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Abstract

In this paper we study the allocation problem of relevations in coherent systems. The
optimal allocation strategies are obtained by implementing stochastic comparisons of
different policies according to the usual stochastic order and the hazard rate order. As
special cases of relevations, the load-sharing and minimal repair policies are further
investigated. Sufficient (and necessary) conditions are established for various stochastic
orderings. Numerical examples are also presented as illustrations.
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1. Introduction

As one of the most effective strategies, redundancy allocation is widely used in the area
of industrial engineering to improve the reliability of coherent systems. The basic concepts
used in reliability theory were introduced in the classical monograph by Barlow and Proschan
[2]. Redundancy allocations can be performed in different ways in practical scenarios such
as hot standby redundancy, cold standby redundancy, the load-sharing model, minimal repair,
(im)perfect repair, and so on.

On one hand, hot standby means putting a redundant component in parallel with the original
component of the system so that the two components work simultaneously. A large number of
researchers have carried out relevant studies of the allocation of hot standbys; see for example
[15], [16], [25], [33], [36], and [37]. However, as discussed in [28], the surviving component
under the hot standby policy will be subjected to greater working pressure when the other com-
ponent fails. As a result, the failure probability of the latter component may become greater,
which is called the load-sharing model in the literature. Relevant studies in this respect include
[13], [31], and [34].

On the other hand, cold standby means that after the initial component fails, a new redundant
unit is immediately adopted to replace the broken one, for which the intermediate replacement
time is negligible. The resulting lifetime can be treated as the convolution of the lifetimes of

Received 3 April 2020; revision received 10 March 2021.
∗ Postal address: College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China.
∗∗ Postal address: Department of Mathematics, Southern University of Science and Technology, Shenzhen 518055,
Guangdong, China. Email address: zhangyiying@outlook.com

© The Author(s), 2021. Published by Cambridge University Press on behalf of Applied Probability Trust.

1152

https://doi.org/10.1017/jpr.2021.23 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2021.23
https://orcid.org/0000-0002-2418-8859
https://orcid.org/0000-0003-2012-7204
https://orcid.org/0000-0001-9092-0000
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jpr.2021.23&domain=pdf
https://doi.org/10.1017/jpr.2021.23


Optimal allocation of relevations in coherent systems 1153

the original component and the cold redundancy. For comprehensive studies of the allocation
of cold standbys, interested readers may refer to [11], [22], [32], and [35]. However, it is usu-
ally difficult and/or expensive to replace a broken component with a new one. Instead, it may
be more appropriate and economical to repair it. In order to take the failed component back
to its previous working state, we can conduct a ‘relevation redundancy’ policy to replace the
broken component with a ‘new’ component that has the same age as the failed one. The oper-
ation of relevation was originally introduced by Krakowski [20], and it was further shown by
Baxter [4] that the relevation transform generates the non-homogeneous Poisson process. Later
on, Shanthikumar and Baxter [30] studied some closure properties of the relevation transform,
and Kapodistria and Psarrakos [18] constructed a sequence of a random variables with the
help of the relevation transform. Recently, Psarrakos and Di Crescenzo [24] and Di Crescenzo,
Kayal, and Toomaj [14] introduced a residual inaccuracy measure and a past inaccuracy mea-
sure based on the relevation transform, respectively. For other recent work on relevation in
reliability systems, interested readers may refer to [6], [23], and [26].

If the broken component is replaced with a new spare having the same lifetime distribution
as the failed one, it is called a perfect repair; see [12], [21], and [27]. However, in some
practical situations (e.g. warranty coverage, integrated-circuit panels in a television set, and
water pumps in a car), it might be more practical and more resource-saving to minimally repair
the failed units so as to bring them back to the working state immediately before failure. For
a more detailed study of the effect of minimal repair in reliability systems, one may refer to
[1], [3], [23], and [38]. It will be stated later that relevation redundancy includes the minimal
repair policy as a special case.

Consider a component with lifetime T and a redundancy having lifetime S, where T and S
have absolutely continuous survival functions F and G, respectively. Then T + S can be under-
stood as the aggregate lifetime of the original component and the cold standby redundancy,
and its survival function be expressed as

P(T + S > t) = F(t) +
∫ t

0
G(t − x)f (x) dx,

where f (·) is the probability density function of the random variable T . If the component with
lifetime T fails at time x > 0, and is immediately replaced by another new component with
lifetime S with the same age as the failed component, the reliability of the relevation transform
of T and S (denoted as T#S) is given by

P(T#S > t) = P(T + ST > t) = F(t) + G(t)
∫ t

0

f (x)

G(x)
dx,

where ST := [S − T | S > T] is the residual lifetime of S at the random time T . For more
discussions of relevation redundancy, interested readers can refer to [4], [26], and [30].

It is worth noting that relevation contains the well-known load-sharing and minimal repair
policies as two special cases.

(i) Load-sharing model. The operation of a parallel system sustains a time-dependent load,
which is shared by the surviving components. As time goes by, the components fail
to work one by one, and the remaining survival components will suffer an increasing
shared load. In this situation, the two-component parallel system is called the ‘load-
sharing model’ [5, 28]. As assumed in [34] and [39], the total load is usually unevenly
shared by the components. Inspired by their work, as displayed in Figure 1, we consider
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FIGURE 1: Load-sharing model.

a general load-sharing model with two components C1 and C2 sharing the total load
L(·) with respective proportions 1/α and 1 − 1/α, where α > 1. We adopt the linear
breakdown rule in [9], and assume that the total load L(·) can be regarded as a fictitious
system’s failure rate (see [28]). Then the lifetime of component C1 that shares the load
L(·)/α is denoted by TL/α with survival function

FTL/α (t) = exp

{
−

∫ t

0

L(x)

α
dx

}
, α > 1,

where L(x)/α is interpreted as the instantaneous failure rate of component C1 at time x
under the total load L(x). Furthermore, when one component (say C1) fails, the lifetime
of the other surviving component (say C2) functions continuously and bears the total
load L(·) with survival function

FTL (t) = exp

{
−

∫ t

0
L(x) dx

}
.

Therefore the survival function of the load-sharing model can be regarded as the releva-
tion of two components C1 and C2 with respective failure rates L(·)/α and L(·) ([7]). In
this regard, the survival function of the load-sharing model can be expressed as

P(TL/α#TL > t) = FTL/α (t) − FL(t)
∫ t

0

1

FL(x)
dFTL/α (x)

= α

α − 1
F

1/α

L (t) − 1

α − 1
FL(t), α > 1.

(ii) Minimal repair. Consider a minimal repair policy as shown in Figure 2, where the com-
ponent with lifetime T starts working first. When the component fails, the switch K
will be turned on immediately (the switching time is negligible) so that it is replaced
by another component with lifetime S having the same reliability function and same
age as T . That is, the component is ‘minimally repaired’ and brought to the working
state immediately before failure. Then the resulting reliability under a minimal repair
reads as

P(T + ST > t) = F(t) + F(t)
∫ t

0

f (x)

F(x)
dx = F(t) − F(t) ln F(t),

which is also a special case of relevation.
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FIGURE 2: Minimal repair.

Recently, Belzunce, Martínez-Riquelme, and Ruiz [7] considered the problem of where
to allocate one relevation in a coherent system in order to enhance system reliability in the
sense of the usual stochastic ordering. Sufficient conditions are established on the lifetimes
of the original components and the relevation by means of the usual stochastic ordering and
the hazard rate ordering. In particular, both the load-sharing model and minimal repair are
studied in detail. A natural interesting question arises: If we allocate more than one relevation
in a coherent system, what is the best allocation policy? The main objective of this paper is
to pinpoint the optimal allocation of a fixed number of relevations in coherent systems by
means of the hazard rate order and the usual stochastic order, which partially answers the
open problems proposed in [7]. Moreover, the special cases of the load-sharing model and the
minimal repair policy are investigated explicitly.

The remainder of the paper is organized as follows. In the remaining part of this section,
we provide some relevant definitions and concepts used below. In Section 2 we study the best
allocation policy of two relevations in series systems and establish sufficient (and necessary)
conditions for the hazard rate ordering among different allocation policies. Two special cases
including the load-sharing and minimal repair policies are also studied when we consider the
allocation of one relevation. Section 3 presents the results on optimal allocation of relevations
in coherent systems. Section 4 concludes the paper.

Throughout, we assume that all random variables are non-negative and absolutely con-

tinuous. We shall use ‘
sgn= ’ to express that both sides of the equality have the same sign,

and ‘dφ(t)/dt’ to denote the differentiation of φ(t) with respective to t. The terms ‘increas-
ing’ and ‘decreasing’ mean ‘non-decreasing’ and ‘non-increasing’, respectively. We denote
R= ( − ∞, ∞) and R+ = [0, ∞).

Stochastic orders are a very useful tool to compare random variables arising from reliability
theory, operations research, actuarial science, economics, finance, and so on. Let X and Y
be two random variables with distribution functions F(t) and G(t), survival functions F(t) =
1 − F(t) and G(t) = 1 − G(t), probability density functions f (t) and g(t), hazard rate functions
hX(t) = f (t)/F(t) and hY (t) = g(t)/G(t), and reversed hazard rate functions r̃X(t) = f (t)/F(t) and
r̃Y (t) = g(t)/G(t), respectively.

Definition 1. X is said to be smaller than Y in the

(i) usual stochastic order (denoted by X ≤st Y) if F(t) ≤ G(t) for all t ∈R,

(ii) hazard rate order (denoted by X ≤hr Y) if hX(t) ≥ hY (t) for all t ∈R, or equivalently if
G(t)/F(t) is increasing in t ∈R,

(iii) reversed hazard rate order (denoted by X ≤rh Y) if r̃X(t) ≤ r̃Y (t) for all t ∈R, or
equivalently if G(t)/F(t) is increasing in t ∈R.
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It is well known that the (reversed) hazard rate order implies the usual stochastic order, but
the reversed statement is not true in general. For more comprehensive discussions of various
stochastic orders and their applications, one may refer to the monographs by Shaked and
Shanthikumar [29] and Belzunce, Riquelme, and Mulero [8].

The notion totally positive of order 2 (TP2) plays a prominent role in building various
inequalities arising from many research areas. A pair of measurable non-negative real-valued
functions (g1, g2) are said to satisfy the TP2 property if g1(x1)g2(x2) ≥ g1(x2)g2(x1) for all
x1 ≤ x2.

The following lemma is helpful in building the main results.

Lemma 1. ([17].) Let (g1, g2) be a pair of non-negative functions satisfying the TP2 property.
Let Fθ be the survival function of the random variable Xθ , for θ = 1, 2. Suppose that Fθ (t) is
TP2 in (θ, t), and

∫ ∞
0 gi(t) dFθ (t) exists and is finite, for i = 1, 2 and θ = 1, 2. Further, suppose

that g1(t) is increasing in t. Then hi(θ ) = ∫ ∞
0 gi(t) dFθ (t) is TP2 in (i, θ ), that is,

∫ ∞

0
g1(t) dF1(t)

∫ ∞

0
g2(t) dF2(t) ≥

∫ ∞

0
g1(t) dF2(t)

∫ ∞

0
g2(t) dF1(t).

For detailed discussions of properties of TP2 and its applications, we refer interested readers
to [17] and [19].

2. Allocation of relevations in series systems

In this section we study optimal allocation of relevations for series systems in terms of the
usual stochastic order and the hazard rate order. Henceforth we assume that all components
and relevations are independent of each other.

2.1. Allocation of two relevations in series systems

First we provide a result for the usual stochastic ordering among different allocations of two
relevations in an n-component series system.

Theorem 1. Let T1, T2, . . . , Tn be the lifetimes of n components with survival functions
F1, F2, . . . , Fn, respectively, in a series system. Let S1 and S2 be the lifetimes of two
relevations with survival functions G1 and G2, respectively. Denote

V1 = min{T1#S1, T2#S2, T3, . . . , Tn}
and

V2 = min{T1#S2, T2#S1, T3, . . . , Tn}.
If T1 ≤hr T2 and S1 ≥hr S2, then V1 ≥st V2.

Proof. The survival functions of V1 and V2 can be expressed as

HV1 (t) =
n∏

l=3

Fl(t)

{(
F1(t) + G1(t)

∫ t

0

f1(u)

G1(u)
du

)(
F2(t) + G2(t)

∫ t

0

f2(u)

G2(u)
du

)}

and

HV2 (t) =
n∏

l=3

Fl(t)

{(
F1(t) + G2(t)

∫ t

0

f1(u)

G2(u)
du

)(
F2(t) + G1(t)

∫ t

0

f2(u)

G1(u)
du

)}
,
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respectively. Observe that

HV1 (t) − HV2 (t)

sgn=
(

F1(t) + G1(t)
∫ t

0

f1(u)

G1(u)
du

)(
F2(t) + G2(t)

∫ t

0

f2(u)

G2(u)
du

)

−
(

F1(t) + G2(t)
∫ t

0

f1(u)

G2(u)
du

)(
F2(t) + G1(t)

∫ t

0

f2(u)

G1(u)
du

)

= F1(t)F2(t) + F1(t)G2(t)
∫ t

0

f2(u)

G2(u)
du + F2(t)G1(t)

∫ t

0

f1(u)

G1(u)
du

+ G1(t)G2(t)
∫ t

0

f1(u)

G1(u)
du

∫ t

0

f2(u)

G2(u)
du

−
(

F1(t)F2(t) + F1(t)G1(t)
∫ t

0

f2(u)

G1(u)
du + F2(t)G2(t)

∫ t

0

f1(u)

G2(u)
du

+ G1(t)G2(t)
∫ t

0

f1(u)

G2(u)
du

∫ t

0

f2(u)

G1(u)
du

)

=
∫ t

0
F1(t)f2(u)

[
G2(t)

G2(u)
− G1(t)

G1(u)

]
du +

∫ t

0
F2(t)f1(u)

[
G1(t)

G1(u)
− G2(t)

G2(u)

]
du

+ G1(t)G2(t)

[∫ t

0

f1(u)

G1(u)
du

∫ t

0

f2(u)

G2(u)
du −

∫ t

0

f1(u)

G2(u)
du

∫ t

0

f2(u)

G1(u)
du

]

=
∫ t

0

[
F2(t)f1(u) − F1(t)f2(u)

][ G1(t)

G1(u)
− G2(t)

G2(u)

]
du

+ G1(t)G2(t)

[∫ t

0

f1(u)

G1(u)
du

∫ t

0

f2(u)

G2(u)
du −

∫ t

0

f1(u)

G2(u)
du

∫ t

0

f2(u)

G1(u)
du

]

=: φ1(t) + φ2(t),

where

φ1(t) =
∫ t

0

[
F2(t)f1(u) − F1(t)f2(u)

][ G1(t)

G1(u)
− G2(t)

G2(u)

]
du

and

φ2(t) = G1(t)G2(t)

[∫ t

0

f1(u)

G1(u)
du

∫ t

0

f2(u)

G2(u)
du −

∫ t

0

f1(u)

G2(u)
du

∫ t

0

f2(u)

G1(u)
du

]
.

Note that T1 ≤hr T2 implies F2(t)f1(u) − F1(t)f2(u) ≥ 0 for all 0 ≤ u ≤ t. On the other hand,
S1 ≥hr S2 is equivalent to

G1(t)

G2(t)
≥ G1(u)

G2(u)
for all 0 ≤ u ≤ t,

that is,
G1(t)

G1(u)
− G2(t)

G2(u)

is also non-negative, for all 0 ≤ u ≤ t. Hence φ1(t) is non-negative for all t ∈R+.
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Observe that

φ2(t)
sgn=

∫ t

0

f1(u)

G1(u)
du

∫ t

0

f2(u)

G2(u)
du −

∫ t

0

f1(u)

G2(u)
du

∫ t

0

f2(u)

G1(u)
du.

According to S1 ≥hr S2, we have

1

G1(x)G2(y)
− 1

G1(y)G2(x)
= G1(y)G2(x) − G1(x)G2(y)

G1(x)G2(y)G1(y)G2(x)
≥ 0 for x ≤ y,

from which it follows that (1/G1, 1/G2) is a pair of non-negative functions satisfying the TP2
property. Further, T1 ≤hr T2 implies that the survival function of Fθ (t) is TP2 in (θ, t). Since
1/G1(t) is increasing for t ∈R+, according to Lemma 1 we know that φ2(t) is non-negative for
all t ∈R+. To sum up, for all t ∈R+,

HV1 (t) − HV2 (t) = φ1(t) + φ2(t) ≥ 0,

and thus the proof is completed. �
The following numerical example illustrates Theorem 1.

Example 1. Consider allocating two relevations in a series system with two independent
components. Assume that T1 and T2 have respective survival functions

F1(t) = exp

{
−

∫ t

0
(3x2 + 3x + 5) dx

}
, F2(t) = exp

{
−

∫ t

0
(3x2 + 2x + 2) dx

}
,

and S1 and S2 have responding survival functions

G1(t) = exp

{
−

∫ t

0
(5x2 + 2x + 1) dx

}
, G2(t) = exp

{
−

∫ t

0
(5x2 + 4x + 3) dx

}
.

It is obvious that both F2(t)/F1(t) = et2/2+3t and G1(t)/G2(t) = et2+2t are increasing in t ∈R+.
From Figure 3(a) we can see that the difference of survival functions HV1 (t) − HV2 (t) is always
non-negative for all t = − ln u and u ∈ [0, 1]. Thus the relevation with lifetime S1 should be
moved to the location of the component with lifetime T1, which is in accordance with the
usual stochastic ordering result of Theorem 1. However, the hazard rate functions hV1 (t) and
hV2 (t) intersect, as shown in Figure 3(b), which indicates that the hazard rate ordering does not
hold between V1 and V2.

Remark 1. For a series system with components having ordered lifetimes T1 ≤hr T2 ≤hr

· · · ≤hr Tn, and two relevations with lifetimes such that S1 ≥hr S2, Theorem 1 states that the
relevation with smaller failure rate should be put on the worst component (having largest fail-
ure rate) in order to improve system reliability in the sense of the usual stochastic ordering.
This finding agrees with the classical allocation results of hot standbys, cold standbys, and
minimal repairs; see for example [10], [35], and [38]. It might be of great interest to relax the
assumptions in Theorem 1 when one considers the load-sharing model or the minimal repair
policy. We leave them as open problems.

Let π = (π1, π2, . . . , πn) be a permutation of {1, 2, . . . , n}, π+ = {1, 2, . . . , n}, and π− =
{n, n − 1, . . . , 1}. Consider a series system with n components having respective lifetimes

https://doi.org/10.1017/jpr.2021.23 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2021.23


Optimal allocation of relevations in coherent systems 1159

FIGURE 3: (a) Plot of the difference function HV1 ( − ln u) − HV2 ( − ln u) for u ∈ [0, 1]. (b) Plot of the
hazard rate functions hV1 (t) and hV2 (t) for t ∈ [0, 3].

T1, T2, . . . , Tn, which are allocated n relevations with lifetimes S1, S2, . . . , Sn. Assume that
each component is only allocated by one relevation, hence there exist n! different relevation
policies. Let T#Sπ = (T1#Sπ1 , T1#Sπ2 , . . . , T1#Sπn ) be the lifetime of the resulting compo-
nents under the allocation policy that the relevation with lifetime Sπi is allocated to the
component with lifetime Ti, i = 1, 2, . . . , n. The following corollary immediately follows from
Theorem 1.

Corollary 1. If T1 ≤hr T2 ≤hr · · · ≤hr Tn and S1 ≥hr S2 ≥hr · · · ≥hr Sn, then

T#Sπ− ≤st T#Sπ ≤st T#Sπ+ ,

that is, T#Sπ+ is the best allocation policy, and T#Sπ− is the worst allocation policy within
the class of all admissible allocations, where

T#Sπ+ = min{T1#S1, T2#S2, . . . , Tn−1#Sn−1, Tn#Sn}

and

T#Sπ− = min{T1#Sn, T2#Sn−1, . . . , Tn−1#S2, Tn#S1}.
Proof. Note that the lexicographic permutation order starts from the identity permutation

π+ = (1, 2, . . . , n). By successively swapping only two numbers we obtain all possible per-
mutations, that is, the vector π can be obtained by successively exchanging two coordinates of
π+ for finite times. The last permutation in lexicographic order will be the permutation with
all numbers in reversed order, i.e. π− = (n, n − 1, . . . , 2, 1). Then the result can be obtained
immediately from Theorem 1. �

2.2. Allocation of one relevation in series systems: load-sharing model

Next we investigate the sufficient and necessary conditions for the usual stochastic ordering
and the hazard rate ordering under the load-sharing model.

For the sake of convenience, let us define

γTi(t) = α − F
1−1/α

i (t)

hi(t)
for i = 1, 2,
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where Fi(t) and hi(t) are the survival function and the hazard rate function, respectively, of
random variable Ti.

Theorem 2. Let T1, T2, . . . , Tn be the lifetimes of n components with survival functions
F1, F2, . . . , Fn, respectively, in a series system. The load-sharing model of the com-
ponent with lifetime Ti is denoted by Ti,L/α#Ti, for i = 1, 2 and α > 1. Denote U1 =
min{T1,L/α#T1, T2, . . . , Tn} and U2 = min{T1, T2,L/α#T2, . . . , Tn}. Then

(i) U1 ≥st U2 if and only if T1 ≤st T2,

(ii) U1 ≥hr U2 if and only if γT1 (t) ≤ γT2 (t) for all t ∈R+.

Proof. (i) Let HU1 (t) and HU2 (t) denote the survival functions of the load-sharing policies U1
and U2, respectively. Then

HU1 (t) =
n∏

l=3

Fl(t)

{(
α

α − 1
F

1/α

1 (t) − 1

α − 1
F1(t)

)
F2(t)

}

and

HU2 (t) =
n∏

l=3

Fl(t)

{(
α

α − 1
F2

1/α
(t) − 1

α − 1
F2(t)

)
F1(t)

}
.

It is obvious that, for α > 1,

φ3(t) := HU1 (t) − HU2 (t)

sgn= F2(t)

(
α

α − 1
F

1/α

1 (t) − 1

α − 1
F1(t)

)
− F1(t)

(
α

α − 1
F

1/α

2 (t) − 1

α − 1
F2(t)

)

= α

α − 1
F1(t)F2(t)(F

1/α−1
1 (t) − F

1/α−1
2 (t))

is non-negative if and only if F1(t) ≤ F2(t) for all t ∈R+. Hence the proof is completed.
(ii) The desired result is equivalent to proving the increasing monotonicity of the function

φ4(t) := HU1 (t)

HU2 (t)
=

(
α

α−1 F1
1/α

(t) − 1
α−1 F1(t)

)
F2(t)(

α
α−1 F2

1/α
(t) − 1

α−1 F2(t)
)
F1(t)

=
(

α
α−1 F1

1/α−1
(t) − 1

α−1

)
F1(t)F2(t)(

α
α−1 F2

1/α−1
(t) − 1

α−1

)
F2(t)F1(t)

= αF1
1/α−1

(t) − 1

αF2
1/α−1

(t) − 1
.

Note that
dφ4(t)

dt
sgn= (α − 1)h1(t)F1

1/α−1
(t)(αF2

1/α−1
(t) − 1)

− (α − 1)h2(t)F2
1/α−1

(t)(αF1
1/α−1

(t) − 1)

sgn= h1(t)F1
1/α−1

(t)(αF2
1/α−1

(t) − 1) − h2(t)F2
1/α−1

(t)(αF1
1/α−1

(t) − 1),

where hi(t) = fi(t)/Fi(t) is the hazard rate function of Ti, for i = 1, 2. The non-negativity of
dφ4(t)/dt is equivalent to

h1(t)F1
1/α−1

(t)
(
αF2

1/α−1
(t) − 1

) ≥ h2(t)F2
1/α−1

(t)
(
αF1

1/α−1
(t) − 1

)
,
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FIGURE 4: Plots of the difference functions γT1 ( − ln u) − γT2 ( − ln u) and hT1 ( − ln u) − hT2 ( − ln u) for
u ∈ [0, 1].

that is,

α − F2
1−1/α

(t)

h2(t)
≥ α − F1

1−1/α
(t)

h1(t)
.

It is clear that dφ4(t)/dt ≥ 0 is equivalent to U1 ≥hr U2, which holds if and only if γT1 (t) ≤
γT2 (t), for all t ∈R+. �
Remark 2. Theorem 2(i) extends the result of Lemma 3 of [7] to the case of the general load-
sharing model. Further, Theorem 2(ii) established sufficient and necessary conditions for the
hazard rate ordering.

It is natural to ask whether the assumption in Theorem 2(ii) implies or can be implied by
the hazard rate order. The following numerical example provides a negative answer.

Example 2. Assume that T1 and T2 have survival functions F1(t) = e−(t/β1)λ1 and F2(t) =
e−(t/β2)λ2 , respectively, for t ∈R+.

(i) Setting λ1 = 8, β1 = 2, λ2 = 3, and β2 = 1, from Figures 4(a) and 4(b) we see that
the difference function γT1 (t) − γT2 (t) is always non-negative; however, the difference
function hT1 (t) − hT2 (t) crosses at the line y = 0, for t = − ln u and u ∈ [0, 1]. Hence
γT1 (t) ≥ γT2 (t) implies neither T1 ≥hr T2 nor T1 ≤hr T2.
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FIGURE 5: (a) Plot of the difference function γT1 ( − ln u) − γT2 ( − ln u) for all u ∈ [0, 1]. (b) Plot of
the difference function hU1 ( − ln u) − hU2 ( − ln u) for all u ∈ [0, 1]. (c) Plot of the difference function

r̃U1 (t) − r̃U2 (t) for t ∈ [0, 1].

(ii) Taking λ1 = 12, β1 = 1, λ2 = 8, and β2 = 2, Figures 4(c) and 4(d) show that the dif-
ference function hT1 (t) − hT2 (t) is always non-negative for all t = − ln u and u ∈ [0, 1],
while the difference function γT1 (t) − γT2 (t) crosses at the line y = 0, for t = − ln u and
u ∈ [0.4, 0.88]. Thus T1 ≤hr T2 implies neither γT1 (t) ≥ γT2 (t) nor γT1 (t) ≤ γT2 (t).

Therefore it follows from (i) and (ii) that the condition γT1 (t) ≤ γT2 (t) for all t ∈R+ does not
imply or is not implied by T1 ≤hr T2.

The next example not only illustrates the result of Theorem 2 but also indicates that the
reversed hazard rate ordering does not hold in general under the same assumption.

Example 3. Consider the load-sharing model in a series system with two independent
components. Assume that the survival functions of T1 and T2 are

F1(t) = exp

{
−

∫ t

0
(5x2 + 17x + 1) dx

}
and F2(t) = exp

{
−

∫ t

0
(2x2 + 5x) dx

}
,

respectively, for t ∈R+.

(i) The difference functions γT1 (t) − γT2 (t) and hU1 (t) − hU2 (t) are plotted in Figures 5(a)
and 5(b) for t = − ln u and u ∈ [0, 1], from which we can see that both differ-
ence functions are always non-positive, which is in accordance with the result of
Theorem 2.
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(ii) A natural question arises: Does the reversed hazard rate ordering hold in the setting of
Theorem 2? Let r̃Ui(t) be the reversed hazard rate function of Ui, for i = 1, 2. However,
in the same set-up as (i), the difference function r̃U1 (t) − r̃U2 (t) intersects at the line
y = 0, as displayed in Figure 5(c), which implies that U1 �rh U2 and U1 �rh U2.

2.3. Allocation of one relevation in series systems: minimal repair

This subsection studies the allocation of one minimal repair in an n-component series sys-
tem by stochastically optimizing the resulting lifetime by means of the hazard rate order. For
the sake of convenience, let us define

βTi(t) = hi(t)

1 − ln Fi(t)
for i = 1, 2,

where Fi and hi, respectively, are the survival function and the hazard rate function of Ti for
i = 1, 2.

Theorem 3. Let T1, T2, . . . , Tn be the lifetimes of n components with survival functions
F1, F2, . . . , Fn, respectively, in a series system. Let S1, S2 be the lifetimes of two mini-
mal repairs with survival functions F1 and F2. Denote M1 = min{T1#S1, T2, T3, . . . , Tn} and
M2 = min{T1, T2#S2, T3, . . . , Tn}. Then M1 ≥hr M2 if and only if βT1 (t) ≥ βT2 (t) for all t ∈R+.

Proof. The survival functions of M1 and M2 can be expressed as

HM1 (t) =
n∏

l=3

Fl(t)

{
F2(t)F1(t)

(
1 +

∫ t

0

f1(u)

F1(u)
du

)}

and

HM2 (t) =
n∏

l=3

Fl(t)

{
F2(t)F1(t)

(
1 +

∫ t

0

f2(u)

F2(u)
du

)}
,

respectively. The desired result boils down to proving the increasing monotonicity of

φ5(t) := HM1 (t)

HM2 (t)
= 1 − ln F1(t)

1 − ln F2(t)
.

Observe that

dφ5(t)

dt
sgn= f1(t)

F1(t)
(1 − ln F2(t)) − f2(t)

F2(t)
(1 − ln F1(t))

= h1(t)(1 − ln F2(t)) − h2(t)(1 − ln F1(t)).

Thus the non-negativity of dφ5(t)/dt is equivalent to βT1 (t) ≥ βT2 (t) for all t ∈R+, which
implies the desired result. �
Remark 3. Theorem 3 provides a sufficient and necessary condition for the optimal allocation
of a minimal repair in a series system with respect to the hazard rate order, which serves as a
nice complement to the usual stochastic ordering result of Lemma 2 in [7].
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FIGURE 6: (a) Plot of the difference function βT1 ( − ln u) − βT2 ( − ln u) for all u ∈ [0, 1]. (b) Plot of the
ratio function HM1 ( − ln u)/HM2 ( − ln u) for all u ∈ [0, 1].

One may wonder whether the reversed hazard rate ordering holds in the set-up of
Theorem 3. Unfortunately, the following numerical example gives us a negative answer.

Example 4. Suppose a series system is made up of two components with lifetimes T1 and T2
having reliability functions

F1(t) = exp

{
−

∫ t

0
(2x3 + 5x) dx

}
and F2(t) = exp

{
−

(
t

8

)6}
,

respectively. Denote ϕ(t) = HM1 (t)/HM2 (t). Although the difference function βT1 (t) − βT2 (t) is
always non-negative in Figure 6(a), for t = − ln u and u ∈ [0, 1], the ratio function ϕ(t) is not
strictly monotone in t = − ln u for u ∈ [0, 1], as shown in Figure 6(b), which indicates that
βT1 (t) ≥ βT2 (t) for t ∈R+ implies neither M1 ≥rh M2 nor M1 ≤rh M2.

For a parallel system consisting of n independent components, we can develop ordering
results similar to those of Theorems 2 and 3 for the load-sharing and minimal repair policies.
Define

δTi(t) = r̃i(t)

1 + ln Fi(t)
, i = 1, 2,

where Fi and r̃i, respectively, are the survival function and the reversed hazard rate function of
random variable Ti.

Proposition 1. Consider a parallel system consisting of n independent components with life-
times T1, T2, . . . , Tn. Let Ti,L/α#Ti, for i = 1, 2, denote the lifetime in a load-sharing model
for the component with lifetime Ti. Let

Ũ1 = max{T1,L/α#T1, T2, T3, . . . , Tn} and Ũ2 = max{T1, T2,L/α#T2, T3, . . . , Tn}.
Then Ũ1 ≤st Ũ2 if and only if T1 ≤st T2.

Proposition 2. Let T1, T2, . . . , Tn be the lifetimes of n components with survival functions
F1, F2, . . . , Fn, respectively, in a parallel system. Let S1, S2 be the lifetimes corresponding to
two minimal repairs with survival functions F1 and F2. Let

M̃1 = max{T1#S1, T2, T3 . . . , Tn} and M̃2 = max{T1, T2#S2, T3 . . . , Tn}.
Then M̃1 ≤rh M̃2 if and only if δT1 (t) ≥ δT2 (t) for all t ∈R+.
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FIGURE 7: Bridge system.

3. Allocation of relevations in coherent systems

In this section we extend the results developed in the previous sections to the case of
coherent systems. Let us consider a coherent system made up of n components with life-
times T1, T2, . . . , Tn, structure function �, and all minimal path sets P1, P2, . . . , Pk, where
1 ≤ k ≤ n. According to [2], the lifetime of this coherent system can be expressed as

τ = max
1≤j≤k

{
min
i∈Pj

Ti

}
.

For example, the bridge system (see Figure 7) has minimal path sets P1 = {1, 4}, P2 = {1, 3, 5},
P3 = {2, 5}, and P4 = {2, 3, 4}, which is commonly used in reliability engineering. Then the
lifetime of this system can be written as

τ = max{min{T1, T4}, min{T1, T3, T5}, min{T2, T5}, min{T2, T3, T4}}.
For two components located in a common minimal path of a coherent system, the following

result establishes the optimal allocation of two relevations in a coherent system in terms of the
minimal path sets.

Theorem 4. For a coherent system with structure function �, let P1, P2, . . . , Pk be its minimal
path sets. Consider two locations i, j ∈ {1, 2, . . . , n} such that i < j, and either {i, j} ⊆ Pl or
{i, j} ∩ Pl = ∅, for any l = 1, . . . , k. For some minimal path set Pr such that {i, j} ⊆ Pr, we
denote the resulting system lifetimes by τ1 and τ2 under two different allocation policies

T1, . . . , Ti−1, Ti#S1, Ti+1, . . . , Tj−1, Tj#S2, Tj+1 . . . , Tn

and
T1, . . . , Ti−1, Ti#S2, Ti+1, . . . , Tj−1, Tj#S1, Tj+1, . . . , Tn,

respectively. If Ti ≤hr Tj and S1 ≥hr S2, then τ1 ≥st τ2.

Proof. The idea of the proof is borrowed from Theorem 1 of [7]. Let V1 = min{Ti#S1, Tj#S2}
and V2 = min{Ti#S2, Tj#S1}. Then, for some minimal path set Pl such that {i, j} ⊆ Pl, we have

τ1 = min

{
min

m∈Pl,m
=i,j
{Tm}, Ti#S1, Tj#S2

}
= min

{
min

m∈Pl,m
=i,j
{Tm}, V1

}

and

τ2 = min

{
min

m∈Pl,m
=i,j
{Tm}, Ti#S2, Tj#S1

}
= min

{
min

m∈Pl,m
=i,j
{Tm}, V2

}
.
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By applying Theorem 1, we obtain that V1 ≥st V2, which further implies that τ1 ≥st τ2. �

Next we present a numerical example to illustrate Theorem 4.

Example 5. Consider a bridge system with components having lifetimes Ti, and let Fi be their
survival functions, for i = 1, . . . , 5. Assume that

F1(t) = exp

{
−

∫ t

0
(5x + 4) dx

}
, F2(t) = exp

{
−

∫ t

0
(4x + 2) dx

}
,

F3(t) = exp

{
−

∫ t

0
(3x + 1) dx

}
, F4(t) = exp

{
−

∫ t

0
(2x + 0.4) dx

}
,

F5(t) = exp

{
−

∫ t

0
(x + 0.1) dx

}
.

Assume that S1 and S2 have survival functions

G1(t) = exp

{
−

∫ t

0
(3x + 3) dx

}
, G2(t) = exp

{
−

∫ t

0
(7x + 5) dx

}
,

respectively. If we allocate two relevations to the minimal path set P4 = {2, 3, 4}, then there
are six possible strategies with the resulting reliability functions

H1(t) = 1 − [1 − F1(t)F4(t)][1 − F1(t)HT3#S2 (t)F5(t)][1 − HT2#S1 (t)F5(t)]

× [1 − HT2#S1 (t)HT3#S2 (t)F4(t)],

H2(t) = 1 − [1 − F1(t)F4(t)][1 − F1(t)HT3#S1 (t)F5(t)][1 − HT2#S2 (t)F5(t)]

× [1 − HT2#S2 (t)HT3#S1 (t)F4(t)],

H3(t) = 1 − [1 − F1(t)HT4#S2 (t)][1 − F1(t)F3(t)F5(t)][1 − HT2#S1 (t)F5(t)]

× [1 − HT2#S1 (t)HT4#S2 (t)F3(t)],

H4(t) = 1 − [1 − F1(t)HT4#S1 (t)][1 − F1(t)F3(t)F5(t)][1 − HT2#S2 (t)F5(t)]

× [1 − HT2#S2 (t)HT4#S1 (t)F3(t)],

H5(t) = 1 − [1 − F1(t)HT4#S2 (t)][1 − F1(t)HT3#S1 (t)F5(t)][1 − F2(t)F5(t)]

× [1 − HT3#S1 (t)HT4#S2 (t)F2(t)],

H6(t) = 1 − [1 − F1(t)HT4#S1 (t)][1 − F1(t)HT3#S2 (t)F5(t)][1 − F2(t)F5(t)]

× [1 − HT3#S2 (t)HT4#S1 (t)F2(t)].

From the plots in Figures 8(a) and 8(b) we can see that T1 ≤hr T2 ≤hr T3 ≤hr T4 ≤hr T5
and S1 ≥hr S2. Meanwhile, Figure 8(c) plots the difference functions Hi(t) − Hi+1(t), for
i = 1, 3, 5, where t = − ln u and u ∈ [0, 1], from which it is clear that all difference functions
are non-negative. Thus the relevation redundancy should be put to the node having the weakest
component with lifetime T2 within the minimal path set P4 = {2, 3, 4}, which is in accordance
with the theoretical result of Theorem 4.
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FIGURE 8: (a) Plots of the difference function hTi ( − ln u) − hTi+1 ( − ln u) for i = 1, . . . , 4 and u ∈ [0, 1].
(b) Plot of the difference function hS2 ( − ln u) − hS1 ( − ln u) and u ∈ [0, 1]. (c) Plots of the difference

function Hi( − ln u) − Hi+1( − ln u) for i = 1, 3, 5 and u ∈ [0, 1].

For the case of load-sharing and minimal repair policies, the following results can be
obtained directly from Theorems 2 and 3 for coherent systems.

Proposition 3. In the set-up of Theorem 4, let τ1 and τ2 be the resulting system lifetimes with
common structure function � under two different load-sharing models

T1, . . . , Ti−1, Ti,L/α#Ti, Ti+1, . . . , Tj, . . . , Tn

and

T1, . . . , Ti, . . . , Tj−1, Tj,L/α#Tj, Tj+1, . . . , Tn,

respectively. Then the condition γTi(t) ≤ γTj(t) for all t ∈R+ implies that τ1 ≥hr τ2.

Proposition 4. In the set-up of Theorem 4, let τ1 and τ2 be the resulting system lifetimes with
common structure function � under two different minimal repair policies

T1, . . . , Ti−1, Ti#S1, Ti+1, . . . , Tj−1, Tj, Tj+1 . . . , Tn

and

T1, . . . , Ti−1, Ti, Ti+1, . . . , Tj−1, Tj#S2, Tj+1, . . . , Tn,

respectively. Then the condition βTi (t) ≥ βTj(t) for all t ∈R+ implies that τ1 ≥hr τ2.
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4. Conclusion

In this work we have studied the allocations of relevations in coherent systems. In particular,
we have studied the problem of allocating one or two relevations to improve the reliabilities of
series systems in the sense of the usual stochastic ordering and the hazard rate ordering. These
results are further generalized to the case of coherent systems. Further research might focus
on the study of allocations of more than two relevations in coherent systems with dependent
components. Another problem of interest is to generalize Theorem 4 when the components
belong to two different disjoint sets, as mentioned in [7].
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