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1. Introduction and notation. In this paper a generalization of the Cantor set is
discussed. Upper and lower estimates of the Hausdorff dimension of such a set are
obtained and, in particular, it is shown that the Hausdorff dimension is always positive
and less than that of the underlying space. The concept of local dimension at a point is
introduced and studied as a function of that point.

Sets of this nature often occur in function theory and, in particular, such a set can
occur as a singular set of some properly discontinuous group (e.g. (l), page 35; (8),
page 109). Using some results contained in this paper the author has obtained certain
results in this connexion and hopes to publish these results later.

We shall implicitly assume that the underlying space is Euclidean space of dimen-
sion N and shall use the following notation throughout.

(a) The diameter of a set E is denoted by \E\.
(b) The distance between two sets A and B is denoted by

p(A,B) = M{\a-b\: aeA,be.B};

also p(x,A)= p({x},A).

(c) The closed iV-dimensional sphere of centre a, radius r is denoted by S(a, r).

2. Hausdorff measures. In (3), Hausdorff denned the concept of an outer measure
with respect to any function h(t) which is continuous and increasing for t ^ 0 and is
such that h(0) = 0. In particular we take h(t) = tx for any a > 0.

For any set E let m

S-ma(E) = inf £ |/m|«,

where the infimum is taken over all coverings of E by arbitrary sets /„ with \In\ ^ 8.
Define mx(E), the outer measure of E with respect to h(t) = t* to be

ma{E) = lim 8 -ma(E)

= sup 8 -ma(E).

It is well known that if a. < § and ma(E) < oo then mfi(E) = 0. Thus there exists a
unique non-negative number, d{E), called the Hausdorff dimension of E such that

ma{E) = 0 for a > d(E)

and ma(E) = oo for d(E) > a > 0.
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680 A. P. B E A R D O N

In order to examine the local structure of E we define dx(E), the local dimension of

E a t« , ( («) , by dx(E) = lund(En8(x,e)).
e-+0

In particular, if E is a closed set and x£E, then dx(E) = 0.
We remark here that ma(E) can be computed from open coverings of E, i.e. we may

restrict the sets In to form an open cover of E. If E is compact we need only consider
finite open coverings of E.

In (6), Taylor discusses the known relationships existing between Hausdorff
measures and generalized capacities and that paper contains the following result.

THEOREM 1. Let E be a compact set. Then
(i) if E has positive Hausdorff dimension then it has positive logarithmic capacity and
(ii) if E has Hausdorff dimension greater than one then it has positive Newtonian

capacity.

3. General Cantor sets. These sets are generalizations of the classical Cantor set.

DEFINITION 1 ((7); (8), page 106). A set E is said to be a general Cantor set if and only
if it can be expressed in the form

E= n U A ^ ,
n=l i,,...,in=l

where K 5= 2 is an integer and where the Afi in are connected, compact sets satisfying

(i) K...^ 3 Aii..* W
(ii) Al5..., Aj^ are mutually disjoint,
(iii) there exists a constant A, 1 > A > 0, such that

(iv) there exists a constant B, 1 > B > 0, such that for s 4= t,

DEFINITION 2. A general Cantor set is called a spherical Cantor set if and only if for
each choice ofilt ...,in A£i__.in is an N-dimensional sphere.

The classical Cantor set is an example of a spherical Cantor set with the constants
satisfying N = 1, K = 2 and A = B = \. Unless otherwise stated a general Cantor set
will always have a decomposition in the notation of Definition 1. Using a similar
terminology to Good ((2)), we say

(a) a fundamental interval is a set of the form Afi in,
(b) a fundamental system, J5", of E is a finite disjoint collection of fundamental

intervals whose union covers E,
(c) the order of the fundamental interval A£i in is n and
(d) the upper (and lower) order of a fundamental system, !F, of E is the maximum

(and minimum) value of the order of a fundamental interval in IF. Further, define

Sn = max W..An\ (iv...,in= 1,...,K).

We shall need the following result.
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LEMMA 1. For any general Cantor set, 8n -»• 0 as n -> oo.

Proof. The proof is trivial for N = 1 but a more complicated argument is needed to
prove the general case.

For each n, let A£ (n be such that

and let {jn} be a sequence with the property that for each value of m there exist
infinitely many values of n such that

Such a sequence can easily be inductively denned. Suppose now that

8n > 8 > 0.

Then it follows that IA/X-JJ > s-

Now define {in} such that in +jn and choose xneAh Jnin+i. Then for all m and n, m > n,

\Xn~xm\

Since the set {xn} is a bounded infinite set we see that 8=0. The lemma follows on

observing that Sl> S2> ... > 8n> ... > 0.

From Lemma 1 we deduce that any general Cantor set is a discrete set (U), page 277).
The known results concerning the densities of these sets are summarized in the
following theorems.

THEOREM 2 ((7); (8), page 106). (i) Let Ebea spherical Cantor set and let N ^ 3. Then
mN(E) = 0. Further, if AK > 1 then E has positive Newtonian capacity.

(ii) Let Ebea general Cantor set and let N = \or2.ThenmN(E) = 0 and Ehas positive
logarithmic capacity.

THEOREM 3 ((*)). Let Ao, Ax,..., A -̂ be geometrically similar compact, connected sets
such that

(i) &0=>&j(j=l,...,K),(K>2)and
(ii) A1;..., AK are disjoint.

By the similarity there exist transformations Fj (j= 1, ...,K) of Ao onto Â  with Fj the
composition of a translation, a rotation and a (negative) magnification. Define

and E= n U \..min.
n=li,,...,i,=l l

Then we have 0 < md(E) < oo and d = d(E) where d satisfies
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It is clear that such a set is a general Cantor set and we say that E is derived from the
pattern Ao, Av ..., Ax. This theorem includes the well-known result of Hausdorff ((3)),
i.e. that the dimension of the classical Cantor set is log 2. (log 3)-1.

We shall see that for any general Cantor set E,

0 < d{E) < N

and further, if AK > 1 then d(E) > 1. Theorem 1 then shows that both parts of
Theorem 2 have been considerably extended.

The first result is to show that d(E) is completely determined by the diameters of
the fundamental intervals used in the definition of E.

LEMMA 2. Let E be a general Cantor set and suppose that 8—Ma{E) and Ma(E) are
defined as for S—ma(E) and m^E) respectively with the added restriction that the covering
{In} is a fundamental system of E. Then

Ma{E) ^ m"{E) > BaMa(E)

and so Ma(E) can be used to define d{E).

Proof. Without loss of generality we can restrict our consideration to finite open
coverings, say {Ilt..., Ig}, of E (E is clearly a compact set) such that

a n d \It\ < min{/9(As,A,): s # t] (j=l,...,q).

Thus Ij has a non-empty intersection with precisely one fundamental interval of order
one. From Lemma 1 we see that any neighbourhood of any point of E n Ij contains at
least two fundamental intervals of order n for some sufficiently large n. Define s(j)
to be the largest positive integer with the property that Ij has a non-empty intersection
with precisely one fundamental interval of each of the orders 1, ...,s(j). Then if the
latter of these fundamental intervals is Af we note that Ij has a non-empty intersection
with two fundamental intervals of order s(j) + 1 and these are both contained in the
same fundamental interval A|; thus by Definition 1 (iv),

\I,\>B\Af\.
q

I t is easily proved that U A? => E,
j=i

and so we can replace the covering {ij,..., Iq} by the fundamental system {Af,..., AJ}
of E which is such that q

Lemma 2 now follows.
I t is seen from Lemma 2 that d(E) is completely determined by the diameters of the

Aix in and in this sense is independent of their geometrical shape. We next prove the
basic result of this section and in doing so will use similar techniques to those contained
in (2). The more elaborate methods contained in (2) do not, however, appear to yield any
substantial improvement to the following result.
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THEOREM 4. Let Ebea general Cantor set. Then for all n = 1,2,... and all

h > • • • > * » = * > • • - , K

W S |A(:i...,n y|« < | A£i...J« implies d(E) ^ocand

(ii) S \K...iJfi > K . . . J ' imPlies d(E) > P-

Proof. The hypotheses of (i) imply that

. s K..J-
is bounded above for all n. Lemmas 1 and 2 show that

ma(E) < oo,

which proves (i). The second half of the proof is more difficult. By Lemma 2 it is
sufficient to consider fundamental systems of E. Suppose that !F = {Af,..., A^} is
one such system and let m and n be the upper and lower orders of IF. In particular
there exists .

ix...i

By the disjointness of !F we see that

and so, by the covering property of IF', it follows that

il....im_i 2, • • •, Ail . . . im_] K e

We replace these if sets of J^ by the set A<i---<m_ to form anew covering J5"*. The
hypothesis of (ii) implies that

and repeated applications of this result yield

K
Further applications yield

and so J//»(.S) > S |A,-|-* > 0.

Finally, by Lemma 2, d(E) ^ y?.
Theorem 4 is now proved and we list some immediate consequences.

COROLLAJIY 1. Suppose that

Thend(E) satisfies £ 4fE>^ 1 < S
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Proof. If £ A? = 1
i

and so d(^) > a, i.e. £

The second inequality is proved similarly.

In particular we may take
A± = > •••> = - " - K ~ •"-•

Then d(E) > J ^ > 0

and so every general Cantor set has positive Hausdorff dimension.

COROLLABY 2. Suppose that

K-wU^ «. i

uniformly asn-> ao. Then d(E) satisfies

Proof. This follows easily from Corollary 1 and the obvious fact that for any n,

d(E) = max{d(i1,...,in):iv ...,in = 1,...,-£},

where d{ix, ...,in) = d(En Aix in).

In particular, if A1 =, . . . ,= ^4X = -4

then

COKOLLABY 3. Suppose that

{\...in: h> •••'in = l , •••>%) and {Iii_in:i1,...,in= 1,...,K}

yield two general Cantor sets E and F respectively in the sense of Definition 1 and that

\\...in\ > ik-iJ-

Thend(E) ^ d{F). In particular, if

then d(E) = d(F).
This result is a direct corollary of Lemma 2. In this sense d(E) is independent of the

value of B. This same independence is to some extent exhibited in the result of
Theorem 4.

Finally, Theorem 3 is an immediate consequence of the more general Theorem 4.
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4. The range of values of d{E). We are concerned here with the evaluation of the
possible range of values of d(E). General Cantor sets may be classified as follows:
(a) the class of general Cantor sets with N = 1 (these are automatically spherical
Cantor sets); (b) the class of spherical Cantor sets with N ^ 2; and finally (c) the class of
remaining general Cantor sets. In this section we shall see that there are certain
distinct properties of d(E) associated with each class of general Cantor sets E. The
following two theorems are well known and are included here for the sake of
completeness.

THEOREM 5. Let N = 1 and suppose that a, 1 > a > 0, and a positive integer M > 2
are given. Then there exists a general Cantor set E with K = M and d(E) = a.

Proof. Choose A such that MA* — 1

then 31A < 1

and so we can find M disjoint closed subintervals A1;..., A.M of Ao = [0,1] each having
length A. Regarding this as a pattern (in the sense of Theorem 3) which generates a
general Cantor set E we see that d(E) = a.

In the notation of the above proof let A^ be the iV-fold Cartesian product of Ao with
itself and let Af,..., A^n be the Mn distinct sets of the form

Then regarding this as a pattern generating a general Cantor set F we see from
Theorem 3 that d{F) = Nd(E). This can be used to prove the following result.

THEOREM 6. Let N > 2 and a, 0 < a < N, be given. Then there exists a general Cantor
set E such that d(E) = a.

THEOREM 7. LetN ^ 2 and a, 0 < a < N, be given. Then there exists a spherical Cantor
set E such that d(E) = a.

Proof. Let C be a closed JV-dimensional cube of side one contained in S(0,1). We can
subdivide this cube into nN disjoint cubes, each of side (n+ I)"1 and each having its
faces parallel to those of the original cube. Now each of the smaller cubes contains a
sphere of radius %(n+ I)"1, i.e. we can find nN disjoint spheres

contained in 8(0,1). Regarding this as a pattern yielding a spherical Cantor set F we
see that

For any given a, 0 < a < N, choose n sufficiently large so that

Nlosn
N>l2(+l)>a-

Define 0, 0 < 6 < 1, bv -.—57^^—-a = at,
" Iog2(n+l)-log0
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and note that the pattern formed by <S(0,1) and the nN spheres 8(a,p 6/(2(n + 1))) yields
a spherical Cantor set E such that

N log n
d(E) =

Iog2(w+l)-log(9

= a.

The latter three theorems imply that for E in each class, d(E) can take any value in
the range 0 < d(E) < N. We next show that in all cases this is precisely the range of
values d(E) can take, i.e. the bounds 0 and N are the best possible in the general case
and are never attained. We remark here that we have already shown that for any
general Cantor set E, d(E) > 0 (Theorem 4, Corollary 1).

THEOREM 8. Let E be a general Cantor set with N = 1. Then

Proof. Since N = 1 it is immediate that

and so for any a, 0 < a < 1, we have

Applying Theorem 4 to the case
logK

a = logK-\og{l-B)
the upper bound follows.

The classical Cantor set has dimension log 2. (log 3)"1 and thus these bounds are best
possible.

THEOREM 9. Let N ^ 2 and let E be a general Cantor set. Then

0 < J g g ^ < d(E) < N-10^1 -<*/*/**>*} < N.
logJ v ' log 4

Proof. The proof is long and in essence consists of first representing E in a form in
which more information relating m^A^ f J to |A^ ^J is available. This information
is then used to deduce the required result.

Then clearly | J ^ . J = (1

and hence E = fl U
71 = 1 i , , . . . , i n = l

https://doi.org/10.1017/S0305004100039049 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004100039049


On the Hausdorff dimension of general Cantor sets 687

is a suitable representation for the general Cantor set E with the constant

* "2 + B

replacing the constant B of Definition 1 (iv). If xe A£i ^ then

= 8(x,\B* ^ . . . J ) , (ii)

and so y | Jf]... J * > m^I^J > y(\B*r IV-J* ^

where y is the .iV-dimensional measure of an iV-dimensional sphere of unit radius.
Since the sets f . . , , n , . , . . T^

are open and disjoint and since each of them has a non-empty intersection with Afi -in

it follows from the connectedness of Afi in that they do not cover A^ in. Hence there
exists a point y e &ilmmmin such that for any in+1 = 1,..., K

By (i) and (ii) it follows that

3 = 1

3 = 1
and so by (iii) m^/^...^){1 - (IB*)*}

Writing Q = 1 - (

we see that »»lV(4...i») > Q'1 S w^...*,,*)
>=i

and repeated apphcations of this inequality clearly yield

Q~n 2 TO^,...*,,) = 0(1) as 7 ^ 0 0 .
i1,...(in=l

Applying (iii) we see that

Q~n S IV.JA'=O(1) a s w ^°° -

From Definition 1 (iii) there exists a constant D such that

and so for any ft, 0 < /? < iV,

Thus from (iv), (Q-1^)71 £ |/£l...,-n|
jV-^ = 0(1) as n-+co,

i 1 l
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and so

providing

and this is so if

I t now follows that

which completes the

A.F.I
d(E)

Q

d(E) < N

proof of Theorem 9.

5EABX>

<N-,

$Afi,

logQ
log A'

log Q
log A

< N,

To summarize: in each of the three classes of general Cantor sets 0 and N are the
lower and upper bounds for the dimension and these bounds are the best possible in
the general case. We now show that provided that N ^ 2 a stronger result is true for
the class of spherical Cantor sets. Three lemmas are first proved.

LEMMA 3. Let N ^ 2 and define

FN(M) = supd(^)f

where E is a spherical Cantor set with K = M. Then FN{M) is unaltered if we add the
further restriction that E should be derived from a pattern in the sense of Theorem 3.

Proof. Define F%(M) = suVd(E),

where E, a spherical Cantor set with K = M, is derived from a pattern in the sense of
Theorem 3. Clearly, then, F%{M) ^ ^ ( J f ) _

Let E be a spherical Cantor set with K = M. Since all of the A^ ^ are spheres it is
geometrically evident that

and so we can define unique, positive numbers oc^ ^ satisfying

J
Now if fi>sup{a(l...tn}

then j ; 1* ,̂1' ^ IV.
and so, by Theorem 4, d(E) < /?,

and hence d(E) ^ sup{a^__-in}.

For each sequence i1;..., in we can regard the spheres

as a pattern yielding a spherical Cantor set Eti ^ of dimension a.^ ,-n. Thus

and so d(E) ^ F%(M).
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From this we deduce FN(M) ^ F%{M)

and hence FN(M) = F%(M).

This is the statement of Lemma 3.

We next show that the dimension of the spherical Cantor set is small whenever the
pattern is such that one of the subsets has a diameter close to that of the whole.

LEMMA 4. Let E be a spherical Cantor set derived from the pattern

8(0,1), 8(a1,r1),...,8(aK,rK)

and suppose that for somej (1 <j < K),

Then d{E) s= 1|.

Proof. Without loss of generality we take

Then for j = 2, ...,K we have r,- < 1 — rx.

Suppose that rx = 1 — e,

where 0 < e ^

Then for j = 2,..., K, r} < e.

K
Let a. be defined by 2 r? = 1

and^by {l-e)fi + (K-l)eP = 1.

Since r1=l—e, r}-< e (^=2,.. . ,

it follows that £ r? < (1 - e)a + (K - 1) ea

;=i
and thus a < ft.
Writing te = 1,

we see that ^— (*— 1)A = JST— 1.

Now by the Mean Value Theorem,

> K-\.
I t follows that a < ft < f as required.

LEMMA5. Zetf(S(l > S> 0)beaconstantandletthedisjointspheresS(ai,ri)(j=l,...,K)
be contained in 8(0,1) such that for eachj = 1,..., K, r^ ^ S. Then there exists a function of
S and K, say VS(K), such that

S if < V,(K) < 1.
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K
We remark that £ rf is, in this case, the ratio of the sum of the volumes of

S(ap Tj) (j = 1,..., K) to the whole volume of S(0,1). Further, if S is a function of K we
write V(K) for VS(K).

Proof. This is by induction on K and is trivial for K = 2. We assume the result for
K = 2,. . . , m and choose /im> 0 such that

Consider now m+l spheres satisfying the hypotheses of the lemma. Without loss
of generality we may assume r1 > r2 > , . . . > , rm ^ rm+1. Now if

rm+l ^ /*m

then »f+£

< 1- (i)
Alternatively, we have

0 <fim^r3-^S<l (.7=1,...,m+l). (ii)

For such collections of spheres we may regard each collection as representing a point
in some Euclidean space (taking the radii and the coordinates of the centres of the
spheres as the coordinates in the Euclidean space) and, if we allow the spheres to touch,
the set of points in the Euclidean space (corresponding to the collections of spheres
satisfying (ii) and the hypotheses of the lemma) is clearly compact. The function

m+l

defined on this set is continuous and hence attains its least upper bound which cannot
be one since this would imply the IV-dimensional measure of the m+l spheres equals
that of the sphere S(0,1). This together with (i) proves the lemma.

THEOREM 10. Let N ^ 2. Then if FN(M) is as defined in Lemma 3, FN(M) < N and
FN{M) -> N as M -> oo.

Thus if E is any spherical Cantor set with K as in Definition 1, then

d{E) < FN(K) < N.

Proof. Clearly FN(M) is a non-decreasing function of M and by Theorems 7 and 9

FN(M) ->N as M ~> oo.

I t thus suffices to prove FN(M) < N.
By Lemma 3 we may restrict our attention to spherical Cantor sets derived from a

pattern. There is no loss of generality in assuming this pattern to be of the form

8(0,1), SfarJ, .... S(aK,rK).

Further, Lemma 4 implies that we may assume
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and in this case Lemma 5 implies there exists a function V(K) < 1 such that

S tf < V(K) < 1.
3 = 1

In this case we need the following result.

L E M M A 6. Suppose that N ^ 2 and lete>0 be such that

? ( ,
3 = 1

Then £ rf > 1 - ife.
3 = 1

Proof. By the Mean Value Theorem

for some a;e (r,-, 1) and so 1 — r)

Thus 1 - S if = S if—(1 -rf)
3 = 1 3 = 1

^e S max{rf-Vf-e}
3 = 1

Theorem 3 and Lemma 6 together imply d{E) = N — e where F(JK") > 1 - Z e . Thus

K

Since f ^ N —

it follows that FN(K) **N-

and Theorem 10 is proved.

This latter result shows that for N greater than or equal to 2, spherical Cantor sets
can have dimension approximately equal to N only if K is correspondingly large.
Theorem 6, however, shows that there exist general Cantor sets with dimension
arbitrarily close to N and with K = 2N, i.e. K need not be correspondingly large.

5. The function dx(E). We end this paper with a short discussion of dx(E) regarded
as a function of x. We note that dx(E) is denned in (5) and the following results generalize
some of the work contained in that paper. We first prove a lemma.

LEMMA 7. Let E be a general Cantor set and let xeE. Then for all sufficiently small
positive e, there exist positive integers m and n such that

{x}c En A^...^ <= EnS{x,e) <= En Aii-#>f|n,
CO

where M = f) A, ,_.
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In'particular, dx(E) = lim d(E n A^ A ).

Proof. The existence of n follows from Lemma 1. Now if s1

for some positive constant B*. Thus if e is sufficiently small there exists a positive
integer m such that B*Am > e.

In this case, if y€E n S(x,e) then yeE n Aix ^

and so E n #(:£, e) c i? u Aii-<<im.
Lemma 7 is now proved.

Let E be a spherical Cantor set, F a spherical Cantor set with JV = 1, K = 2 and
suppose that 1? is derived from the system

{ V < » : n = 1'2'•••;*!.•••>•• = M }
and JF from the system

{Af l . . . < B :n=l>2, . . . ; t 1 , . . . > i n=l ,2}.
Then there exists a natural homeomorphism from E to F defined by x* -» a; where
x*eiS7, a;ei^and where „ „

{x}= n v . v (**}= n v .v
DEFINITION 3. In the above notation let f(x*) be a function defined on E such that

0 < f(x*) < 1 for x*eE. Then we say that F is equivalent to (E,f) if and only if for all
xeF> dx(F)=f(x*).

I t is easily shown from Lemma 7 and the definition ofdx(E) that if, for a fixed general
Cantor set F, we regard dx(F) as a function of x defined on the whole space then

\ims\npdy(F) = dx(F).

In particular, dx(F) is an upper semi-continuous function of x.

THEOREM 12. Let E be the classical Cantor set and letf(x*) be defined and continuous
on E and such that 0 < f(x*) < 1. Then there exists a general Cantor set F equivalent to

THEOREM 13. There exists a general Cantor set F such that dx(F) is discontinuous at a
point of F when regarded as a function with domain F.

Before proving these theorems we remark that it seems probable that for any
function/(x*) satisfying

(a) \imsupf(y*)=f{x*),

(b) f(x*) = 0 for all x*£E, and
(c) 0 < f{x*) < 1 for all x*eE

there exists a general Cantor set F with F equivalent to (E,f). This, however, seems
difficult to prove. We end with the proofs of Theorems 12 and 13.

https://doi.org/10.1017/S0305004100039049 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004100039049


On the Hausdorff dimension of. general Cantor sets 693

Proof (of Theorem 12). Since E is compact there exist constants m and M such that
forx*eE, . ,. „,. , r ,

0 < m «S /(a;*) ^ Jf < 1.
Define i f (i^ ...,*„) = sup {/(a;*): z* € E r, /ft ^J,

m{iv ...,in) = inf {/(**): ^ c ^ n ^ . . . * - }

-21og2fand o(t,... i ) = exp {̂ -

The continuity of f(x*) implies that if

n = l

then JJf (i^ ...,in) decreases to f(x*) and m{i^, ...,in) increases to f{x*) as %->co.
Further we note that .. . . ., n

and a(iv..in l) + a(i1...in2) ^ 21-<1™ < 1.

Thus we can construct a general Cantor set F with N = 1, if = 2 and such that

Consider now a fixed sequence {jn} with

By the monotonicity of M{ix,..., in) and of m(i1,..., in) we see that for a l l^ , . . . , im+1,

and so for the general Cantor set F n A^ 3n,

From Lemma 7 we deduce that (̂ (-F7) = /(a;*) as required.

COROLLARY ((5)). There exists a general Cantor set with the property that ifx,yeF and
x*y, then dx{F) * dv(F).

Proof (of Theorem 13). We shall construct such a set. Let o~n = ilt..., in denote the
sequence given by ix = i2 = i3 = , . . . , =in = 1. It is easily seen that we can construct
a general Cantor set, E, from {Afi in:n = 1,2, ...; iv ...,in= 1,2} which is such that

ii if i i = L

This defines the ratios |Aix fnln+J/|Ati ^1 for all choices of ilt ...,in+1. Note that for
any n,
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a n d

and so if {x} = fl A3l 3n,

where jj2... = arm2Sls2...,

then dx(E) =
log 5

log 2 if s1 = 2.
log 3

Clearly then, dx{E) when regarded as a function defined on E is discontinuous at the
point x0 where m

{XO} = fl Kn-
n=\
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