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Abstract. LetLbeanample linebundleonaKa« hlermanifoldsofnonpositive sectional curvature
with K as the canonical line bundle.We give an estimate of m such that K �mL is very ample in
terms of the injectivity radius. This implies that m can be chosen arbitrarily small once we go
deep enough into a tower of covering of the manifold. The same argument gives an effective
Kodaira Embedding Theorem for compact Ka« hler manifolds in terms of sectional curvature
and the injectivity radius. In case of locally Hermitian symmetric space of noncompact type
or if the sectional curvature is strictly negative, we prove that K itself is very ample on a large
covering of the manifold.
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Let L be an ample line bundle on an algebraic manifold M. Let K be the canonical
line bundle of the manifold. It follows by de¢nition that there is a constant m such
that K �mL is ample. It is natural to ask for the smallest value of such m. In case
that the line bundle is the canonical line bundle, the question is about the smallest
k such that kK is very ample. Let M be a nonpositively curved algebraic manifold
with a pro¢nite fundamental group so that there is a tower of coverings over M
corresponding to normal subgroups of ¢nite index. In this paper, we show that
for suf¢ciently large covering manifold in the tower, m can be taken to be 1. In
the particular case of a suf¢ciently large covering of the Hermitian symmetric
manifold of nonpositive curvature, we show that actually k � 1, that is, the canonical
line bundle K itself is ample for a covering manifold of a suf¢ciently large covering
index. The same conclusion holds for similar examples of Ka« hler manifolds with
negative Riemannian sectional curvature. An effective version of the Kodaira
embedding theorem which gives an estimate of k or m in terms of curvature bounds
and the injectivity radius of a general manifold is also obtained.

Here are the main results of this article.
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THEOREM 1. Let M be a complex manifold of complex dimension n. Suppose the
sectional curvature R of M satis¢es ÿa2 WRW 0. Let the curvature RL of the
holomorphic line bundle L satisfy c < RL: Let the injectivity radius of the manifold
M be bounded from below by t: Then, K �mL is very ample for mX 2ndt;a;c; where

dt;a;c � 1
c

16� 16 log 2
t2

� 4 log 2
t

a coth
at
2

� �� �
: �1�

Moreover, K �mL generates the Nth order jet of M at any point of M for
mX ��N=2� � n�dt;a;c:

Remarks.(1) We remark that dt;a;c! 0 as t!1:
(2) (Effective Kodaira Embedding Theorem) If we relax the curvature condition to
ÿa2 WRW b2; where b > 0; the conclusion is that K �mL is very ample for
mX 2ndt;a;b;c: Letting to � min�t; p=2b�, dt;a;b;c is estimated by

dt;a;b;c � 1
c

16� 16 log 2
t2o

� 4 log 2
to

a coth
ato
2

� �
ÿ bto cot�bto� ÿ 1

t2o

� �
; �2�

Moreover, K �mL generates the nth order jet of M at every point of M for
mX ��N=2� � n�dt;a;b;c: The number to is used instead of t so that cot�bto� will
not become too negative. This is an effective version of Kodaira embedding
Theorem.

As some applications of Theorem 1, we assume that the fundamental group p1�M�
of M is pro¢nite in the sense that there exists a sequence of normal subgroups Gi

satisfying Gi�1 < Gi, G0 � p1�M� and \1i�0Gi � ;. Let ~M be the universal covering
of M. Then Mi � ~M=Gi is a covering space of M with the covering map denoted
by pi:Mi !M: As \1i�0Gi � ;, we conclude that the injectivity radius of Mi tends
to1 as i!1 due to the discreteness of p1�M�:We call fMig a tower of coverings
for M with the injectivity radius increasing to 1: The following is an immediate
corollary of Theorem 1:

THEOREM 2. Let M be a nonpositively curved algebraic manifold with pro¢nite
fundamental group. There exists io such that for all iX io; KMi � p�i L is very ample.
In fact, there is ij such that KMi � p�i L generate the jth jet space of M for iX ij:
Furthermore, the same is true for KMi � ep�i L for any small rational e > 0 such that
ep�i L is a line bundle on Mi:

Since the fundamental group of Hermitian symmetric manifolds of noncompact
type are discrete subgroups of general linear groups, they have to be pro¢nite. Hence,
the above conclusion is readily applicable in this case. However, this is superseded by
the following theorem:
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THEOREM 3. Let fMjg be a tower of covering of Hermitian symmetric manifolds of
noncompact type. There exists a constant i0 X 0 such that KMj is very ample for
jX i0: Moreover, given any l > 0; there exists il X 0 such that KMj generates the
kth jet Jk�Mj� of Mj for jX il :

Similar statements for Ka« hler manifolds with sectional curvature pinched between
two negative numbers are also true.

THEOREM 4. Let fMjg be a tower of covering over a Ka« hler manifold M with sec-
tional curvature R satisfyingÿa2 < R < ÿb2 < 0: There exists a constant i0 X 0 such
that KMj is very ample for jX i0:Moreover, given any l > 0; there exists il X 0 such
that KMj generates the kth jet Jk�Mj� of Mj for jX il :

Following from the de¢nition of the Seshadri constant for a line bundle, which will
be explained in Section 1, we get the following conclusion:

COROLLARY 1.For the examples in Theorems 3 and 4, the Seshadri constant for the
canonical line bundle is at least 1.

The organization of the article is as follows. In Section 1, we ¢rst use L2 estimates
to show that the value of m, so that K �mL is ample, can be effectively estimated by
the injectivity of the manifold and the curvature form of L. In this way, we also
estimate the Seshadri constant of the line bundle. Then we apply the results to a
tower of coverings of pro¢nite nonpositively curved manifolds to get the result that
K � L is very ample after one goes deep enough into the covering space. In par-
ticular, this includes the class of Hermitian symmetric manifolds of noncompact
type. In Section 2, we relate the L2 geometry of the universal covering to conclude
that K is actually very ample for the covering of a suf¢ciently large covering index
for the manifolds stated in Theorems 3 and 4.

1. Some Criteria for Very Ampleness of Line Bundles on General Manifolds

The main tool is the following L2-estimates due to Ho« rmander [Ho].

LEMMA 1.LetM be a compact Ka« hler manifold with a Ka« hler metrico and let KM be
the canonical line bundle. Let j be a function on M. Let �L; h� be a Hermitian line
bundle on M. Assume that

c1�L; h� �
�������
ÿ1
p

@ �@jÿ c1�KM� > co:

Let g be a �@-closed L-valued �0; 1�-form onM with
R
M kgk2heÿj < 0. Then the equation
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�@f � g has a solution satisfying the L2- estimateZ
M
kf kheÿj <

Z
M

kgk2heÿj
c

:

We also need the following Hessian comparison theorem as stated in [G-W], p. 19:

LEMMA 2. Let �M1; o1� and �M2; o2� be Riemannian manifolds with poles at o1; o2
and of equal dimension. Suppose that the radial curvature of a point on a normal
geodesic g1 on M1 starting from o1 is at least the radial curvature of the point on
a corresponding normal geodesic g2 on M2: Then for every increasing function f ,
the following Hessian comparison is valid.

D2f �r1��g1�t��WD2f �r2��g2�t��:

Proof of Theorem 1.We need to consider the lower bound of the eigenvalues of the
complex Hessian Lf �X ;Y � � D2f �X ;Y � �D2f �JX ; JY �, where J is the complex
structure involved. Since the injectivity radius of M is at least t; we can place a
geodesic ball B�x; t� of radius t centered at each point x of M within which there
is no cut locus or conjugate locus. For a ¢xed e > 0, let w�t� be a C1 bumping func-
tion de¢ned on the interval �0;1�, satisfying

w�t� � 1; tW
t
2
; w�t� � 0; tX t;

ÿ 2� e
t

W w0�t�W 0; jw00�t�jW 4�2� e�
t2

:

Then w�t� is a decreasing function, with support in �0; t�: The function w can be con-
structed as follows. Construct a step function s�t�,

s�t� � ÿ 8
t2

for t 2 t
2
;
3t
4

� �
; s�t� � 8

t2
for t 2 3t

4
; t

� �
and s�t� � 0 outside the range. Let s1�t� be the integral of s�t� with initial condition
s1�0� � 0; and s2�t� be the integral of s1�t�with s2�0� � 1. Smoothing s�t�, the resulting
s2�t� gives a candidate for w. Let rx�y� be the distance of y from x with respect to the
Ka« hler metric. De¢ne a function cx on M by cx � �log�4r2x=t2��w � rx: cx is
supported only on B�x; t�. For simplicity of notations, we will suppress x in the
formula below. Note that

D2f �r��X ;Y � � f 00�r�dr�X � 
 dr�Y � � f 0�r�D2r�X ;Y �

for two vectors X ;Y on M: Let Mm be the space form of constant Riemannian sec-
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tional curvature m: We let X 0 be the vector on Mm corresponding to vectors X :

D2c�X ;X � � D2 log
4r2x
t2

� �
w � rx

� �
�X ;X �

� w � rxD2 log r2�X ;X � � 2D log r2D�w � rx��X ;X ��

� log
4r2x
t2

� �
D��w � rx��X ;X ��

Applying Lemma 2 by comparing it with the £at space M0 and denoting the
restriction of g to the geodesic sphere perpendicular to the radial direction by h,
we get

L log r2�X ;X � � D2 log r2�X ;X � �D2 log r2�JX ; JX �

XD2 log r2Mÿb �X 0;X 0� �D2 log r2M0
��JX �0; �JX �0�

X ÿ 2
r2

dr
 dr�X ;X � ÿ 2
r2

dr
 dr�JX ; JX ��

� 2
r2

h�X ;X � � 2
r2

h�JX ; JX �

X 0:

�3�

Comparing withMÿa and using the fact that tX rx X t=2 in the region where w0 6� 0;
we have

log
4r2x
t2

� �
D2�w � r��X ;X �X log

4r2x
t2

� �
D2�w � rMÿa ��X 0;X 0�

� log
4r2x
t2

� �
w00�rMÿa �drMÿa 
 drMÿa �X 0;X 0��

� log
4r2x
t2

� �
w0�rMÿa �D2rMÿa�X 0;X 0�
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X log
4r2x
t2

� �
w00�rMÿa �drMÿa 
 drMÿa �X 0;X 0�ÿ

ÿ log
4r2x
t2

� �
2� e
t

a coth�ar�g�X ;X �

X ÿ log 4
4�2� e�

t2
dr
 dr�X ;X �ÿ

ÿ log 4
2� e
t

a coth
at
2

� �
g�X ;X �

and

D log r
D�w � r��X ;X � � Dr
r

D�w � r��X ;X �

� 1
r
w0Dr
Dr�X ;X �jrX t2

X ÿ 2�2� e�
t2

dr
 dr�X ;X �:

Combining the above inequalities, we get

LcM;x�X ;X �

X ÿ log 4
4�2� e�

t2
�dr
 dr�X ;X � � dr
 dr�JX ; JX ��ÿ

ÿ log 42� eta coth
at
2

� �
�g�X ;X � � g�JX ; JX �� ÿ 8�2� e�

t2
dr
 dr�X ;X �

X ÿ �8� 4 log 4� 2� e
t2
� log 4

2� e
t

a coth
at
2

� �� �
�g�X ;X � � g�JX ; JX ��:

We can now apply the L2-estimates to construct sections which separate points
and generate the ¢rst jet of the tangent bundle. Let x; y be arbitrary points on
M. The functions cx and cy, as constructed above, are supported in B�x; t� and
B�y; t�, respectively. Note that for r�x;w� suf¢ciently small, r�x;w�2 is
jxÿ wj2�1�O�jxÿ wj�; where O�jxÿ wj� is a bounded term tending to 0 as w
approaches x: Hence, so does cx. Let j � n�cx � cy�: As h is the Hermitian metric
for L and h1 � det gÿ1 is the metric for KM , heh1eÿj is a metric for KM �mL: It
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follows from our choice of j that

mc1�L; h� �
�������
ÿ1
p

@ �@j� c1�KM� ÿ c1�KM� > e1o

with some positive e1 provided that the following inequality is satis¢ed:

e1 � mcÿ 2n �8� 4 log 4� 2� e
t2
� log 4

2� e
t

a coth
at
2

� �� �
> 0: �4�

Let l � min�t; 12 r�x; y��. The line bundle KM �mL is trivial on the support of
B�x; l� which is the ball of radius l centered at x: Let s be the canonical section
of the bundle �KM �mL�jB�x;l�: Consider now

z�w� � w
r�x;w�

1=2r�x; y�
� �

s�w�

as a C1 section of KM �mL, which is 1 in a small neighbourhood of x and 0 in a
small neighbourhood of y: �@z is an integrable �@-closed KM � eL-valued 1-form,
as �@z is zero around x and y: Hence, from L2-estimates as stated in Lemma 1, there
is a solution of �@f � �@z satisfying

Z
M
k f k2heÿj <

Z
M

k �@zk2heÿj
e1

<1:

From the pole order of j at x and y;we conclude that f �x� � f �y� � 0:Hence, zÿ f is
a holomorphic section of KM �mL which is 1 at x and 0 at y:

To prove that sections of KM �mL generate 1-jet at any x 2M, let w1 be a
bumping function as w supported in a normal coordinate chart of x so that
z � 0 corresponds to x. Let zi�z� � ziw1�z�s�z� and extend by 0 so that zi is a
well-de¢ned C1 section of KM �mL on M. Let j � �n� 1

2�cx: Then the same argu-
ment as above shows that we can solve �@f � �@zi with f vanishing to order 2 at x
corresponding to our choice of �n� 1

2�cx in j once the inequality (4) is satis¢ed.
Hence, zi ÿ f is a holomorphic section of KM �mL satisfying @=@zi�zi ÿ f ��x�
� 1: As zi can be an arbitrary holomorphic coordinate function at x, this shows
that the sections of KM �mL generates the 1-jet and, hence, together with earlier
discussions the very ampleness of the line bundle if Equation (4) is satis¢ed. Note
that we can always ¢nd an e satisfying Equation (4) once equation (1) is true.

For the generation in the Nth order jet, it suf¢ces for us to consider
zi1���in�z� � zi1 � � � zinw1�z�s�z� instead of zi�z� in the earlier argument. This concludes
the proof of Theorem 1. &

Proof of Remark to Theorem 1. We use to � min�t; p=2b� instead of t in the proof
of Theorem 1. The only modi¢cation to this case is the estimates for
L2 log r2�X ;X � in Equation (3). Instead of comparing with M0; we need to compare
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with Mb: Instead of Equation (3), we get the new estimate

L2 log r2�X ;X �
X ÿ 2

r2
�dr
 dr�X ;X � � dr�JX ; JX ���

� 2
r
b cot�br��h�X ;X � � h�JX ; JX ��:

�5�

Note that if X is a radial tangent vector, JX is tangential to the geodesic sphere. We
now observe that ��rb cot�br� ÿ 1�=r2�0W 0 and, hence, the minimum of
�rb cot�br� ÿ 1�=r2 is achieved at to: This concludes the proof of Remark 1. &

As a detour, we consider the Seshadri constant of a line bundle L which is de¢ned
as follows (cf [De]): For each x 2M; let p: ~X ! X be the blow-up of X at x
and E be the exceptional divisor. Let

s�L; x� � supfeX 0jp�Lÿ eE is nef g

� inf
C2x

L � C
n�C; x�

where n�C; x� is the multiplicity of C at x and the in¢mum is taken over all curves
passing through x. The relation between the Seshadri constant and very ampleness
is related by the following Lemma, which follows immediately from the de¢nition
of very ampleness (cf. [De], p.68).

LEMMA 3. Suppose mL is very ample. Then s�L�X 1
m :

As a corollary, we get

COROLLARY 2. Assume that M is an algebraic manifold with sectional curvature
satisfying ÿaWK W 0 and the curvature of L is at least c with respect to the Ka« hler
metric. Then the Seshadri constant of an ample line bundle L is bounded from below
by c=�2ndt;a;c � na2�; where dt;a;c is the function considered in Theorem 1.

This follows immediately from Theorem 1, Lemma 3 and the estimates

na
c
�m

� �
c1�L�X c1�K� �mc1�L�:

2. VeryAmpleness of Canonical Line Bundles in Some Hermitian Symmetric
Manifolds and Negatively Curved Manifolds

In the following, we ¢rst assume that M is a Hermitian symmetric manifold of
noncompact type and give a proof of Theorem 3. Later on we will modify the proof
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to handle the case of negatively curved Ka« hler manifolds. fMjg is a tower of covering
over M0 �M.

Before we go to the proof of Theorem 3, we need some preliminaries. On a
compact manifold M, the space of L2 sections of KM is ¢nite-dimensional. Let
si; i � 1; . . . ; n be an orthonormal basis with respect to the Hermitian inner product
�si; sj� �

R
M si ^ sj: The Bergmann kernel is de¢ned to be HM�x; y� �

Pn
i�1 si�x�

^sj�y� on M �M and is independent of the basis chosen. For the universal covering
~M, the space of L2-holomorphic section of K ~M form a Hilbert space with respect
to a similar inner product �ti; tj� �

R
~M ti ^ tj : Take an orthonormal basis ti; i 2 N

and form the Bergman kernel H ~M�x; y� �
P

i2N ti�x� ^ tj�y�: It is well known that
the L2-cohomology of a Hermitian symmetric space of noncompact type is trivial
except for those corresponding to holomorphic n-forms which are
in¢nite-dimensional. Hence, Theorem 1.1.1 of [Y] can be phrased as the following
lemma:

LEMMA 4. The dimension of the space of holomorphic n-forms on Mj is
asymptotically proportional to the volume of Mj with the proportional constant given
by the von Neumann dimension of L2-holomorphic n-forms on ~M.

Hence, both H ~M and HMj are nontrivial. Let us now identify a point x 2M with a
point ~x 2 ~M in the fundamental domain of M in ~M. Let pj;0:Mj !M0 be the cover-
ing map. pÿ1j;0x consists of a ¢nite number of points inMj. Let xi be one of the points in
pÿ1j;0x. HMj �xj; xj� is independent of the point chosen as representative since the
Bergman kernel is invariant under deck transformation which is an isometry.
The following result is essentially due to Donnelly [Do]:

LEMMA 5. HMj �xj; yj� converges pointwise to H ~M�x; y� in a C1 way.

Donnelly stated in [Do] that HMj �xj; xj� converges pointwise to H ~M�x; x�
uniformly. As the kernel functions are holomorphic with respect to the ¢rst variable
and antiholomorphic with respect to the second variable, it follows easily from
power series expansion the uniform convergence of HMj �xj; yj� to H ~M�x; y�: Then
we conclude the convergence in a C1 way from Schauder estimates.

Proof of Theorem 3.

Base point freeness

Let us ¢rst prove that the global sections G�Mj;KMj � generate s ji for suf¢ciently large
Mj: Let s

j
i; i � 1; . . . ;Nj W1 be an orthonormal basis of G�Mj;KMj �, here 0W jW1

with M1 � ~M, and Bj be the base locus of G�Mj;KMj �. As pj�1;j:Mj�1!Mj is a
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holomorphic covering map, pj�1;j��sji� is a holomorphic section of KMj�1 for each
section sji of KMj . Let D be a fundamental domain ofM �M0 in the universal cover-
ing ~M and pj: ~M !Mj as before. It follows that pÿ1j�1�Bj�1� \D � pÿ1j �Bj� \D:
Hence, pÿ1j �Bj� \D � \jk�0pÿ1j �Bk� \D is a decreasing set. We claim that
\1j�0pÿ1j �Bj� \D � ; so that from the relative compactness of D, pÿ1j �Bj�1� \D is
empty for all suf¢ciently large j. To prove the claim, note that the Bergmann kernel
function speci¢ed at x � y can be expressed as

HMj �x; x� � sup
f2G�Mj�;k f k�1

j f �x�j2

H ~M�x; x� � sup
f2G�2�� ~M�;k f k�1

j f �x�j2:

This follows from the fact that the Bergmann kernel is independent of the choice of
base and, hence, we may choose s1 with maximal value at the point x. Suppose
x 2 \1j�0pÿ1j �Bj� \D 6� ; so that HMj �x� � 0 for each j. From the above lemma, it
follow that H ~M�x� � 0 as well. However, since ~M is homogeneous, the base locus
of K ~M is empty and, hence, such a x does not exist. This concludes the proof of
the claim and, hence, the statement that the global sections generate the bundle.

Separation of points

LEMMA 6.Assume that the L2-canonical sections of the universal covering separates
points. Also assume that for any c > 0; there exists a number k > 0 such that for every
pair of points x; y 2 ~M of distance d�x; y�X c, there is always a holomorphic section
s 2 G�2�� ~M;K� satisfying kskL2 � 1; s�x� � 0; ks�y�kX k: Then KMj separates Mj

for all suf¢ciently large j:
Proof. Take a nested sequence of domains Dj on ~M so that each Dj is a funda-

mental domain of Mj: From the above discussion on base-point freeness, we
may assume that sections of G�Mj;K� is base point free for all jX 0. Let
t1; . . . tN be a basis of G�M0;K�:

Consider ¢rst the case that x; y 2Mj both lying in some fundamental domain of
Mo when pulled back to ~M:We may assume that x; y 2 D0 after a biholomorphism
if necessary. Since HMj �w; z� �

P
i s

j
i�w�sji�z� converges to HM1�w; z� uniformly on

any relatively compact set containing w; z according to Lemma 1, and for 0W jW1,

X
i

�sji�x� ÿ sji�y��sji�x� ÿ sji�y��

� HMj �x; x� ÿHMj �y; x� ÿHMj �x; y� �HMj �y; y�;
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we conclude the convergence ofX
i

�sji�x� ÿ sji�y��sji�x� ÿ sji�y�� !
X
i

�s1i �x� ÿ s1i �y��s1i �x� ÿ s1i �y��:

For 0W jW1, de¢ne

Cj � f�x;w� 2 pj�D0� \Mj � pj�D0�j

sj�x� � sj�w� for all sj 2 G�2��Mj;KMj �g:

We easily see that Cj is nested in the sense that Cj�1 � Cj . If Cj is nonempty for each
0W j <1; the above convergence of the kernel functions implies that sections in
G�2�� ~M;K ~M�, ~M �M1, are not base-point free, contradictory to our assumption.

Consider now the case that d�x; y�X t�M0�, the injectivity radius ofM0, for points
x; y 2Mj : Let t1; . . . tN be a basis of G�M0;K�:We claim that, after including a ¢nite
number of sections from linear combination of the above sections if necessary, we
can assume that for every pair of points z;w 2M0; there is an l such that
tl�z� 6� 0; tl�w� 6� 0, l depending on z;w. For the claim, let

E � f�z;w� 2M0 �M0jtl�z�tl�w� � 0; for all 1W lWNg :

For generic point �z;w� 2 E, we can always ¢nd tl1 ; tl2 such that tl1 �z� 6� 0; tl2�w� 6� 0:
By taking suitable linear combinations of tl1 and tl2 , we get a new tN�1 which neither
vanishes on z nor w: Adding tN�1 cuts down the dimension of E by 1. The claim
follows by applying the above argument repeatly using the fact that M0 is algebraic.
We use the same notation tl; 1W lWN; to denote its pull-backs toMj for each j > 0:
For continuity, we conclude that for any two points z;w 2Mj, there exists d1 and d2
such that d2 X ktl�z�k; ktl�w�kX d1 > 0: For the sections sji of G�Mj;K�; let
f j;li � sji=tl , which are meromorphic functions on Mj for each l. Let

~H
l
Mj
�z;w� �

X
i

f j;li �z�f j;li �w� �
HMj �z;w�
tl�z�tl�w� :

From the uniform convergence of the Bergmann kernel on compacta, given any
e > 0; there exists jo such that for jX jo;

j H ~M�z; z� ÿHMj �z; z�jW e

and,

jH ~M�z;w� ÿHMj �z;w�jW e

where z;w are two arbitrary points on the manifoldMj: Equivalently, e � e�j� can be
made suf¢ciently small so that the above inequalities hold when j is suf¢ciently large.
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This implies that for any two points z;w 2Mj; there is an l such that

j ~Hl
~M�z;w� ÿ ~H

l
Mj
�z;w�jW e

d21
:

Assume now that d�x; y�X t � c. We conclude thatX
i

jf j;li �x� ÿ f j;li �y�j2 � ~H
l
Mj
�x; x� ÿ ~H

l
Mj
�y; x� ÿ ~H

l
Mj
�x; y� � ~H

l
Mj
�y; y�

X ~H
l
~M�x; x� ÿ ~H

l
~M�y; x� ÿ ~H

l
~M�x; y��

� ~H
l
~M�y; y� ÿ

4e
d21

�
X
i

jf1;li �x� ÿ f1;li �y�j2 ÿ
4e
d21

X
1
d22

X
i

js1i �x� ÿ s1i �y�j2 ÿ
4e
d21

X
k

d22
ÿ 4e
d21
:

Here we use our assumption in the last step. Note that e � e�j� tends to 0 uniformly as
j tends to1. Hence, for all j suf¢ciently large, the above expression is positive and,
hence, the sections of Mj separate x; y. Together with the previous argument for
x; y both lying in some fundamental domain of M0; we conclude that the sections
of G�Mj;K� separate points for j large enough.

We now apply the above Lemma to the case of a bounded symmetric domain. By
homogeneity, we may assume that x � 0, the origin in the standard realization.
For the point y 2 ~M we simply choose

s � ydz1 ^ � � � ^ dznR
~M jyj2

:

The denominator is ¢nite as it is a bounded domain. Obviously s has norm 1, with its
value at y bounded from below by some k > 0 once its distance from x � 0 is suf-
¢ciently large. Hence the conditions of the Lemma are satis¢ed. This concludes
the proof of the separation of points by the sections.

Generation of Jets

We need to prove that, given a positive integer k, there is a suf¢ciently large jo such
that sections of KMj generate the k-jet of Mj for all jX jo: Similarly, we de¢ne

Dj � fx 2Mj j G�Mj;KMj � does not generate Jk�x�g;

where Jk�x� denotes the kth jet of x: At a point xj 2 Dj, it follows by de¢nition that
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there is a multiderivative

@i1���ik �
@i1�����ik

@zi1 � � � @zik

such that @i1���ik sj�xj� � 0 for every section sj 2 G�Mj;KMj �: This is re£ected by the
statement that @i1���ikHMj �xj; y� � 0 for each y 2Mj . Again, the set Dj forms a nested
set when pulled-back to the universal covering in the sense that Dj�1 � Dj: Hence,
by similar argument as before and using the previous lemma shows that if our state-
ment is not true, there is a point x 2 ~M and a differential operator @i1���ik such that
@i1���ikH ~M�x; y� � 0 for every y, say, in a neighbourhood of x in ~M: Hence

X1
i�1

@i1���ik ti�x� ^ ti�y� � 0:

Letting y � x implies that @i1���ik t�x� � 0 for each section t 2 G�2�� ~M;K ~M�: However,
homogeneity again implies that this should hold for every x 2 ~M, contradicting
the fact that for generic point on ~M, the sections in G�2�� ~M;K ~M� generate kth order
jets.

This concludes the proof of Theorem 3. &

Proof of Theorem 4. M is a Ka« hler manifold with sectional curvature R satisfying
ÿa2 WRW ÿ b2 < 0:We only need to verify that the universal covering ~M satis¢es
the same L2-cohomological properties as the Hermitian symmetric spaces. It follows
from the result of Gromov and Stern [G], that there is no L2-harmonic forms on the
universal covering ~M of M except for L2 holomorphic n-forms which form an
in¢nite-dimensional vector space. This latter fact is also stated in [GW]. In fact,
the argument there can be modi¢ed to construct L2-holomorphic sections of the
canonical line bundle which generate a given high jet of ~M in the following way:
Let x 2 ~M. We can construct a smooth increasing function fx�w� on ~M satisfying

0Wfx W 1 and @ �@fX b2 cosh
br
2

� �ÿ4
o;

where o is the Ka« hler form ([GW], Theorem H). Let h1 be the canonical metric on
K ~M and j the same as used in the proof of Theorem 1. Consider a metric
h1eÿjÿkf ofK ~M and apply the L2-estimates of Ho« rmander as in the proof of Theorem
1. We easily conclude that the sections generate an arbitrarily high jet of ~M at the
point x for k suf¢ciently large.

To prove that the sections separate points onMj, it suf¢ces to check the conditions
of Lemma 6. Assume that d�x; y�X c on ~M: As in the proof of Theorem 1, we used
L2-estimates to construct a section of K vanishing at x but nonvanishing at y.
Following the notations of the proof of Theorem 1, we need to solve �@f � �@z for
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a test function

z � w
r�x;w�

1=2r�x; y�
� �

s�w�

and s1 � zÿ f is then a holomorphic section vanishing at 0 but having the value 1 at
y: From the L2-estimates, we getZ

M
kf k2heÿjÿkf <

Z
M

k �@zk2heÿjÿkf
e1

<1:

and, hence,

ks1k2 W kzk2 � kf k2 W kzk2 � C1

Z
M

k �@zk2heÿjÿkf
e1

with some absolute constant C1: As d�x; y�X c and Dz � 0 on a small ball of the
radius depending only on c around x and y, we immediately have the estimates
of Dz and, hence, ks1k in the above is ¢nite with a constant upper bound C deter-
mined only by c: It suf¢ces for us to divide s1 by C to get a section satisfying
the conditions of Lemma 6. The arguments of Theorem 3 can then be carried over
to conclude the proof of Theorem 4. &

Corollary 1 follows immediately from Theorems 3 and 4 and Lemma 3.
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