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1. Introduction

Cosmic censorship hypothesis [1] is a major unsolved problem in classical general
relativity. According to this hypothesis singularities occurring in generic space-times
should not be naked. This means that there should not be singularities to the future
of a regular initial surface that are visible to observers at infinity A mathematically
precise statement of the hypothesis is that a space-time should be future
asymptotically predictable from a partial Cauchy surface ([2] p. 310).

There exist a number of examples of naked singularities in some exact solutions of
the Einstein equations. However it has been stressed by Penrose[3] that the exact
solutions with special symmetries have a rather limited value for verification of the
cosmic censorship hypothesis and what is required is an understanding of the
generic case. The cosmic censorship hypothesis concerns space-time singularities
occurring in physically realistic situations. One of us [4], [5] has recently proposed
a definition of such singularities. This definition has been motivated by the definition
of strong curvature singularities by Tipler and its modifications by Krolak, but it is
significantly different. The new singularities that we call generalized strong curvature
singularities can be classified into four types. By the theorem quoted below only one
type of the generalized strong curvature singularities can be naked. In this paper we
shall argue that the naked class of generalized strong curvature singularities will not
occur in generic space-times.

In Section 2 we shall recall the definition of generalized strong curvature
singularities, their classification and the cosmic censorship theorem. In Section 3 we
shall construct the space G of functions which characterizes various types of
singularities, and we shall prove that the subspace of G corresponding to the naked
singularities is a nowhere dense subset.

2. Generalized strong curvature singularities

First let us recall the definition of the generalized strong curvature singularities.

Definition 1. Let A be a future-incomplete null (timelike) geodesic; A is said to
terminate in the future at a generalized strong curvature singularity if for each
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sequence of null (timelike) inextendible geodesies An converging to A at least one of
the following conditions holds:

(1) every neighbourhood of each future-endless segment of A contains some point
qneAn such that the expansion 0 of a future-directed null (timelike) geodesic
congruence emanating from qn and containing An becomes negative on An;

(2) there exists a subsequence Â  of An such that /~(A^) = /~(A) for each n.

The following definition gives us a complete classification of the singularities
introduced above.

Definition 2. Let A be a null (timelike) geodesic terminating in the future at the
generalized strong curvature singularity, and let (An) be a sequence of inextensible
null (timelike) geodesies converging to A. Denote by q(An) some point on a geodesic
Ane(An), such that the expansion 0 of a future-directed null (timelike) geodesic
congruence emanating from q(Xn) and containing An becomes negative on An.

Then A is said to be of type:
A, if each sequence (An) contains some subsequence (Afc) converging to A, such that

each Afce/~(A);
B, if A is not of type A and, for each sequence (An), all points q(Xn) belong to the

set /"(A);
C, if A is not of type A and each sequence (An) admits some point q(An) not in

/-(A);
D, if A is not of type A, B or C.

The following censorship theorem has been proved.

THEOREM 1 [4], [5]. Let S be a partial Cauchy surface in a weakly asymptotically
simple and empty space-time (M, g) such that:

(i) S has an asymptotically simple past,
(ii) each generator of «/+ admits a past inextensible segment contained in intD+(S,M),

where Jt is space-time with the null boundary J.
Suppose moreover that the following conditions hold:
(1) Rabk

akb ^ 0 for every null vector ka,
(2) the generic condition, i.e. every null geodesic contains a point at which

k[aRb]cd[eknk
ckd 4= 0, where ka is tangent to the geodesic,

(3) if there exists a future-incomplete null geodesic y a int-D+($), then every null
geodesic A, such that I~(X) = I~(y), terminates in the generalized strong curvature
singularity.

If (M, g) is not asymptotically future predictable from S, then there must exist a null
geodesic A c int D+(S), which terminates in the generalized strong curvature singularity
and is of type D.

By this theorem only singularities of the type D can be naked.

3. The G-space

Let y: [O,ts)st\-+y(t)eintD(S), where <S is a partial Cauchy surface, be a null
geodesic terminating in a generalized strong curvature singularity in the future.
Denote by Ly the family of all sequences (yt) of inextensible null geodesies converging
to y such that all members of (yt) intersect the boundary J~(y) but none of them is
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contained in J~(y). It follows from Definition 2 above that if y is not of type A, then
Ly is not empty.

As intD(S) is globally hyperbolic, there must exist a foliation S(T) of this set such
that each member of the foliation is a Cauchy surface for intZ)(*S) and such that, for
some T0, S(T0) = S. Let 8^^) be a slice through y(0). The affine parameter ( on y
introduces in a natural way a reparametrization of S(T) for all T ̂  rl7 namely by S(t)
we shall denote the slice S(T) which intersects y(t). LetiV== «/+[<S(TJ)] 0 intD+(S) and
define d by d: NxNa(x,y)\—*tx — ty, where tx and ty are the values of the affine
parameter f o n y such that xeS(tx) and yeS{ty).

Fix a sequence (y't) from the family Ly. For each value of the affine parameter t on
y we shall distinguish all geodesies yk(t) c {y'%) such that on each yk(t) there exists a
point qeJ+[8(t)] such that the expansion 0 of a future-directed null geodesic
congruence emanating from q becomes negative on yk (the existence of such points
follows from Definition 1).

We write R(t) for the set J~(y) D yk{t). Let g'(t) be defined as follows:

g'(t) = mf{d(x,y(t)):xeR(t)}.

The following function characterizes the strength of singularity:

0 :[<),«,] 3 *t->inffo'(0:«6[<U,)}.

By this procedure we can associate a function g to every member of the family Ly;
we denote by Gy the set of all these functions. We divide Gy into two parts: Gy ••=
{gsGy: g(t) > 0, We[(M,]} and Gy = Gy-G\.

By the construction above we can establish the following connections between the
possible types of geodesic y and certain properties of the space Gy.

PROPOSITION I. If y is of type B, then Gy = Gy; if y is of type C, then Gy = Gy and
if y is of type D, then Gy =t= 0 and Gyj=0.

Remark. The relationships established in Proposition 1 do not depend on the
choice of the foliation S(T) of the set intD(S) used in the construction of the
function g.

It follows from Theorem 1 that predictability of space-times can be violated only
if there exist null geodesies of type D. Therefore it would be interesting to know
whether the existence of such geodesies is a stable property. Our approach to this
issue is to study the stability of the type D by investigating the stability of those
properties of the space Gy which characterize type D. The first step in this approach
is to postulate some appropriate topology on Gy.

Given any topology &~ on Gy, for any non-empty set Ue&~ we define the function
eu:[d,ts\3t\-*s\x^){\gi(t)—gj(t)\:gi,gi€U} by means of which we determine the
following two numbers.

81
u = mf{eu(t):te[0,ts]},

Pa = mv{ev(t): te[O,tt]}.

We shall assume that Gy admits a topology with the following properties:
(1) VUer-{0},8\,>O;
(2) Vc > 0, V?eGy, 3£%)eir , geU(g) and 8% ^ c.

Property (1) ensures that perturbations introduced on Gy are sufficiently generic, i.e.
each function g(t) is changed at each point of its domain. Property (2) ensures the
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possibility of investigations of stability on Gy under generic, but arbitrarily small,
perturbations.

PROPOSITION 2. Let y be a geodesic of type C or D and let 2T be a topology on Gy

satisfying (1) and (2). Then the set Gy is open and dense in the topological space (Gy, 9~).

Proof. First we shall show that Gy is a dense set in the space Gy, i.e. that every non-
empty neighbourhood U&^~ of each function geGy intersects Gy. Suppose that some
function g1 belongs to Gy. I t follows from the construction of the functions g that
inf g(t) ^ 0 for every g, and therefore by condition (1) any neighbourhood U of gr1
must contain some function g2 such that inf g2 < 0. By definition of Gy, this means
that U intersects Gy.

To prove that Gy is an open set in Gy we have to show that each function geGy

admits a neighbourhood VeZF contained in Gy. Given any gsGy let cg = mig(t).
Clearly cg < 0 by definition of Gy. Since ST satisfies (2), there must exist some
neighbourhood Ve ST of the g such that Sy < cg. From the definitions of ^ and S2

V this
implies V <= Gy. I

In view of Proposition 2, belonging to the set Gy is a generic property of the
functions g. Therefore generically type D is no different from type C. Consequently,
under the assumptions of Theorem 1 and Proposition 2, the future asymptotic
predictability holds in generic space-times.

4. Conclusions

The space G characterizes some connections between the causal structure and the
strength of curvature in a neighbourhood of the singularity. For methodological
reasons, only those properties of any physical model are significant that will be stable
under perturbations of the model. In the argument above we have shown that
type D of singularities is unstable under generic perturbations introduced on the
space G (Proposition 2). This result gives a new argument which supports the view
that naked singularities are exceptional.

We would like to thank J. K. Beem, C. J. S. Clarke, S. Harris, and R. P. A. C.
Newman for useful comments and discussions.
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