w(;wﬂ, b(l))) dl.
leL/L

We are done. O

SUBLEMMA 1. Let L be a d-dimensional k-vector space, b € Sym? L* and uw € L*. View b as a
map b: L — L*, and let L' be the kernel of b. Then

[ vl gubmn)a ®)

is supported at u € (L/L')* and there equals

(07w ) [ e )i

where b: L/L' = (L/L')*, so that b='u € L/L'. (Here the scalar product is between L and L*,
so is symmetric.)

Proof. Let L' C L denote the kernel of b: L — L*. Integrating first along the fibres of the
projection L — L/L" we will get a zero result unless u € (L/L’)*. For any [y € L the integral (3)
equals

/leL w<<l o, u) + %U + 1o, b(1) + b(lo)>> dl
— ¢<<lo, u) + %<lo, b(lo)>) /ZGL ¢<(l, u+b(lp)) + %@’ b(l)>> dl.

Assuming that u € (L/L")*, take Iy such that u = —b(lp). Then (3) becomes

" <;<lo, u>) /IEL ¥ <;<z, b(l))) dl.

We are done. O

Remark 1. The expression (3) is the Fourier transform from L to L*. In the geometric setting
we will use item (b) of Lemma 1 only under the additional assumption RN L = 0.

3. Geometrization

3.1 Let M, H, £(M) and £(M) be as in §2.1. Recall that G = Sp(M). For cach L € £L(M) we
have a rank-one local system xr, on L = L x Al defined by X1, = pr* Ly, where pr: L x Al — Al
is the projection. Let My denote the category of perverse sheaves on H which are (L, x1)-
equivariant under the left multiplication; this is a full subcategory in P(H). Write DHy C D(H)
for the full subcategory of objects whose all perverse cohomologies lie in H,.
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Denote by C' — L(M) (respectively, C' — L(M)) the vector bundle whose fibre over L € L(M )
is L (respectively, L = L x Al). Its inverse image to £(M) is denoted by the same symbol.

Write x& for the local system p*Ly on C, where p: C — A is the projection on the center
sending (L € L(M), (I, a) € L) to a. Consider the maps

pr,acty. : C x C x H— L(M) x L(M) x H x H,
where acty,. sends (n € N,l€ L,h) to (N, L,nhl), and pr sends the above point to (N, L, h).
We say that a perverse sheaf K on L(M) x L(M) x H is act--equivariant if it admits an
isomorphism
actj, K = pr" K @ pri x¢ @ pr3 X¢

satisfying the usual associativity condition and whose restriction to the unit section is the identity
(such an isomorphism is unique if it exists). One has a similar definition for L(M) x L(M) x H.

Let
actg: G x L(M) x L(M) x H— L(M) x L(M) x H
be the action map sending (g, N°, L°, h) toN(gNO,géo,gh). For this map we have the usual
notion of a G-equivariant perverse sheaf on L(M) x L(M) x H. As G is connected, a perverse
sheaf on L(M) x L(M) x H admits at most one G-equivariant structure.
If S is a stack then for K, F' € D(S x H) define their convolution K % F' € D(S x H) by
K+ F =multy(pr] K @ prj F) ® (@g[l](%))dH*? dim £(M)

where pr; : S x H x H— S x H is the projection to the ith component in the pair H x H (and
the identity on S). The multiplication map mult : H x H — H sends (hq, h2) to hihs.

Let
(L(M)x H)y — L(M) x H (4)
be the closed subscheme of those (L € L(M), h € H) for which h € L. Let
an: (L(M) x H)y — Al
be the map sending (L, k) to a, where h = (I,a), | € L,a € A'. Define a perverse sheaf
Fy = i Ly © (Qq[1](1))F+1dim £y,

which we extend by zero under (4).

Since L£(M)— L(M) is a pg-gerb, pg acts on each K € D(L(M)), and we say that K is
genuine if —1 € uo acts on K as —1.
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THEOREM 1. There exists an irreducible perverse sheaf F on L(M) x L(M) x H (pure of weight
zero) with the following properties:

e for the diagonal map i:L(M)x H — L(M)x L(M) x H the complex i*F identifies
canonically with the inverse image of

Fy @ (Q[1](3))dim £0)

under the projection L(M) x H— L(M) x H;

e [ is acty.-equivariant;

F' is G-equivariant;
e [ is genuine in the first and the second variable;
the convolution property for F' holds, namely for the ijth projections
ij : L(M) x L(M) x L(M) x H— L(M) x L(M) x H
inside the triple L(M) x L(M) x L(M) we have (q19F) * (¢33 F') = qisF canonically.

The proof of Theorem 1 is given in §§3.2-3.4.

Remark 2. In the case when k =F, define F as the trace of the geometric Frobenius on F.

3.2 Let U C L(M) x L(M) be the open subset of pairs (N, L)€ L(M) x L(M) such that
N N L =0. Define a perverse sheaf Fiy on U x H as follows. Let

ap:U x H— Al

be the map sending (N, L, h) to a + %w(l, n), where | € L,n € N, a € A are uniquely defined by
h=(n+1,a). Set

FU — a*Uﬁw ® (@g[l](%))dlm H+2dim L(M) (5)
Write U Xz U C L(M) x L(M) x L(M) for the open subscheme classifying (R, N, L) with
NNL=NNR=0. Let

q:UXeonU—U
be the projection on the ith factor, so g1 (respectively, ¢2) sends (R, N, L) to (R, N) (respectively,
to (N, L)). Let ¢: U xgapy U — L(M) x L(M) be the map sending (R, N, L) to (R, L). Write
(U xzny U)o =q H(U).

The geometric analog of O(R, N, L) is the following (shifted) perverse sheaf © on U x £y U.
Let ¢ : C3 — U X,y U be the vector bundle whose fibre over (R, N, L) is L. We have a
map 3 : C3 — Al defined as follows. Given a point (R, N, L) € U X () U, there is a unique map
b: L — N such that R={l+b(l)e L& N=M|leL}. Set B(R, N,L,l)= %w(l, b(l)). Set

O = (me )18 Ly @ (Qe[1](3))"

Write Y = L(M) x L(M), and let Ay be the (Z/2Z-graded purely of degree zero) line bundle
on Y whose fibre at (R, L) is det R @ det L. Write Y for the gerb of square roots of Ay. Note
that Ay is G-equivariant, so G acts on Y naturally.

The following perverse sheaf Sy; on Y was introduced in [Lys06, Definition 2]. Let ¥; C Y
be the locally closed subscheme given by dim(R N L) =i for (R, L) € Y;. The restriction of Ay
to each Y; admits the following G-equivariant square root. For a point (R, L) € Y; we have an
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isomorphism L/(RNL) = (R/(RNL))* sending [ to the functional r— w(r,{). It induces a
7,/27-graded isomorphism det R ® det L = det(R N L)?.

So, for the restriction Y; of the gerb Y — Y to Y; we get a trivialization
Y; =Y x B(pa). (6)
Write W for the non-trivial local system of rank one on B(usg) corresponding to the covering

Spec k — B(ua2).

DEFINITION 1. Let Sy 4 (respectively, Sy s) denote the intermediate extension of
(QeBW) ® (Q1](3))"™ "

from Yy to Y (respectively, of (Qy®W) ® (Qe[1](3))dm Y =1 from Y1 to Y). Set Sy = Swmg ®
S,s-

Let

my : U Xﬁ(M) U—-Y
be the map sending (R, N, L) to

(R, L, B, e: B2 = det R ® det L),

where B =det L and € is the isomorphism induced by €y. Here ¢y : L = R is the isomorphism
sending [ € L to I +b(l) € R. In other words, € sends | to the unique r € R such that r =
Imod N € M/N. Write also U =Yj.

Define £ € D(Spec k) by

£ =RT(AY, BiLy) ® Qu[1)(3),

where (y:A! — A! sends z to 2. Then & is a one-dimensional vector space placed in

cohomological degree zero. The geometric Frobenius Frp, acts on E2 by 1if —1¢ (IF;)2 and
by —1 otherwise. A choice of v/—1 € k yields an isomorphism £2 = Qy, so £* = Qy canonically.

As in [Lys06, Proposition 5|, one gets a canonical isomorphism

T (Sarg ® EL® Sprs @ E17Y) = 0 @ (Q1)(3))2dim £, (7)

Since d > 1, the restriction my : (U X zapy U)o — U is smooth of relative dimension dim £(M),
with geometrically connected fibres. It is convenient to introduce a rank-one local system Oy on
U equipped with a canonical isomorphism

0 = 1y 0uy (8)

over (U x con U )o- The local system Oy is defined up to a unique isomorphism.

Let iy : U — U xz(a) U be the map sending (L, N) to (L, N, L). Let p1 : U — L(M) be the
projection sending (L, N) to L.
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LEMMA 2.

(a) The complex

(@i Fy) * (63 Fir) ® (Qu[1](L))dim £

is an irreducible perverse sheaf on U X p(pr) U X H pure of weight zero. We have canonically
that

it (a1 Fy) * (g3 Fu)) = piFa ® (Qe[1](3)) 4 £
over U x H.
(b) There is a canonical isomorphism
(QTFU) * (qEFU) = q*F‘U ® 0O
over (U x gy U)o x H.

Proof. (a) This follows from the properties of the Fourier transform as in Lemma 1, formula (1).

(b) The proof of Lemma 1 goes through in the geometric setting. Our additional assumption
that (R, N, L)€ (U xzy U)o means that b: L — N is an isomorphism (it simplifies the
argument a little). O

Remark 3. Let i, : L(M) —Y be the map sending L to (L, L, B=det L) equipped with the
isomorphism id : B2 = det L ® det L. The commutative diagram

U UxeonU (9)
l’" bk
L(M) Y

together with (7) yield a canonical isomorphism

Sy = (@ H(%))Qdimﬁ(M)*d, d is even,
oo 51 d@( J1)(1))24m LD =4, i odd.

3.3 Consider the following diagram.

Here ¢ is the restriction of 7y, and the map ¢; is the lifting of ¢; defined as follows. We set
G1(R,N,L)=¢(R,L,N) and ¢2(R, N, L) =G(N, R, L).

The following property is a geometric counterpart of the way the Maslov index of (R, N, L)
changes under permutations of three Lagrangian subspaces.

LEMMA 3.

(a) Fori=1,2 we have canonically that ;Oy ® ¢*Oy = Qq over (U X zar) U)o.

(b) We have ©% = £2? canonically, so ©7; = Qq canonically.

Proof. (a) The two isomorphisms are obtained similarly, we consider only the case i= 2.
For a point (R, N, L) € (U Xz U)o we have isomorphisms b: L = N and by : L = R such
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that R={l+b(l)|le L} and N={l+by(l)|l € L}. Clearly, bo(—l)=1+b(l) for I € L. Let
Ba: L x L — A" be the map sending (I, lp) to 2w(l, b(1)) + 2w(l, by(1)). We must show that
RI(L x L, B3 L) = Qo[2d](d).

The quadratic form (1, lp) — w(l, b(I)) — w(lo, b(lp)) is hyperbolic on L & L. Consider the isotopic
subspace @ ={(l,l) € L x L |l € L}. Integrating first along the fibres of the projection L x L —
(L x L)/Q and then over (L x L)/Q, one gets the desired isomorphism.

(b) This follows from (7). O
Define a perverse sheaf Fyy on U x H by
Fy = pI“i< Oy ® FU.

It is understood that we take the inverse image of Fyy under the projection U x H — U x H
in the above formula. Let F' be the intermediate extension of Fyy under the open immersion
UxHCY x H.

Remark 4. In the case when d =0 we have H = Al and YV = B(p2). In this case by definition
F=WHKLy®QI1](3) over Y x H=B(us) x AL.

Combining Lemma 3 and item (b) of Lemma 2, we get the following.
LEMMA 4. We have canonically that (G Fyy) = (G5 Fy) = ¢ Fy @ £2¢ over (U Xz U)o x H.
We have a map &:L(M)x L(M)—Y sending (B, N, B2 =J®det N; By, L, B3 = J

®@det L) to (N, L,B), where B=B; ® Bo® J~! is equipped with the natural isomorphism
B%2 = det N @ det L. The restriction of F under

Exid: L(M) x L(M)x H—Y x H
is also denoted by F'. Clearly, F' is an irreducible perverse sheaf of weight zero.
Consider the cartesian square as follows.
(U X (M) U)o X H—» (U X (M) U) x H

\Lﬂ'yXid lﬂ'yXid

U x HS Y x H

This diagram together with Lemma 2 yield a canonical isomorphism over (U x ) U) x H,
(my x 1d)*F = (¢i Fv) * (43 Fv), (10)

by intermediate extension from (U x ) U)o x H. This gives an explicit formula for F.
Consider the following diagram.

UxH v xid UXL(M)UXH

lpl xid le xid

L(M) x H o xid Y x H

This is obtained from (9) by multiplication with H. By Lemma 2 and (10), we get canonically
that

(1 % 10)" (i x id)"F =5 (1 x id)* Ey © (Qu[1](})) 4™ 400,

65

https://doi.org/10.1112/50010437X08003771 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X08003771

V. LAFFORGUE AND S. LYSENKO

Since F), is perverse and p; has connected fibres, this isomorphism descends to a uniquely defined
isomorphism

(in x id)*F = Fy @ (Qq[1](3))4m £,

By construction, F is acty.-equivariant and G-equivariant (this holds for F; and this property
is preserved by the intermediate extension).

3.4 To finish the proof of Theorem 1, it remains to establish the convolution property of F. We
actually prove it in the following form.

Write Y x L(M) Y for the stack classifying R, N, L € L(M) together with one-dimensional
k-vector spaces By, B2 and isomorphisms B2 = det R ® det N and B3 = det N ® det L. We have
a diagram

Y<~—YXcanY —>Y

l

where 71 (respectively, 75) sends the above collection to (R, N, B;) € Y (respectively, (N, L, Bg)
€Y). The map 7 sends the above collection to (R, L, B), where B=B; ® By ® (det N)~!
equipped with B2 = det R ® det L.

PROPOSITION 1. There is a canonical isomorphism over (Y X (M) Y)x H,
(1{F)x (19 F) = 7"F. (11)

Proof.
Step 1. Consider the following diagram.

It becomes 2-commutative over Spec F,(y/—1). More precisely, for K € D(U) we have a canonical
isomorphism functorial in K,

K@= (4 x @) K.

Indeed, let (R, N, L) be a k-point of (U X,y U)o, and let (R, N, L, By, Ba) be its image
under §; X ¢a. So, By =det N and Wy(R, L, N) = (R, N, Bl), By =det L and 7Ty(N, R, L)
= (N, L, By). Write

7(R,N,L,Bi,B2) = (R,L,B,6: 8> = det R®det L).

Write G(R, N, L) = (R, L, B, 6o : B> = det R ® det L). It suffices to show that 5y = (—1)%6.
Let €1 : N = R be the isomorphism sending n € N to r € R such that r =n mod L. Write

€2 : L = N for the isomorphism sending [ € L to n € N such that [=nmod R. Let ¢¢: L = R
be the isomorphism sending [ € L to r € R such that r =] mod N. We get two isomorphisms

id ® det €p, det €1 @ det €5 : det N ® det L = det R ® det .
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We must show that id ® det g = (—1)? det e; ® det e2. Pick a base {ny,...,ng} in N. Define
ri € R,l; €L by nj=r; +1;. Then

e1(ng) =ri, e(li)=ni, e(li)=—r;.
So, €o(l1 A -+ Alg) = (—=1)%1 A~ - Arg. On the other hand, det ¢; ® det €5 sends

(niA-Ang)@ UL A---ANlg)

to (T A+ Arg) @ (n1 A---Ang).
Step 2. The isomorphism (6) for i =0 yields (U X (M) U)o = (U Xy U)o x B(pz) x B(pz).
The corresponding 2-automorphisms po X s of (}7 X £(M) }7) act in the same way on both sides

of (11). Now from Step 1 it follows that the isomorphism of Lemma 4 descends under ¢; x g2 to
the desired isomorphism (11) over (U X U)o x H.

Step 3. To finish the proof it suffices to show that (77 F) x (75 F) is perverse, the intermediate
extension under the open immersion

(ﬁ X £(M) U)o X HC(Y/ X £(M) i/) x H.

Let us first explain the idea_informally, at the level of functions. In this step for (N, R, B) € Y
we denote by Fy rp: H — Q the function trace of Frobenius of the sheaf F'.

Given (R, N,Bl)eff and (N, L,Bg)eff pick any S,T € L(M) such that (R,S,N)
€eUxpayU, (N,T,L) €U xpp U and SNT =S5 N L=0. Assuming that

(R,N,By)=ny(R,S,N) and (N,L,Bs)=ny(N,T,L),
by (10) we get
Frng * Fnpg, = (Frs* Fsn) * (Engr* Prp) =q"0(S, N, T)Fp s+ Fsr * Fr,
= ¢*29(S, N, T)0(S, T, L) Fr s * Fs 1, = ¢***20(S, N, T)0(S, T, L) Fg 1 5,
where (R, L, B) = my (R, S, L). Now we turn back to the geometric setting.

Step 4. Consider the scheme W classifying (R, S, N) €U XU and (N, T, L) €U X U
such that SNT =5NL=0. Let

KW—Y X £(M) Y
be the map sending the above point to (R, N, L, By, B2), where (R, N, B;) =7y (R, S, N) and
(N, L,By) =my (N, T, L). The map & is smooth and surjective. It suffices to show that

(T F) * (1))
is a shifted perverse sheaf, the intermediate extension from x~ (U x £(M) U)o.

Let p1: W — U X z(ar) U be the map sending a point of W to (R, S, L). Applying (10) several
times as in Step 3, we learn that there is a local system of rank one and order two, say Z on W
such that

K (T F) * (13 F)) = I @ p' i F.

Since F' is an irreducible perverse sheaf, our assertion follows. O

Thus, Theorem 1 is proved.

67

https://doi.org/10.1112/50010437X08003771 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X08003771

V. LAFFORGUE AND S. LYSENKO

3.5 Now given k-points N° L0 € L£(M), let Fyo o € D(H) be the *-restriction of F' under
(N°, L% x id: H < Y x H. Define the functor Fno o :DHL — DHy by

fNO,LO(K) :FNO,LO * K.

To see that it preserves perversity we can pick S° € E(M ) with NNS=LNS=0 and use
Fno o = Fpno go 0 Fgo ro. This reduces the question to the case NN L =0; in the latter case
Fno ro is nothing but the Fourier transform.

By Theorem 1, for N°, L9 R? E(M ) the diagram is canonically 2-commutative.

‘FRO,LO

DH;, —— DHpg

FNO 10
\ lfNo’Ro

DHn

3.6 Non-ramified Weil category
For a k-point L° € L(M) let izo: L(M)— L(M) x L(M) x H be the map sending N° to

(N9 L%, 0). We get a functor Fjo: DHy, — D(L(M)) sending K to the complex
o (F % prs K) ® (Qq[1)(3))dim £0)—2d-1,

For any k-points L°, N° € Z(M ) the diagram commutes.

DHL, ~X D(Z(M)) (12)

F Lo no
\ T}—No

DHy

One checks that Fro is exact for the perverse t-structure.

DEFINITION 2. The non-ramified Weil category W (L(M)) is the essential image of Fp, : H, —
P(L(M)). This is a full subcategory in P(£(M)) independent of L°, because (12) is commutative.

The group G acts naturally on £(M), and hence also on P(£(M)). This action preserves the

full subcategory W (L(M)).

At the classical level, for L € L(M) the G-representation Hy, = Hp, odd D HL cven is a direct
sum of two irreducible ones consisting of odd and even functions, respectively. The category
W(Z(M )) is a geometric analog of the space Hf, cven. The geometric analog of the whole Weil
representation Hy, is as follows.

DEFINITION 3. Let act;: C' x H — L£(M) x H be the map sending (L°, h,l € L) to (L%, Ih). A

perverse sheaf K € P(L(M) x H) is (C, x¢)-equivariant if it is equipped with an isomorphism
act; K = pr* K ® pr] x&

satisfying the usual associativity property, and whose restriction to the unit section is the identity.

The complete Weil category W (M) is the category of pairs (K, o), where K € P(L(M) x H)
is a (C, x&)-equivariant perverse sheaf, and

o:Fxprys K = pris K
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is an isomorphism for the projections pryz, proz : £L(M) x L(M) x H — L£(M) x H. The map o
must be compatible with the associativity constraint and the unit section constraint of F'.

The group G acts on £(M) x H sending (g € G, L%, h) to (gL°, gh). This action extends to
an action of G on the category W (M).

4. Compatibility property

4.1 In this section we establish the following additional property of the canonical intertwining
operators. Let V' C M be an isotropic subspace, and V+ C M its orthogonal complement. Let
L(M)y C L(M) be the open subscheme of L € £(M) such that LNV =0. Set My =V=+/V. We
have a map py : L(M)y — L(Mp) sending L to Ly := LNV,

_ Write Y = L(M) x L(M) and Yy = L(M)y x L(M)y. The gerb Y is defined as in § 3.2; write
Yy for its restriction to Yy. Set Yo = L(Mp) x L(My). We have the corresponding gerb Yy defined
as in §3.2. We extend the map py X py to a map

v Yy =Y
sending (L1, L2, B, B> = det L; ® det L) to
(L1,v, Lav, Bo, B = det L1 v @ det Loy ).
Here L; v = L; N VL and By = B ® det V.. We have used the exact sequences
0— Liy — Li — M/V+ =0

yielding canonical (Z/2Z-graded) isomorphisms det L; y ® det V* = det L;.

Write Hy = My @ k for the Heisenberg group of M. For L € L(M )y we have the categories
Hr and Hp, of certain perverse sheaves on H and Hy, respectively. To such L we associate
a transition functor T : Hr, — Hz which will be fully faithful and exact for the perverse
t-structures.

For brevity write HY = V= x Al. First, at the level of functions, given f € Hy, consider it
as a function on HY via the composition HY %% H, ER Qy, where ay sends (v, a) to (v mod V, a).
Then there is a unique f; € Hy such that fi(m)=q® "V f(m) for all m € HY. We use the
property V+ + L = M. We set

(TH)(f) = fr. (13)
The image of T is
{freHr| f(h(v,0)) = f(h),he HveV}.

Note that HY C H is a subgroup, and V = {(v,0) € H" |v €V} C H" is a normal subgroup
lying in the center of HY. The operator T : Hr,, — Hr commutes with the action of H V. It is
understood that on Hy,, this group acts via its quotient HY % H,.

On the geometric level, consider the map s: L x HY — H sending (I, (v, a)) to the product
in the Heisenberg group (/,0)(v,a) € H. Note that s is smooth and surjective (it is an affine
fibration of rank dim Ly ). Given K € Hy,, there is a (defined up to a unique isomorphism)
perverse sheaf TV K € Hp, equipped with

s*(TLK) ® (@g[l](%))dim Ly ~ @g X Of“/[( ® (@6[1}(%))dim V+dim L

The compatibility property of the canonical intertwining operators is as follows.
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PROPOSITION 2. Let (L, N, B) € Yy, and write (Ly, Ny, By) for the image of (L, N, B) under
my. Write Fo ro: Hp — Hy and ]:N?/’L?/ :'Hr, — Hn, for the corresponding functors defined
as in § 3.5. Then the diagram of categories is canonically 2-commutative.

TL
Hp, LMy

J/]:N‘O/,L?/ J/]:NO,LO
TN
Hny, —Hy
One may also replace H by D'H in the above diagram.

4.2 First, we realize the functors 7Y by a universal kernel, namely, we define a perverse sheaf
T on L(M)y x H x Hy as follows.

Recall the vector bundle C — L£(M); its fibre over L is L =L x Al. Write Cy for the
restriction of C' to the open subscheme £(M )y . We have a closed immersion

io:évXHV—>£(M)VXHXH0

sending (I € L,u € H") to (L, lu, ay (u)), where the product lu is taken in H. The perverse sheaf
T is defined by

T = (ig); pr} Xg ® (Qy[1](1))dim O+dim V-tdim Ho,
where pry : Cy x HY — Cy is the projection, and X¢& was defined in §3.1.

For L € L(M)y let T, be the *-restriction of 7" under (L,id) : H x Hy — L(M)y x H x Hy.
Define T : DH, — DH by

TH(K) = pry(Ty @ pry K) ® (Qq[1](5)) 4 V-a-dim £00 (14)

for the diagram of projections H H x Hy ik Hy. 1t is exact for the perverse t-structures.

The sheaf T has the following properties. At the level of functions, the corresponding function
Ty, : H x Hy — Q, satisfies

TL(Zh, Zoho) = XL(Z)XLV ([0)_1TL(h, ho), le I_/, ZQ S [_/V.

The geometric analog is as follows. Let 0C — L(M)y be the vector bundle whose fibre over
Le L(M)y is L x Ly. Consider the diagram

actV.

LMYy x H x Hy <200 x H x Hy—— £(M)y x H x Hy,
where pr" is the projection, and actl‘i sends
(Le L(M)y,l€L,lg€ Ly, he€ H,hg € Hp)
to (L, lh, lpho). Let %p: °C — A! be the map sending
(Le L(M)y,leL,lye Ly)

to p(l) — p(lp). Here p: L — A' and p: Ly — Al are the projections on the center. Set Yy =
(Op)*ﬁw. Then T is actl‘ﬁ—equivam'ant, that is, it admits an isomorphism

(act))*T = (pr')*T @ pri (*x),

satisfying the usual associativity property, and its restriction to the unit section is the identity.
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4.3 We will prove a geometric version of the equality (up to an explicit power of q)

/ FNO Lo(hufl)TL(u, h()) du= / TN(h7 U>FN0 LY (Uh‘al) dv
ueH ' vEHo v

for h € H, hg € Hy. Here (N, L%) € Yy and
(Ny, LY,) = my (N, LO).
_ Write inv: H = H for the map sending h to h~l. Set ™ F = (id x inv)*F for id x inv :

Y xH—Y x H. Fori=1, 2 write p; : Yy — L(M)y for the projection on the ith factor. Let g
denote the composition

~ priz ~ 7Tv><id~
Yy xHx Hy—=Yy x Hy—> Y,y X Hy.

Proposition 2 is an immediate consequence of the following.
LEMMA 5. There is a canonical isomorphism over }7‘/ x H x Hy,
(b F) #41 (po x id)*T = (q5("™ F)) %1, (p1 x id)*T.
where priy: Yy x H x Hy— Yy x H and p1 x id, ps x id: Yy x H x Hy — L(M)y x H x H,.

Let iy : HY < H be the natural closed immersion. It is elementary to check that Lemma 5
is equivalent to the following.

LEMMA 6. There is a canonical isomorphism of (shifted) perverse sheaves
(id xay )iy F = (my x id)*F @ (Qg[1](3))dimrel(my)+dim V (15)
for the following diagram.
Yy x HY v, Yy x H
iid Xay
Ty Xid ~

%XHO%YVxHO

Proof. Write U(Mjy) for the scheme U constructed out of the symplectic space My. It classifies
pairs of Lagrangian subspaces in My that do not intersect. We have a 2-commutative diagram

U(MO) X £(Mo) U(Mo) LS WV(ﬂ) U X L£(M) U

iﬂyo lﬁy,v -
Y

Yo = Yy

where the square is cartesian thus defining Wy, my, and my,y. The map 4y is a locally
closed immersion. Write a point of Wy as a triple (N, R, L) € L(M) such that N, L € L(M)y,
VCRCVY and NNR=RNL=0. The map my sends (N, R, L) to (Ny, Ry, Ly) with
Ry =R/V.

Let us establish the isomorphism (15) after restriction under 7yy x oy : Wy x H vV ffv X
Hy. We first give the argument at the level of functions and then check that it holds in the
geometric setting.

Consider a point of Wy, given by a triple (N, R, L) € L(M),so N, L € L(M)y,V C RCV+,
and NNR=RNL=0. We have V* = R® Ly. Let h € HV; write h = (r, a)(I1, 0) for uniquely
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defined r € R, 11 € Ly,a € k. Write (NY, L) €Yy for the image of (N,R,L) under myy.
Using (10), we get

| Fvos(h(w.0) do = g EO0-E02 [ By ) P (a7 (e, 0)) do du
veV UGMUEH
— Aim LM+ (d+1)/2 / Fyp(u)Frp(u(r,a)(v,0)) dv du
veVyueH/R
= qdim LMD +d+1)/2 / FN,R(Z7 O)FR,L((_Z’ 0)(7”, a) (U, 0)) dv dl.
veV,IEL

Since (=1, 0)(r +v,a) = (r +v,a+ w(r +v,1))(—I, 0), the latter expression equals
q 2 / Frn,r(l,0)¢(a +w(r +v,1)) dv dl = g™ V=42 / Fy (1, 0)1h(a + w(r, 1)) dl.
veV,leL leLy
For [ € Ly we get FMR(Z, 0) = ¢dim £(Mo)—dim L£(M)—dim VFNV,RV (1,0). Indeed, since V+ =R

@ Ny, there are unique r; € R, n; € Ny such that [ =n; +r1. For 71 =r; mod V € My we get

FN,R(la 0) — qfdim £(M)7(2d+1)/2XNR(l7 0) _ qfdim £(M)7(2d+1)/2¢(%w<r17 n1>)
_ qfdim L(M)f(2d+1)/2XNvRV (7;1 +nq, 0) — qdim L(Mp)—dim L(M)—dim VFNV,RV (l, 0)

Further, we claim that
Fry Ly (<1, 0)ay (b)) = g~dim £@Mo)=dim Ho/2y, (4 1 (. 1)),

This follows from definition (5) of Fy and the formula (—I, 0)(r, a) = (7, a + w(r, 1)) (=1, 0).

Combining the above we get

| o aobe,0) do = [ gy (00)Fry (-1, O)ay (1) dl
veV leLy

_ qc+dim V—-d-1 / FN\/,RV (u)FR%LV (U_laV(h)) du
u€Ho

with ¢ = (dim Hy — d)/2 4+ 2 dim £L(Mp) — dim L£(M). By (10), the latter expression identifies
with FN{},L?/(h) up to an explicit power of g.

The argument holds in the geometric setting yielding the desired isomorphism < over
Wy x HY. For any point (Ny, Ly By) € Yy such that Ny # Ly the fibre of Ty, over this point is
geometrically connected. So, for dim V' < d, the isomorphism - descends to a uniquely defined
isomorphism (15). The case dim V' = d is easier and is left to the reader. O

Remark 5. Let ip : Spec k — H denote the zero section. Arguing as in Lemma 6, for the map
id xigg : Y — Y x H one gets a canonical isomorphism

(id xig)*F = (Sag ® 4@ Sars ® 971 @ (Qu[1](3)) ™ H.
However, it will not be used in this paper.
4.4 The functors T* satisfy the following transitivity property. Assume that Vi C V is another
isotropic subspace in M. Let My = VlL /Vi and Hy = My X Al be the corresponding Heisenberg
group. Then for L € L(M)y we also have Ly, := LNV;* and the category Hr,, of certain
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perverse sheaves on Hy. Then the following diagram is canonically 2-commutative.

L
V1
HLV —_— HLVl

N4t

Hp,

4.5 We will also need one more compatibility property of the canonical intertwining operators.
Let V. C V1 C M be as in §4.1. Write 49, : £(Mp) — L(M) for the closed immersion sending Ly
to the preimage of Lo under V+ — V+/V.

For L€ L(M) with V CL set Ly =L/V € L(My). Let (L(Mp) x L(M)y) denote the

restriction of the gerb Y under

io’v><id

L(My) x LIM)y —=L(M) x L(M)y CY.

Define mo v : (L(Mg) x L(M)y) — Y, as the map sending (L, N, B, B2 = det L @ det N) to
(Ly, Ny, B, B> = det Ly ® det Ny/).
Here L € L(M) with V C L. We have used the canonical Z/2Z-graded isomorphism det L ®
det N = det Ly ® det Ny
Recall the closed immersion iy : HY <« H. For L € £L(M) with V C L define the transition
functor T : Hr, — Hr by
THK) = iviey K @ (Qe1](3)"™ V.

The proof of the following proposition is similar to that of Proposition 2 and is left to the
reader.

PROPOSITION 3. Let (L, N, B) € (L(Mp) x L(M)y) , and let (Ly, Ny, B) denote its image
under moy. Write Fyo ro:Hp — Hy and fN‘(}’L% for the corresponding functors defined as
in § 3.5. Then the diagram of categories is canonically 2-commutative.

TL
HLV —_— HL

FNO 10 F
\L Ny Ly, NO,LO

TN
Hyy —HN

One may also replace H by DH in the above diagram. O

5. Discrete Lagrangian lattices and the metaplectic group

5.1 Set O =kl[t]] C F =k((t)). Denote by € the completed module of relative differentials of O
over k. Let M be a free O-module of rank 2d with symplectic form A2M — €. Write G for the
group scheme over Spec O of automorphisms of M preserving the symplectic form. Consider the
Tate space M (F') (cf. [Dri02, 4.2.13 for the definition]); it is equipped with the symplectic form
(mq1, ma) — Res w(my, ma).

For a k-subspace L C M(F') write

Lt ={me M(F)|Resw(m,1)=0 for all | € L}.
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For two k-subspaces Li, Lo C M we get (Li+ L2)* =Li NLs. For a finite-dimensional
symplectic k-vector space U write L(U) for the variety of Lagrangian subspaces in U.

As in loc. cit., we say that an O-submodule R C M (F) is a c-lattice if M(—N) C RC M(N)
for some integer N. A Lagrangian d-lattice in M (F) is a k-vector subspace L C M (F') such that
L+ = L and there exists a c-lattice R with R N L = 0. Note that the condition R N L = 0 implies
that Rt + L = M(F). Let Lg(M(F)) denote the set of Lagrangian d-lattices in M (F).

For a given c-lattice R C M (F') write
Lq(M(F))r={L € La(M(F))| LN R=0}.
If R is a c-lattice in M (F) with R C R* then L4(M(F))g is a naturally a k-scheme (not of finite
type over k). Indeed, for each c-lattice Ry C R we have the variety
L(R{/R1)r={L1 € L(R{/R1)| Li N R/Ry =0}.
For Ry C Ry C R we get a map pg, g, : L(Ry /Ra)r — L(Ri/R1)g sending Ly to
L1 = (LyN (R{/R2)) + Ry.
The map pg, r, is a composition of two affine fibrations of constant rank. Then Lq4(M (F))rg is

the inverse limit of £(R{/R1)r over the partially ordered set of c-lattices Ry C R.

If R C R is another c-lattice then Lq(M(F))r C Li(M(F))g is an open immersion (as it is
an open immersion on each term of the projective system). So, L4(M(F')) is a k-scheme that
can be seen as the inductive limit of L4(M (F))rg.

Let us define the categories P(Ly(M(F'))) and Pgoy(La(M(F))) of perverse sheaves and
G(0O)-equivariant perverse sheaves on L4(M (F)).

For r > 0 set
rLa(M(F)) = La(M(F))a1(-r);
where the group G(O) acts on ,Ly(M(F)) naturally. First, define the category
Dg(o)(rLa(M(F))) as follows.

For N +7r >0 set n,M =t"NM/t"M. For N >r >0 the action of G(O) on +L(NNM) =
L(n,NM) (- factors through G(O/t*Y). For r1 > 2N the kernel

Ker(G(O/t™)) — G(O/t*N))
is unipotent, so that we have an equivalence (exact for the perverse t-structures)
Deaoyeeny(rL(NNM)) = Deoyim)(rL(n,NM)).

Define Dg(o)(+L(nnM)) as Dgoir)(rL(nnM)) for any r4 >2N. It is equipped with the
perverse t-structure.
For N1 > N > r > 0 the fibres of the above projection

LNy, N M) =+ L(NNM)

are isomorphic to affine spaces of fixed dimension, and p is smooth and surjective. Hence, this
map yields transition functors (exact for the perverse t-structures and fully faithful embeddings)

Dg(o)(L(n,NM)) — Do) (rL(ny, 5 M)
and
D(GL(n,NM)) = D(-L(ny, 5 M)).
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We define Do) (»La(M(F))) as the inductive 2-limit of Dg(o)(-L(nnM)) as N goes to plus
infinity. The category D(,Lq(M(F))) is defined similarly. Both are equipped with perverse
t-structures.

If Ny > N >ry>r >0 we have the diagram

T[:(NLNIM) r rﬁ(N,NM)

p y
T1£<N17N1M) L Tlﬁ(NJVM)

where j are mnatural open immersions. The restriction functors j*:Dgo)(r L(nNM)) —
Dg oy (»L(n,nM)) yield (in the limit as N goes to plus infinity) the functors

Jrir Do) (r La(M(F))) = Deo) (rLa(M(F)))
of restriction with respect to the open immersion j,, ,:Lq(M(F)) =, Lq(M(F)). Define
Dg(o)(La(M(F))) as the projective 2-limit of

De(o)(rLa(M(F)))

as r goes to plus infinity. Similarly, Pgo)(La(M(F))) is defined as the projective 2-limit
of Pgo)(rLa(M(F))). Along the same lines, one defines the categories P(Lq(M(F))) and
D(La(M(F))).

5.2 Relative determinant

For a pair of c-lattices My, My in M(F') define the relative determinant det(M;j : Ms) as the
following Z/27Z-graded one-dimensional k-vector space. If R is a c-lattice in M (F') such that
R C My N Ms then

det(M; : My) = det(M;/R) @ det(My/R) ™ .
It is defined up to a unique isomorphism.

Write Grg for the affine grassmanian G(F)/G(O) of G (cf. [Dri02, §4.5]). For R € Grg,
L e L4(M(F)) define the relative determinant det(R: L) as the following (Z/2Z-graded purely
of degree zero) one-dimensional vector space. Pick a c-lattice R; C R such that Ry N L = 0. Then
in R{ /Ry one gets two Lagrangian subspaces R/R; and Lp, := L N Ri. Set

det(R: L) =det(R/R;1) ® det(Lp, ).
If Ry C Ry is another c-lattice then the exact sequence

0—Lp, — LNRy — Ry /R —0
yields a canonical Z/27Z-graded isomorphism

det(R/Ry) ® det(Lp,) = det(Ry/Rs) ® det(R/R1) ® det(Lp,) ® det(Ry /Ry)
= det(R/R1) ® det(Lg, ).

So, det(R: L) is a Z/27Z-graded line defined up to a unique isomorphism. Another way to say
this is as follows. Consider the complex R & L = M (F') placed in cohomological degrees 0 and
1, where s(r,l) =r + [. It has finite-dimensional cohomologies and

det(R:L)=det(R® L > M(F)).
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For g € G(F') we have canonically that
det(gR:gL) = det(R: L).
For Ry, Rs € Grg, L € L4(M(F)) we have canonically that
det(Ry : L) = det(R; : Re) ® det(Ry: L).

5.3 Write Ay for the line bundle on L4(M(F)) with fibre det(M :L) at L e Ly(M(F)).
Clearly, Ay is G(O)-equivariant, so we may see Ag as the line bundle on the stack quotient
Lg(M(F))/G(O). Let Li(M(F)) denote the ps-gerb of square roots of A,.

The categories of the corresponding perverse sheaves P o) (Lg(M(F)) and P(Ly(M(F)) are

defined as above. Namely, first for r > 0 define Do) (»L4(M(F))) as follows. For N > r take r >
2N and consider the stack quotient ,L(y nM)/G(O/t™). We have the line bundle, say Ay, on
this stack whose fibre at L is det(M /M (—N)) ® det L. Here L C y,yM is a Lagrangian subspace
such that LN (M (—r)/M(—N)) =0. Write (,L(nxnM)/G(O/t"))" for the gerb of square roots
of this line bundle. Let Dg(o)(rﬁ(N’NM)) denote the category D((,L(nnM)/G(O/t™))") for
any r1 > 2N (we have canonical equivalences exact for the perverse t-structures between such
categories for various 7).

Assume that Ny > N > r and r; > 2N;. For the projection
p:r LN N M)/GO/E) = L(n M) /G(O/E™)
we have a canonical Z/2Z-graded isomorphism p* Ay = Ap,. This yields a transition map
(rL(v, 3, M) /G(O/7))” = (L(n M) /G(O/E))".

The corresponding inverse image yields a transition functor

De(o)(rL(n,nM)) = De(o0) (rL(ny,5, M) (16)
exact for the perverse t-structures (and a fully faithful embedding). We define Do) (rLq(M(F)))

as the inductive 2-limit of Do) (rL(nnM)) as N goes to plus infinity.
For N > 1" >r and r; > 2N we have an open immersion
J:GL(NNM)/GO/t)) C (wL(nnM)/G(O/))
and hence the x-restriction functors

7 : Dgoy(wL(n,NM)) = Do) (rL(n,nM))

compatible with the transition functors (16). Passing to the limit as N goes to plus infinity, we
get the functors

Jrrr: Da(o) (wLa(M(F))) = Deoy(rLa(M(F))).
Define D¢ (o) (L4(M(F))) as the projective 2-limit of D¢ (o) (-L4(M(F))) as 7 goes to plus infinity,
and similarly for Pgo)(La(M(F))).
Along the same lines one defines the categories P(Lq(M(F))) and D(Ly(M(F))).

5.4 Metaplectic group

Let Ag be the line bundle on the ind-scheme G(F') whose fibre at g is det(M : gM). Write
G(F) — G(F) for the gerb of square roots of Ag. The stack G(F’) has a structure of a group stack.
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The product map m : G(F) x G(F) — G(F) sends
(gl, Bi,01: B% = det(M : glM)), (gg, Bo, 09 : B% = det(M : ggM))
to the collection (g1go, B, o : B> = det(M : g1goM), where B = By ® Bs and ¢ is the composition

01®02
—_—

(Bl ® 82)2 det(M : glM) ® det(M : ggM)

SO det(M : g1 M) ® det(g1M : g1g2M) = det(M : grgaM).

Informally speaking, one may think of the exact sequence of group stacks

1 B(ua) — G(F) — G(F) — 1.
We also have a canonical section G(O) — G(F) sending g to

(9, B=k,id: B* = det(M : M)).
_ The group stack G(F) acts naturally on Lyq(M (F)), and the action map G(F) x Lg(M(F)) —
Lq(M(F)) sends

(9, B, 01 : B2 = det(M : gM)), (L, By, 02 : B3 = det(M : L))
to the collection (gL, B), where B = By ® By is equipped with the isomorphism
id ®g

(B1® 82)2% det(M : gM) @ det(M : L) — det(M : gM) @ det(gM : gL) = det(M : gL).

5.5 For g € G(F) and a c-lattice R C R* in M (F) we have an isomorphism of symplectic spaces
g:RY/R = (gR)*/gR. For each c-lattice Ry C R we have the following diagram.

9
L(Rt/Ry)r — L(gRT /gR1)4r

lp I
9
L(R*/R) L(gR*/gR)
Let Agr, be the (Z/2Z-graded purely of degree zero) line bundle on £(Ri/R1)r whose fibre at L

is det L @ det(M : Ry). Assume that j = (g, B, B> = det(M : gM)) is a k-point of G(F) over g.
It yields the following diagram.

9
L(R{/R1)r — L(gRT/gR1)gr

I

L(R*/R) — L(gR"/gR)

Here the top horizontal arrow sends (L, By, B2 = det L ® det(M : Ry)) to
(gL, By, 0 : B3 = det(gL) @ det(M : gR;1)),
where By = B1 ® B and o is the composition
(By ® B)? = det L ® det(M : Ry) ® det(M : gM)
999 Qet(gL) @ det(gM : gRy) @ det(M : gM) = det(gL) @ det(M : gRy).
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In the limit by R; the corresponding functors g* : P(Z(ng/gRl)gR) = P(Z(Rf/Rl)pL) yield an
equivalence

" 1 P(La(M(F))gr) = P(La(M(F))R).
Taking one more limit by the partially ordered set of c-lattices R, one gets an equivalence
7" P(La(M(F))) = P(La(M(F))).
In this sense G(F) acts on P(Lq(M(F))).

6. Canonical intertwining operators: the local field case

6.1 Keep the notation of § 5. Write H = M @ ) for the Heisenberg group defined as in §2.1; this
is a group scheme over Spec O.

For L€ Lq(M(F)) we have the subgroup L= LeQ(F)CH(F) and the character
xz: L — Qj given by x1(l, a) = x(a). Here x : Q(F) — Q} sends a to 1)(Res a). In the classical
setting we let Hy, denote the space of functions f: H(F) — Qy satisfying:

(C1) f(@n) = x1@)f(h), for he H,Te L
(C2) there exists a c-lattice R C M (F') such that f(h(r,0)) = f(h) for r€ R,h € H.

Note that such an f has automatically compact support modulo L. The group H (F) acts on Hp,
by right translations; this is a model of the Weil representation. Let us introduce a geometric
analog of H,.

Given a c-lattice R C M(F) such that R C R+ write Hgr = (R*/R) @ k for the Heisenberg
group corresponding to the symplectic space R*Y/R. If Le Eg(M(F))R then Lp:=LNR'C
RY/Ris Lagrangian. Set Lr = Lg @ k C Hg. Let XL, : Lr — Q} be the character sending ([, a)
to ¥(a). Set

Hip,={f:Hr— Q| f(Ih) = xr.r(1)f(h), h € Hg,l € Lg}.

LEMMA 7. There is a canonical embedding Tﬁ :'Hr, — Hr whose image is the subspace of those
f € Hy which satisfy

f(h(r,0)) = f(h) forre R, heH. (17)
Proof. Set

"Hip={¢:R*/R— Q| o(r +1) =x(3w(r,1))¢(r),r € R*/R,1 € Lg}.
We have an isomorphism Hy, = "Hp, sending f to ¢ given by ¢(r) = f(r,0). Given f € Hp,
satisfying (17), we associate to f a function ¢ € "Hp,,, given by
¢(7“) — q% dim Rl/Rf(T‘, O)
for r € R*. This defines the map T}%. O

L
Assume that S C R C M(F) are c-lattices and RN L = 0. Recall the operator Hp,, = Hrg
given by (13), which corresponds to the isotropic subspace R/S C S+/S. The composition

TLs T_glf L
Hr, — Hrps — Hr equals Tj.

The geometric analog of Hy, is as follows. For a c-lattice R such that RN L =0 and R C R+
we have the category Hy,, of perverse sheaves on Hr which are (Lg, x1,r)-equivariant, and the
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corresponding category DHp,,,. For S C R as above we have an (exact for the perverse structure
and fully faithful) transition functor (14), which we now denote by

T&p: DML, — DHLg.

Define H;, (respectively, DH,) as the inductive 2-limit of Hy,, (respectively, of DHy,,,) over the
partially ordered set of c-lattices R such that RN L =0 and R C R*. So, Hy, is abelian and DH,
is a triangulated category.

6.2 Let R C R* be a c-lattice in M (F). We have a projection
Lo(M(F))r — L(R"/R)

sending L to Lg. Let Ag be the Z/2Z-graded purely of degree-zero line bundle on £(R*/R)
whose fibre at Ly is det L1 @ det(M : R). Write L(R*/R) for the gerb of square roots of Ag.
The restriction of Ag to Lq(M(F'))r identifies canonically with Ag. The above projection lifts
naturally to a morphism of gerbs

La(M(F))r — L(R/R). (18)

Given k-points N, L0 € L4(M(F)) we are going to associate to them in a canonical way a
functor

Fyo 10 : DHp, — DHy (19)
sending H, to Hy. To do so, consider a c-lattice R C Rt in M(F) such that L, N € Lq(M(F))g.
Write N§, LY € L(R*/R) for the images of N and L° under (18). By definition, the enhanced
structure on Lr and Np is given by one-dimensional vector spaces By, By equipped with
B? = det Lgr @ det(M : R), B% = det Ngp @ det(M : R),
and hence an isomorphism B? = det Lg ® det N for B := B, ® By ® det(M : R)~1. We denote
by
Fno.ro, i DHr, — DHig

the canonical intertwining functor defined in §3.5 corresponding to (Ng, Lg,B) € Y, where
Y = L(R*/R) x L(R*/R). The following is an immediate consequence of Proposition 2.

PROPOSITION 4. Let S C R C R+ C S+ be c-lattices such that L°, N® € L4(M(F))g. Then the
following diagram of categories is canonically 2-commutative.

L

TS,R
DHy, —% DHy,
]:
[P e

Tg,YR
DHyn, —— DHnyy

Define (19) as the limit of functors F N9, 1o, over the partially ordered set of c-lattices R C Rt

such that L, N € Lq(M(F))g. As in § 3.5, one shows that for L°, N°, R® € L4(M (F)) the diagram
is canonically 2-commutative.

f
DH; K DA,

]:NO Lo
\ J{fNO,RO

DHy
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Our main result in the local field case is as follows.
THEOREM 2. For each k-point L° € Lq(M(F)) there is a canonical functor
Fro: DHy — D(La(M(F))) (20)
sending Hy, to P(Ly(M(F))). For a pair of k-points (L%, N°) in L4(M (F)) the diagram

DHL T2 D2, (M(F))) (21)
lfNO,LO
DHy )

is canonically 2-commutative. Let W (Lq(M(F))) be the essential image of
Fro: My — P(La(M(F)));

this is a full subcategory independent of LY. Besides, W (Lq(M(F))) is preserved under the
natural action of G(F') on P(Lg(M(F))).

We will refer to W (Ly(M(F)) as the non-ramified Weil category on Lq(M(F)). Recall that
in the classical setting
HL = HL,odd @ HL,even
is a direct sum of two irreducible representations of the metaplectic group (consisting of odd and
even functions, respectively). The representation Hy, oqq is ramified, and hence Hp, cven is not.

The category W (Ly(M(F))) together with the action of G(F) is a geometric counterpart of the
representation Hp, even- The proof of Theorem 2 is given in §§6.3-6.4.

6.3 Let L° be a k-point of Ly(M(F)). Let R C R* be a c-lattice with L N R =0. Write L% for
the image of LY under (18). Applying the construction of §3.6 to the symplectic space R*/R
with LY € L(RY/R), one gets the functor

Frg :DHr, — D(L(RY/R)).

If N° is another k-point of Ly(M(F))g then, writing N, for the image of NV in L(R*/R),
we also get that the diagram
Fro
DHy, —>D(L(R'/R)) (22)
i}—N%,LO

DM,

F N0
Ng

is canonically 2-commutative.
Now let
rFro: DHL, — D(Ly(M(F))R)
denote the composition of F, LY, with the (exact for the perverse t-structures) restriction functor
D(L(RY/R)) — D(Lq(M(F))g) for the projection (18).
Let S C R be another c-lattice. As in §5.3, for the open immersion jg g : Zd(M(F))R —
L4y(M(F))s we have the restriction functors j& 5 : D(L4(M(F))s) — D(La(M(F))R).
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LEmMA 8. The following diagram of functors is canonically 2-commutative.

DH;, "L D(La(M(F))R)

lTsL,R TJ'E,R

Proof. We have an open immersion j:Z(SL/S)R c—>E(S’l/5) and a projection pp/g :
L(SY/S)r — L(RL/R). Set Pr/s =Pr/s ® (Qg[l](%))dim'rel(pR/S). It suffices to show that the
following diagram is canonically 2-commutative.

DML, e D E(RY/R) P D(ESL /S)R)

L
lTS,R /
Fro J

DHps —=D(L($*/85))
This follows from Lemma 5. g
Define Fro g :DHp, — D(L4(M(F))) as the functor Sgnding K to the following object Ko.
For a c-lattice S C R we declare the restriction of Ky to Ly(M(F'))s to be
(sFpo 0 Tg ) (K1).
By Lemma 8, the corresponding projective system defines an object Ky of D(Lq(M(F))).

Finally, for S C R with RN L =0 the diagram

DHL, 2 (2 (M (F)))

TL
S,R
e

DHpq
is canonically 2-commutative. We define (20) as the limit of the functors o i over the partially

ordered set of c-lattices R C R* such that L N R =0. The commutativity of (21) follows from
the commutativity of (22).

DEFINITION 4. The non-ramified Weil category W (Ly(M(F))) is the essential image of the
functor Fro : Hy — P(Lq(M(F))). It does not depend on a choice of a k-point LY of Ly(M (F)).

6.4 Let R C R be a c-lattice in M(F), let § € G(F) be a k-point, and write g for its image
in G(F). As in §5.5, we have an isomorphism g : Hr = Hyg of algebraic groups over k sending

(z,a) € (R+/R) x Al to (gz,a) € (gR*/gR) x A'. For L € Li(M(F))r it induces an equivalence

g . HLR = HngR'
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If L0 € Ed(M (F'))R is a k-point then the G-equivariance of F' implies that the following diagram
is canonically 2-commutative.

}‘Lo _
Hr, —>P(L(R"/R))

]:gLO

Hyr,n —> P(L(gR*/gR))

This, in turn, implies that the following diagram is 2-commutative.

fLO,R ~

Hip ——=P(La(M(F)))

P o I

GLO,gR__  ~

Hgr,e —=P(La(M(F)))

Thus, Theorem 2 is proved.

6.5 Theta-sheaf

Let L € Ly(M(F))as; this is equivalent to saying that L C M(F) is a Lagrangian d-lattice such
that L& M = M(F). Then the category Hr,, has a distinguished object £, on Al =Hy,.
Write Sy, for its image under Hp,, — Hy. The line bundle Ay over Lg(M (F'))ar is canonically
trivialized, so L has a distinguished enhanced structure

(L, B)=L° € Lq(M(F)),

where B =k is equipped with id: B2 =5 det(M : L). The theta-sheaf Sn(r)y over La(M(F)) is
defined as Fro(Sr). It does not depend on L &€ L4(M(F))p in the sense that for another
N € Ly(M(F))p the diagram (21) yields a canonical isomorphism Fro(Sp) = Fno(Sy). The
perverse sheaf Sy () has a natural G(O)-equivariant structure.

6.6 Relation with the Schrodinger model

Assume in addition that M is decomposed as M =U @ U*® ), where U is a free
O-module of rank d, both U and U* ® Q are isotropic, and the form w:A2M — Q is given
by w(u, u*) = (u, u*) for v € U,u* € U* ® 2, where (-, -) is the natural pairing between U and
U*. Let U=U(F)® Q(F) viewed as a subgroup of H(F); it is equipped with the character
xv : U — Qj given by xu(u, a) =v¢(Resa), a € QF),u € U(F). Write
Shry = {f : H(F) — Q| f(ah) = xvu(a)f(h), a€ U, h € H(F),
f is smooth, of compact support modulo U},

where H(F) acts on it by right translations. This is the Schrédinger model of the Weil
representation, and it identifies naturally with the Schwarz space S(U* @ Q(F)).

Recall the definition of the derived category D(U* ® 2) and its subcategory of perverse
sheaves P(U* ® Q) given in [Lys07, §4]. For N, r € Z with N + r > 0 we write n,U =t NU/t"U.

For Ny > Ns, 1 > ro we have a diagram

Ny (U @ Q) &y, (U5 @ Q) 5 iy (U 0 9),
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where p is the smooth projection and i is a closed immersion. We have a transition functor
D(N2,7“2 U Q) — D(N177’1 (U"®Q)) (23)

sending K to i1p*K ® (@g[l](%))dim'rel(p), which is fully faithful and exact for the perverse
t-structures. Then D(U* ® Q(F)) (respectively, P(U* @ Q(F'))) is defined as the inductive 2-
limit of D(n,(U* ® Q)) (respectively, of P(n,(U* ®2))) as r, N go to infinity. The category
P(U* ® Q(F)) is the geometric analog of the space Shry;.

In this section we prove the following.
PROPOSITION 5. For each k-point L° € Ly(M (F)) there is a canonical equivalence
Fury,ro : DU @ Q(F)) — DHL (24)

which identifies P(U* @ Q(F)) with the category Hy. For L°, N° € Ly(M(F)) the following
diagram is canonically 2-commutative.

‘7:U(F),L0

D(U* ® Q(F)) — DH,

]:U(F),NO
]:LO,NO

DHy

For N > 0 consider the c-lattice R =tV M in M (F) and the corresponding symplectic space
RY/R=nNM. Set Ug := nNU € L(v yM). We have the line bundle Ay on £(x M) whose

fibre at L is det(o,yM) @ det L. As above, L(,nvM) is the gerb of square roots of Ay. Let
UY = (Ug, det(o.nU)) € L(y.nM)

equipped with a canonical Z/2Z-graded isomorphism det(p yU)? = det Ur @ det(onvM).

Let Hr = yNM x A' denote the corresponding Heisenberg group, which has the subgroup
Ur =Ug x A! equipped with the character xy,r: Ug — Q} given by xu.r(u, a) =¢(a), a € Al.

In the classical setting, Hy, is the space of functions on Hr which are (Ug, xv,r)-equivariant
under the left multiplication. Set Shrff = {f € Shry | f(h(r,0)) = f(h),r € R,h € H}.

LEMMA 9. In the classical setting there is an isomorphism
Shrf} = Hy,,. (25)

Proof. Write My, ={¢': R*/R— Q| ¢/(m +u) = ¢(5(m,u))¢'(m), uc Ugr}. We identify
Hyy, = My, via the map ¢ — ¢', where ¢'(m) = ¢(m, 0). Given f € Shr# for m €t~ N M the
value f(m, 0) depends only on the image m of m under ¢~ M — y xy M. The isomorphism (25)
sends f to ¢’ € Hy;. given by ¢(m) = f(m, 0). O

In the geometric setting Hy,, is the category of (U, XU,r)-equivariant perverse sheaves on
Hp. We identify it with P(y n(U* @ Q)) as follows. Let my : Ug x yn(U* ® Q) — Hp be the
isomorphism sending (@, h) to their product wh in Hg. The functor D(y n(U* ® Q)) — DHy,
sending K to

(mu)i(xv,r B K) @ (Qe[L](3) "™ U7
is an equivalence (exact for the perverse t-structures).

Let N'> N and S =tV M. The corresponding transition functor (23) now yields a functor
denoted by TgR : DHy, — DHuysg.
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Let L0 € L4(M(F)) be a k-point over L € Ly(M(F)). Assume that N is large enough so that
LN R=0.Let L% denote the image of L° under (18). Define U3, L% € £(S*/S) similarly.

LEMMA 10. The following diagram is canonically 2-commutative.

TS g
DHy,, — s DHy,
]:
L9.u9, ]:L%,Ug
TL

DHp, —> DHp,

Proof. Set W =tN'U @ tV(U* ® Q). The subspace W/S C §1/8S is isotropic, and Ug N (W/S)
=LsN (W/S)=0. Write Hy = (W+/W) x Al for the corresponding Heisenberg group. Set
Uy =UsnN (W+/S), Ly =LsN(W+/S). Applying Proposition 2, we get the following
2-commutative diagram.

U

T
DHy,, ——> DHy,

f

LY,.UY, ]—‘L%’Ug
Tsw

DHr,, ——=DHi,

Now R/W C W+/W is an isotropic subspace, and R/W C Uy, R/W N Ly =0. Note that
Ur =Uw/(R/W). Applying Proposition 3, we get the following 2-commutative diagram.

U

T,
DHy, —= DHy,,

f

l/ L(I){YU% l]:L
Ty r

DHp, —=DH,

0 0
W’UW

Our assertion easily follows. O

Proof of Proposition 5. Passing to the limit as N goes to infinity, the functors fL% o
DHy,, — DHy,, from Lemma 10 yield the desired functor (24). The second assertion follows
by construction. O

DEFINITION 5. Let Fyp) : D(U* ® Q(F)) — D(Lq(M(F))) denote the composition

Fu(F),L0 Fro

D(U* @ Q(F)) DH;, D(Ly(M(F))).

By Theorem 2 and Proposition 5, it does not depend on the choice of a k-point L° € Lq(M (F)).
By construction, Fy () is exact for the perverse t-structures.

We have a morphism of group stacks GL(U)(F) — G(F) sending g € GL(U)(F) to (g, B=
det(U : gU)) equipped with a canonical Z/2Z-graded isomorphism
det(M : gM) =5 det(U : gU) @ det(U* @ Q: g(U* @ Q)) == det(U : gU)®.

Let GL(U)(F) act on Lg(M(F)) via this homomorphism; let it also act naturally on U* @ Q(F).
Then one may show that Fi;(p) commutes with the action of GL(U)(F).

Note also that over GL(U)(O) the sections GL(U)(F)— G(F) and G(O)— G(F) are
compatible.
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7. Global application

7.1 Assume k algebraically closed. Let X be a smooth connected projective curve. Let € be
the canonical invertible sheaf on X. Let G be the group scheme over X of automorphisms of
0% @ O preserving the symplectic form A2(0% @ Q4) — Q.

Write Bung for the stack of G-torsors on X, which classifies a rank 2d-vector bundle M on
X together with a symplectic form A2M — Q. Let A be the (Z/2Z-graded purely of degree zero)

line bundle on Bung whose fibre at M is det RT'(X, M). Write BT&IG for the gerb of square
roots of A over Bung.

Recall the definition of the theta-sheaf Aut on B—ﬁ/ng [Lys06, Definition 1]. Let ;Bung < Bung
be the locally closed substack given by dim HY(X, M) =i for M € Bung. Write ;Bung for the
restriction of Bung to ;Bung.

Let ;B be the line bundle on ;Bung whose fibre at M € ;Bung is det HO(X , M); we view
it as Z/27Z-graded of degree i mod 2. For each i we have a canonical Z/2Z-graded isomorphism
iB% = A, which yields a trivialization ;Bung = ;Bung x B(uz2).

Define Aut, € P(]afng (respectively, Autg € P(]?Jng)) as the intermediate extension of

QR W) ® (Qe[1](3)) "™ Prne
(respectively, of (Q¢ X W) ® (Q[1](3)4™ Bune =1) under ;Bung — Bung. Set Aut = Auty ® Aut,.

7.2 Fix a closed point x € X. Write O, for the completed local ring of X at x, and F, for its
fraction field. Fix a G-torsor over Spec O,; we think of it as a free O,-module M of rank 2d with
symplectic form A2M — Q(O,) and an action of G(O,). We have a map

& :Bung — Ly(M(Fy))/G(O,),

where L4(M(Fy))/G(Oy) is the stack quotient. It sends M € Bung to the Tate space M(Fy)
with Lagrangian c-lattice M(0O,) and Lagrangian d-lattice H*(X — 2, M).

The line bundle Aq on Lq(M(F,))/G(O,) is that of §5.3. Write Lq(M(F,))/G(O,) for the
gerb of square roots of Ay.

We have canonically that {54, = A, so ¢ lifts naturally to a map of gerbs
£, : Bung — Lg(M(F,))/G(Oy).

For r >0 let ,,Bung C Bung be the open substack glven by HO(X, , M(—rz)) =0. Write

mBunG for the restriction of the gerb BunG to ,zBung. If ' > r then mBunG C xBunG is an
open substack, so we consider the projective 2-limit

2-lim D(,Bung).

rT—00

Note that 2-lim, P(mlal/ng) = P(BTl-;lg) is a full subcategory in the above limit. Let us define
the restriction functor

£ : Doy (La(M(F))) — 2-lim D(,Bung). (26)

To do so, for N > r >0 and ry > 2N let
fN . mBunG — T»,C(NJVM)/G(O/HI) (27)
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be the map sending M to the Lagrangian subspace H*(X, M(Nz)) C y M. If Ny > N >r and
r1 > 2N then the following diagram commutes.

roBung = Ly N M)/G(O/)

&Ny TP
rL(vy, v M)/G(O/E™)

It induces a similar diagram between the gerbs (cf. §5.3 for their definition).

Bung X (o L(xnM)/G(O/E))

e
(rL(ny, 5 M) /G(O/1))

The functors K — é}kVK ® (Qg[l](%))dim'rd(&v) from Dg(@) (T‘E(N,NM)) to D(T‘xé_;l;lG) are
compatible with the transition functors, so they yield a functor

v : Do) (rLa(M(F))) = D(rsBung).
Passing to the limit by r, one gets the desired functor (26).
THEOREM 3. The object fj;SM(Fx) lies in P(ﬁlg), and there is an isomorphism of perverse

sheaves

Proof. For r > 0 consider the map
& ¢ raBung — (L, M) /G(O/12)) .

Set Y =L(;,M) x L(;,M). Write Y for the stack quotient of ¥ by the diagonal action of
Sp(rrM). Let Ay be the Z/2Z-graded purely of degree-zero line bundle on Y with fibre
det L1 @ det Ly at (L, Ly). Write ) for the gerb of square roots of Ay over Y. The map
L(;rM)—Y sending L to (oM, L1) €Y yields a morphism of stacks

p: (LG M)/GO/E)) = V.

Write S, as for the perverse sheaf on Y introduced in § 3.2, Definition 1. Set 7 = p o &,. It suffices
to establish for any r > 0 a canonical isomorphism

78, ® (Qu1](5)) 1T = Aut (28)

over ,;Bung.
Recall that Y; C Y is the locally closed subscheme given by dim(L; N Lg) =i for (L1, Le) €Y.

Let ); be the stack quotient of Y; by the diagonal action of Sp(,,M ), and set V=) xy V. Set

reiBung = .zBung N;Bung and ., ;Bung = ,,Bung N ;Bung.

For each 7 the map 7 fits into a cartesian square as follows.

T ~
rac,iBunG yz

L

r ~
reBung —> Y
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Indeed, for M € ,,Bung the space H°(X, M) equals the intersection of M/M(—rz) and
HON(X,M(MC)) inside M(rz)/M(—rz). By [Lys06, Theorem 1], the x-restriction of Aut to

iBung = ;Bung x B(us2) identifies with
(QeRW) @ (Qe[1](5)) ™ Brne —,
Similarly, by [Lys06, Propositions 1 and 5], the x-restriction of Sys to Vi = Vi x B(us) identifies
with
(QeRW) @ (Qe[1)(3)) >,

Since the map 7; is compatible with our trivializations of the corresponding gerbs, we get the
isomorphism (28) over ,, ;Bung for each i. Since Aut is perverse, this also shows that the left-

hand side of (28) is placed in perverse degrees at most 0, and its *-restriction to <2]§1\1/ng is
placed in perverse degrees less than 0.

The map 7 is not smooth, but we overcome this difficulty as follows. Let us show that the
left-hand side of (28) is placed in perverse degrees at most 0. Consider the stack X’ classifying

(M, B) € .,Bung and a trivialization

M|Spec Oy /27 — M|Spec Og /127

of the corresponding G-torsor. Let v: X — Y be the map sending a point of X to the triple
(M/M(=rz), H'(X, M(rz)), B). Define X1 and X3 by the cartesian squares as follows.

C3

Using (7), we get an isomorphism
M*T*SMM ® (@Z[l](%))dim.rel(u)—&-dim,rel(ﬂ ~ (WX3)!5 ® <@g[1](%))dim X3

for some rank-one local system £ on X3. Here p: X1 — mlgﬁ/ng is the projection, which is smooth.
Since my, is affine and A3 is smooth, the left-hand side of (28) is placed in perverse degrees at
least 0.

Thus, there exists an exact sequence of perverse sheaves 0 — K — K; — Aut — 0 on ,,Bung,
where K1 =7*S, n ® (Qe[1](3))dimrel(T) "and K is the extension by zero from <»Bung. But we

2

know already that K7 and Aut are isomorphic in the Grothendieck group of ,,Bung. So, K
vanishes in this Grothendieck group, and hence K = 0. We are done. O
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