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We study the homogeneous isotropic turbulence of a shear-thinning fluid modelled by
the Carreau model, and show how the variable viscosity affects the multiscale behaviour
of the turbulent flow. We show that Kolmogorov theory can be extended to such non-
Newtonian fluids, provided that the correct choice of average is taken when defining
the mean Kolmogorov scale and dissipation rate, to properly capture the effect of the
variable viscosity. Thus the classical phenomenology a la Kolmogorov can be observed
in the inertial range of scale, with the energy spectra decaying as k—>/3, with k being the
wavenumber, and the third-order structure function obeying the 4/5 law. The changing
viscosity instead strongly alters the small scale of turbulence, leading to an enhanced
intermittent behaviour of the velocity field.
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1. Introduction

Turbulence is a state of erratic, chaotic and unpredictable fluid motion at very high
Reynolds numbers — the ratio of the fluid’s inertial forces to its viscous forces (Frisch 1995;
Pope 2001). Statistically stationary, homogeneous and isotropic turbulent flows represent
the most basic example of the fundamental problem of turbulence, where the statistical
characteristics of velocity fluctuations can be probed (Ishihara, Gotoh & Kaneda 2009).
Typically, energy is injected into the flow at large length scales, whereas viscous processes
play a significant role in dissipating energy from the flow at the small scales (Alexakis
& Biferale 2018). Scaling exponents are universal in the intermediate range of scales,
meaning that they are independent of the turbulence generation process, with the energy
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spectra decaying as k /3, with k being the wavenumber, as predicted by Kolmogorov’s
dimensional arguments (Kolmogorov 1941).

Both in nature and in industry, turbulent flows are frequently multiphase, meaning that
they are packed with particles, they may consist of fluid mixes or contain additives like
polymers, and complex dynamics can arise, such as fluid elasticity (Benzi & Ching 2018),
yield stress (Balmforth, Frigaard & Ovarlez 2014) or shear-dependent viscosity (Larson
& Desai 2015). In recent years, a lot of research has been done on fluids that include
long-chain polymers, since adding high molecular weight polymers to a turbulent pipe
flow at small concentrations can significantly lower the drag (White & Mungal 2008).
Fluid elasticity can also lead to flow instabilities (Shagfeh 1996) and turbulence (Steinberg
2021), even at very small Reynolds numbers. The disordered fluid motion that results
from elastic instabilities at low or vanishing Reynolds numbers exhibits characteristics
resembling those of classical Newtonian turbulence, such as a power-law scaling in the
velocity spectrum, and intermittency (Datta et al. 2022; Singh et al. 2024). At all Reynolds
numbers, however, the energy cascade from large to small scales is significantly altered
by the presence of polymers, with the turbulent kinetic energy spectrum exhibiting a
multiscale behaviour (Valente, Da Silva & Pinho 2014; Rosti, Perlekar & Mitra 2023),
and the cascade process being altered not only quantitatively but also qualitatively, thus
strongly departing from Kolmogorov theory.

A less studied effect of polymers is to provide a shear-dependent viscosity, i.e. with
a nonlinear relation between the shear stress and the shear rate, which is often difficult
to decouple from the fluid elasticity. When the shear stress increases more than linearly
with the shear rate, the fluid is called dilatant or shear-thickening, whereas in the case of
the opposite behaviour, i.e. when the shear stress increases less than linearly with the
shear rate, the fluid is called pseudo-plastic or shear-thinning. In this work, we focus
on fluids whose rheological response does not depend explicitly on time, but depends
only on the present shear rate, often called generalised Newtonian fluids (Bird 1976).
Recent results (Rosti er al. 2023; Soligo & Rosti 2023; Amor et al. 2024) have shown
a decay of the energy spectrum of such fluids similar to that predicted by Kolmogorov
for Newtonian fluids, but a clear understanding is still missing, as well as a theory to
explain this behaviour, which are the focus of the present work. Thus after introducing the
governing equation, the fluid model and the set-up considered in § 2, we analyse the results
obtained by direct numerical simulations in § 3, and summarise our findings in § 4.

2. Methodology

We consider an incompressible three-dimensional turbulent flow field, governed by the
generalised Navier—Stokes equations. In an inertial, Cartesian frame of reference, the
equations of momentum and mass conservation for the incompressible flow read as

ou;  duju; a 02 ou;
,0<£+ u’u/>:__p+ﬁ+pfiT and &=0, (2.1
ot 3Xj

0x; 0x;j 0X;
where u; is the fluid velocity field, p is the pressure, S;; = (1/2)(du;/dx; + du;/0x;)
1s the strain rate tensor, fiT is the force used to sustain the turbulent flow, and p and
wn are the density and dynamic viscosity of the fluid (being their ratio v=pu/p, the
kinematic viscosity). Note that we are using the Einstein sum rule for repeated indices.
The forcing is used to generate and sustain a fully turbulent flow with quasi-homogeneous,
isotropic and stationary statistics; in particular, turbulence is sustained using the Arnold—
Beltrami—Childress (ABC) cellular-flow forcing, which is a combination of sinusoids with
wavelength equal to the domain size and amplitude F7, kept the same for all cases.
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Figure 1. (a) Fluid viscosity as a function of the shear rate. (b) Probability density function (PDF) of the fluid
viscosity (main) and shear rate (inset) in the turbulent flows. The dark grey, blue and brown colours distinguish
the different power indices n = 1, 0.7 and 0.4, respectively. The solid, dashed and dotted lines distinguish the
different Reynolds numbers Re, ~ 300, 200 and 100. The circles show the case with o = 0, while the cyan
and gold triangles indicate the case with different C and n = 0.7 and 0.4.

The equations of motion are solved in a triperiodic cubic box of size L, with periodic
boundary conditions applied in all three Cartesian directions, discretised with 1024 grid
points in each direction to ensure that all the scales down to the smallest dissipative ones
are properly solved, i.e. n < Ax, where Ax is the grid spacing, and 7 is the Kolmogorov
scale of the Newtonian simulation. While this criterion may not be directly applicable to
the shear-thinning fluids, we ensure the correctness of the results by using a grid that is
suitable for a Reynolds number larger than the one reached here (see e.g. Olivieri, Cannon
& Rosti (2022) and Cannon, Olivieri & Rosti (2024), who reached Rej =~ 433).

In the current study, the fluid is non-Newtonian, and we focus on the simple inelastic
power-law models, where the local viscosity of the fluid is a function of the sole local
value of shear rate, i.e. u = K )'/"*1, where n is the flow power index, and K is the fluid
consistency index. A Newtonian behaviour is recovered when n = 1, while values of the
flow index above and below unity, n > 1 and n < 1, denote shear-thickening and shear-
thinning fluids, respectively. The consistency index K measures how strongly the fluid
responds to the imposed deformation rate. In the previous relation, the local shear rate y is
the second invariant of the strain-rate tensor S;; and is computed by its dyadic product, i.e.

28;;S;j. The viscosity of a power-law shear-thinning fluid becomes infinite for null
shear rate; to overcome this, the Carreau fluid model is used instead, in which the local
viscosity is computed as

(n=1)/2
. 2.2)

= troe + (10 = o) [ 1+ 0672
In this equation, o and @ indicate the lower and upper limits of fluid viscosity at
zero and infinite shear rates, and the flow index n and time constant /C have similar
interpretations to the material properties of the power-law fluid.

We use the in-house Fortran code Fujin to simulate the flow. The fluid equations are
solved numerically on a staggered grid using a second-order finite difference code, with
pressure points located at the cell centre, and velocity components at the cell faces.
Equations (2.1) are advanced in time by a fully explicit fractional step method, based on
the second-order Adams—Bashforth method; finally, the Poisson equation is solved by fast
Fourier transform.

2.1. Set-up

We consider various fluids with shear dependent viscosity, and report their rheology in
figure 1(a). In particular, we consider a Newtonian fluid with uniform viscosity (o, and
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Reapc  n KVFT/L  po/pnee Rex  ((W/mo))  ((w/mo)®)  ((n/mo)®)

—_ 7043 1 1 313 1 0 0
- - 3522 1 — 1 211 1 0 0
N 1761 1 — 1 138 1 0 0
_ 7043 0.7 0.0223 10* 323 0.7492 0.1720 —0.0785
- - 3522 0.7 0.0223 10* 211 0.8086 0.1996 —0.1011
N 1761 0.7 0.0223 10* 146 0.8672 0.2284 —0.1287
—_— 7043 0.4 0.0223 10* 331 0.5255 0.0969 —0.0305
- - 3522 0.4 0.0223 10* 221 0.6328 0.1321 —0.0487
N 1761 0.4 0.0223 10* 143 0.7415 0.1732 —0.0764
ocoo 7043 0.4 0.0223 00 336 0.4948 0.0875 —0.0264
1761 0.7 0.2230 10* 190 0.4472 0.0618 —0.0164
1761 0.4 0.2230 10* 300 0.1410 0.0184 —0.0010

Table 1. Main input and output parameters of the cases investigated in the present study, together with the
colours and line styles used throughout the work.

two shear-thinning fluids with shear dependent viscosity © defined by (2.2). These have a
fixed ratio of zero to infinity viscosity ito/peo equal to 10*, and varying power indices n
equal to 0.7 and 0.4. Finally, the consistency index /C is chosen to ensure a low probability
of being in the plateaus of viscosity at y — 0 and oco. All the fluids are tested in a number
of simulations with different values of Reynolds number Regpc, defined based on the
amplitude of the forcing and on the zero-shear viscosity po. The parameters are chosen
to achieve in the purely Newtonian case a Taylor Reynolds number Re) = puyysd/ (L) =
300, 200 and 100, where u,,s = /(u;u;)/3 is the root mean square of the fluid velocity,
and A = uymg+/15(1)/(p(e)) is the Taylor length scale, with (&) = (2vS5;;S;;) the mean
turbulent dissipation rate, with (-) indicating average over time, space and ensemble. In
order to show that the results are general and independent of the values of o/ and
K, we perform three additional simulations, one where we set (o, =0, and another two
where we increase K. All the simulation parameters are summarised in table 1. We allow
the flow to reach a statistically steady state, and measure the statistics presented in the
rest of the paper, averaged in time over 40 snapshots collected over approximately 15
large-eddy turnover times L /u ;.

3. Results

We start the analysis of how turbulence is affected by the shear-dependent viscosity
by looking at the changes of the Taylor Reynolds number in table 1. Interestingly, we
notice that the Taylor Reynolds number does not change significantly for the different
fluids, provided that the averaged viscosity is used in the definitions of the Reynolds
number and in the Taylor microscale, while the local viscosity is used when averaging the
turbulent dissipation rate. This result is significant, hinting towards adapting Kolmogorov
theory to the generalised Newtonian fluids, as will be discussed later on. First, however,
we show that the viscosity is indeed changing significantly throughout the domain by
looking at its probability distribution function in figure 1(b), with table 1 reporting the
first three moments of the distributions. At a fixed Reynolds number, the viscosity spans
a monotonically increasing range of values as n is reduced, while the distribution shrinks
when the Reynolds number is reduced at constant n. When n — 1, the mean viscosity (i)
tends to the classical Newtonian viscosity. Also, the distributions never reach the values of
the infinite viscosity (4, and very rarely approach the zero one po; we can thus conclude
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Figure 2. Instantaneous visualisation of the vorticity magnitude on a plane in the middle of the cubic box for
(a) Newtonian fluids with n = 1, and () shear-thinning fluids with n = 0.4. Colours go from white to blue from
zero to maximum vorticity.
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Figure 3. Energy spectra (a) for different power indices n at Re, =~ 300 (different colours), and for different
Reynolds numbers Re, with n = 0.4 (different line styles). The latter have been shifted downwards for clarity.
(b) Energy spectra for different Reynolds numbers and power indices, normalised with the Kolmogorov scale
n and turbulent dissipation rate €.

that what is observed hereafter is not influenced by the values of ©g and (oo, Which is true
for large 1o/ oo It is thus representative of the broader family of power-law fluids. In the
opposite limit when 1o/ too 1S tending to unity, the change of viscosity is rather limited,
whatever the value of n, thus the Newtonian results are expected to hold again.

The variable viscosity profoundly alters the flow, especially the velocity gradients; see
e.g. figure 2. To understand how the variable viscosity is affecting the flow at all scales,
we start by looking at the energy spectra E (k), reported in figure 3(a) for different power
indices n and different Reynolds numbers. For every power index n, the spectra exhibit
an inertial range where the energy decays according to the classical Kolmogorov scaling
k=373, followed by a sharp decrease in energy within the dissipation range. As 7 is reduced,
we observe an extension of the inertial range of scales, and a shallower decay of energy
at the smaller scales. Instead, as Re, is reduced, the typical reduction of the inertial range
and expansion of the dissipation range are observed. Thus the variable viscosity keeps
unaltered the large scales of the flow, and brings higher level of energy at the small scales,
with an extension of the inertial range and a weaker energy decay in the dissipation range.

While finding the Kolmogorov scaling in the inertial range of scales of a variable
viscosity fluid may seem strange, its appearance can be understood by rethinking the
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Figure 4. (a) Energy balance for different power indices n at Rej~ 300. For n =0.4, we also show
the dissipation term decomposed into mean (upward triangles) and fluctuating (downward triangles) parts.
(b) Energy balance for different Reynolds number and power index, normalised with the Kolmogorv scale 7.
The ordinates in both (@) and (b) are divided by (g).

Kolmogorov hypotheses in our framework of variable viscosity. The hypothesis of
local isotropy at the smallest scale remains unchanged, while the first and second
similarity hypotheses need to be revisited. Indeed, both involve definitions of viscosity
and dissipation rate, which are then used to define the Kolmogorov scales, which are
uniquely defined in classical turbulence while not so in our case of variable viscosity.
As done before when computing the Taylor Reynolds number in table 1, here we take the
mean viscosity (1) and the mean turbulent dissipation rate defined as (¢) = (2vS5;;S;j).
With these two quantities, we can then extend Kolmogorov’s theory in a straightforward
manner, leading to the definition of the Kolmogorov scale n = ((u)/(¢))'/4, which allows
us to separate the small scales of motion r < n, where the statistics are supposed to be
universal functions of () and (e) (first similarity hypothesis), from the intermediate ones
r >> n, where the statistics are independent of () and uniquely determined by (¢) (second
similarity hypothesis). By simple dimensional argument, we can then rescale the energy
spectra as done in figure 3(b), where we confirm that all the cases with different n and
Re, indeed collapse onto a master curve in the inertial range of scales. However, this is
not the case in the dissipative region, where the spectra remain segregated by the different
n, while collapsing for the different Re,. This is because in our case of variable viscosity,
the smallest scales should be expected to be universal functions of (u), (¢) and n, where
the latter is an additional non-dimensional parameter; the same does not apply for the
intermediate range of scales, where the effects of viscosity are not relevant. Thus we can
expect the Kolmogorov theory to hold true at the large and intermediate scales for > n,
while at the smallest scale, a dependence on n can remain. In the following, we will thus
verify this, and study the dependence of the small scales on n.
To gain a more detailed insight, we look at the scale-by-scale energy transfer balance

Pk) 4+ I1(k) +Dk) = (e), 3.1

where P(k) is the production term associated with the external forcing, I1(k) is
the energy flux associated with the nonlinear convective term, and D(k) is the

viscous dissipation, defined as P(k) = fkoo(f 0*+ f*a)/2de, k) = fkoo —(Gi*+
G* i)/2 dx and D(k) = f(;((ﬁ i* + D* ii) dk. Here, a hat denotes the Fourier transform
operator, a superscript * denotes complex conjugate, and G and D are the Fourier
transforms of the nonlinear and viscous terms (Pope 2001). Note that the production

term and the flux are obtained by integrating from x to co, while the dissipation term
is integrated from O to k to obtain a positive quantity that matches (g); also, due to the

variable viscosity, the usual relation b(K) =2vk? E(k) no longer holds.

1012 R5-6


https://doi.org/10.1017/jfm.2025.10232

https://doi.org/10.1017/jfm.2025.10232 Published online by Cambridge University Press

Journal of Fluid Mechanics

10° 10! 102 103 10° 10! 102

r/n r/n

(c) , (d) | | | |

- 10 j ! 100 J

— § o

= - N0t 30 1 2

10T ] S =

o Q108 <2t ]

v

"o ‘ | ‘ .1
10° 10! 102 103 1073 1072 107! 10°

r/n Sz/u}%ms

Figure 5. (a) Structure function S, (r) for different power indices n at Re; A~ 320. The structure functions of
orders 2, 4 and 6 are shifted vertically for visual clarity. (b) Structure function S, (r) compensated with the
expected scaling for » — 0. (¢) Compensated third-order structure function S3(r). (d) Extended self-similarity
of structure functions, with the prediction based on the refined similarity hypothesis. The inset shows the
multifractal spectra of the dissipation rate, with the symbols representing experimental data for a Newtonian
fluid, taken from Meneveau & Sreenivasan (1991).

In figure 4(a), we show the energy fluxes and dissipation for different power indices n
at large Reynolds number. The energy is injected into the system by the forcing trough
‘P(k), which is not null only at the largest scale k =k, (not shown); energy is then
carried from large to small scales by the advective term [1(k), where it is ultimately
dissipated by the viscous term D(k). The picture remains qualitatively the same when
n is reduced, except for a stronger advective term I1 (k) that dominates over a larger range
of scales, confining the dissipation to even smaller scales. Here, D(k) is defined with the
local viscosity; we can decompose this term into a term coming from the mean viscosity
(i) (upward triangles), which is formally the same as in classical turbulence, and the
rest which arises from its fluctuation u — (@) (downward triangles). The decomposition
suggests that the fluctuations of viscosity provide a negative dissipation, or in other words,
are a production mechanism of turbulent kinetic energy acting at the small scales, which
is balanced on average by the excess of dissipation coming from the mean viscosity.
Finally, figure 4(b) shows again the energy balance for all n and Re,, normalised with
the Kolmogorov scaling. An excellent collapse of the curves is found.

The changes observed in the energy spectra can be appreciated also when looking at
the structure functions in the real space; the longitudinal structure functions are defined as
Sp(r) = ([6u(r)]?), where p is the order of the moment, and Su(r) =u(x +r) — u(x) is
the velocity increment across a length r. For the single-phase case, S, ~ r? at small scales,
and S, ~r? /3 in the inertial range, as predicted by the Kolmogorov theory (Kolmogorov
1941), with some deviations due to the flow intermittency (Ishihara ez al. 2009), caused by
extreme events that are localised in space and time that break the Kolmogorov similarity
hypothesis. These extreme events correspond to the large tails in the velocity increment
distributions, and make significant contributions to the high-order moments.
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Figure 5(a) shows the structure functions of orders 2, 4 and 6 versus the separation
r, for different values of the power index n at large Reynolds number. We observe that
the structure functions collapse well for different n in the inertial range of scale, while
they fan out at smaller scales in the dissipation range, consistently with the observation
from the spectra. Assuming that the velocity is a differentiable function, we can expect
Sp(r) ~r? for r — 0, and following Schumacher, Sreenivasan & Yakhot (2007), we plot
in figure 5(b) the same structure functions, compensated with their expected scaling for
the viscous range r”, such that the function must approach a constant for reducing r;
this is evident for all the Newtonian structure functions, while for the shear-thinning fluid
it is clear only for S> and less for the other orders, indicating that even smaller r are
needed to achieve the predicted scalings compared to a Newtonian fluid. Next, we assess
the validity of the most important relationship valid in classical turbulence, the celebrated
4/5 law by Kolmogorov: S35 = —4/5(¢e)r. Verifying its validity is the most direct proof
of the possibility of extending Kolmogorov theory to shear-thinning fluids and on the
correctness of using (&). The results of our simulations are shown in figure 5(c), where the
third-order structure function has been compensated with the expected value. The expected
power law and the proper negative sign, which is connected to a direct energy cascade, are
both visible, with an extension of the range where the scaling holds with #. Finally, we
assess the flow intermittency using the extended self-similarity form (Benzi et al. 1993),
by plotting Sg against Sz, as shown in figure 5(d). In the limit case, where extreme events

do not occur, the Sg ~ Sg/ 2 power law holds, while the deviation from this behaviour is
a measure of the flow intermittency. It should be noted that there are already deviations
from the theoretical prediction in the single-phase case, with the correction suggested by
Kolmogorov (1962) offering a good prediction of the data. Moving to the effect of the
variable viscosity, figure 5(d) shows that a reduction of the power-law index generally
leads to a larger deviation from the expected scaling at the small scales; the deviation from
the single phase is monotonic with n, and starts at larger r as n decreases, leading to a
stronger flow intermittency.

Examining the intermittency of the dissipation in space is an alternative method of
examining the impact of extreme events. Using the procedure outlined by Frisch (1995),
we average the dissipation within a spherical region of radius [ to get ;. We pick a
range of moments —6 < g <6, elp , and average them over various locations and times.
At large [, ¢; is by definition equivalent to the bulk value (), while the two differ for
small /, due to the localised regions of high dissipation in the fluid. We assume that
(slq) ~ [" and then compute 7, through fitting; finally, we obtain the multifractal spectra
F(a) using a Legendre transformation: o =dr/dg + 1 and F =q(a — 1) — 7, + 3. The
inset of figure 5(d) shows the multifractal spectra for all cases at large Reynolds number,
and we observe that all the multifractal spectra have peaks at « &~ 1 and F ~ 3, showing
a background of space-filling dissipation; however, the presence of tails in the spectra
indicates that the dissipation fields are not self-similar. No significant difference is found
for the various n, indicating that the added intermittency observed in the velocity field is
compensated by the variable viscosity in the dissipation rate.

To look more closely at the local flow altered by the variable viscosity, we compute the
alignment of the unit-length eigenvectors §; of the strain-rate tensor S;; with the vorticity
® =€ (Qur/0x;) ¢; (Ashurst ef al. 1987), where e; are the Cartesian unit vectors, and
€ijk 1s the Levi—Civita symbol. For an incompressible fluid, the three eigenvalues sum
to zero, so the largest eigenvalue is never negative, and its eigenvector §; corresponds
to the direction of elongation in the flow. Similarly, the smallest eigenvalue is negative,
and its eigenvector §3 corresponds to the direction of compression in the flow. Finally, §,
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Figure 6. (a) Probability density function of the alignment of the vorticity unit vector @ with the eigenvectors
§1 (solid line), §» (dashed line) and §3 (dotted line) of the strain-rate tensor. (b) Joint histograms of Q and R.
The black curves show where the discriminant of the polynomial equation is zero, i.e. 27R>/4 4+ Q> = 0. Data
are for Re, ~ 300.

completes the tri-orthogonal system. Figure 6(a) shows the probability density functions
of the cosine of the angle between the vorticity @ and the eigenvectors §;. There is a strong
alignment of vorticity with the intermediate eigenvector §,, which is frequently attributed
to the axial stretching of vortices (Ashurst e al. 1987), with the maximum probability at
|@ - §2| = 1; the third eigenvector is largely perpendicular to the vorticity, producing a peak
at @ - §3 =0, while the first eigenvector §1 exhibits very little correlation with @. When
the fluid is shear-thinning and n is reduced, the same pictures remain, with an extremely
weak tendency of vorticity aligning even more with the intermediate eigenvector §;, and
becoming more perpendicular to the last eigenvector §3.

The three principle invariants of the velocity gradient tensor du ;/0x; can be used to
fully characterise the local topology of a flow (Cheng 1996). The first invariant is zero
due to incompressibility, the second invariant Q = (1/4)w;w; — (1/2)S;;S;; represents
the balance between strain and vorticity, and the third invariant R = (1/4)w;S;jw; —
(1/3)S;:;SjrSki represents the balance between strain and vorticity production. The roots
of the polynomial equation A% + QA 4+ R = 0 are the eigenvalues of du j/0x;. Figure 6(b)
shows the joint probability distributions for all of our flows at large Reynolds number. We
also plot a line where the discriminant is zero: below this line, all three eigenvalues are
real, and strain dominates the flow, whereas above this line, du;/0x; has one real and
two complex eigenvalues, and vortices dominate the flow. The top left and bottom right
quadrants feature tails in the distribution, which represent stretched vortices and areas
where the flow compresses along a single axis (Cheng 1996). The shape remains overall
unchanged for the non-Newtonian fluids, but with the probability falling off much more
sharply when 7 is reduced, thus indicating weaker velocity gradients, compensated by the
local variation of the viscosity.

4. Conclusions

In this work we have extended the Kolmogorov theory to shear-thinning fluids with
variable viscosity, with the main quantities emerging being (u), (¢) and n, and with
the Kolmogorov theory for a Newtonian fluid recovered when n = 1. By analysing data
from direct numerical simulations, we have shown that the variable viscosity brings
no significant changes to the large and intermediate scales of the flow, while affecting
only the smallest scale. We have shown that these fluids exhibit a universal inertial
range with power-law spectrum scaling k—/3, extending in range as the level of shear-
thinning is increased, and caused by a strengthening of the nonlinear energy flux. As a
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consequence, the dissipation range shrinks. Remarkably, small-scale universality is lost,
with a remaining dependency on the power-law index n. The modified flows exhibit
enhanced intermittency in the velocity field, with local flow structures having similar
directionality to the Newtonian case, but with weaker intensity, the two effects being
compensated by the variation of the viscosity. The results hold for different o/ poo, K
and n, as long as the viscosity falls in the purely power-law region of the rheology. In
particular, the effect of K, while significant in changing the viscosity quantitatively, can
be collapsed into a change in the actual Reynolds number experienced by the flow.

The results discussed in this work are relevant when studying polymeric flows, where
often elasticity and shear-thinning are not decoupled. Since shear-thinning promotes the
nonlinear energy flux, while viscoelasticity weakens it, complex effects can arise when
studying polymeric flows at both large and small Reynolds numbers: (i) shear-thinning
acts against elasticity at large Reynolds numbers, potentially hiding the elasto-inertial
range of scales (Rosti er al. 2023); (ii) shear-thinning can promote instabilities at low
Reynolds numbers (see e.g. for a jet Soligo & Rosti 2023), which are, however, not elastic,
with the resulting turbulent flow which may be inertia-dominated, notwithstanding the low
Reynolds number (Amor et al. 2024).
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