
11

Modules

11.1 Modules

In this chapter, we discuss important modules such as Wollaston prisms, Newto-

nian prisms, beam splitters, phase shifters, mirrors, and null modules. Modules

are pieces of apparatus placed at various strategic positions in the informa-

tion void and are designed to influence labstate amplitudes at signal detectors.

Modules are therefore a critical component in the quantized detector network

(QDN) approach to quantum mechanics (QM).

Modules are not classified as either real or virtual detectors, because no infor-

mation is extracted from them. Their function is solely to influence quantum

amplitude propagation between stages in specific ways. Even empty space (the

vacuum) can be regarded as a module, for the propagation of signals through

nominally “empty” space is a fundamental subject in its own right. A particularly

important example illustrating how nontrivial that can be is the Hubble–Doppler

red shift of light from distant galaxies.

In the QDN description of the double-slit (DS) experiment, shown in Figure

10.2, the stage Σ1 detectors labeled 11 and 21 may be considered as on the V2

side of the wall W , where V2 is the information void between stages Σ1 and Σ2.

Viewed in this way, the wall may be interpreted as a part of the appara-

tus that is positioned in the information void region V1 so as to influence the

signals obtained at detectors 11 and 21. Virtually all experiments have similar

components of apparatus in the information void. We shall call any such piece of

apparatus a module. Modules are necessary to the architecture of the experiment,

are situated in the information void, and therefore are not detectors.

Examples of modules are Stern–Gerlach (SG) inhomogeneous field magnets,

Wollaston prisms, mirrors, phase changers, and so on. Even empty space, other-

wise known as the vacuum, should be regarded as a module.

Each module has its own physical properties. These include the number of

detectors feeding amplitudes into that module and the number of detectors that
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amplitudes are fed out from. We shall discuss a number of modules relevant to

the experiments discussed in this book, starting with the vacuum.

11.2 The Vacuum

In this book, we make a distinction between the information void concept and

the vacuum of elementary particle physics. The differences are subtle.

Each concept has the characteristic that no signal detectors are associated

with it. While it is commonplace to talk about “observers in empty space” or

“detectors in the vacuum,” such expressions are manifestly inconsistent if taken

literally, even in classical mechanics (CM). What distinguishes the information

void concept from the vacuum concept is that the latter is a mathematical

objectivization of the former, based on some input context. For instance, if

we believe that the information void has some structure or physical properties

associated with a vacuum, then we may choose to believe in or set up some sort

of mathematical model of empty space, such as a three-dimensional manifold

with a Euclidean metric, as in Newtonian mechanics, or a general relativistic

(GR) spacetime with a metric, or think of it in operator terms, as in Snyder’s

noncommuting spacetime (Snyder, 1947a,b), or even assign a quantum state

vector to it, as in Fock space and relativistic quantum field theory (RQFT).

We are here faced with an important question as to the status of the vacuum:

is it part of the relative external context (REC) that defines the observer, or is

it part of the relative internal context (RIC) that defines the apparatus?

On the one hand, we have argued in earlier chapters that real observers are

always endophysical, that is, are sitting inside the physical Universe. According

to GR, the physical space that we image observers to be sitting in will have

some physical attributes, such as metrical structure, curvature, mass, and energy

densities. In this context, empty space plays a classical, auxiliary role as part

of REC.

On the other hand, the vacuum concept will play a fundamental role in the

calculation of quantum signal propagation amplitudes, such as black hole physics,

where the classical background spacetime structure plays an important, even

crucial, role (Birrell and Davies, 1982; DeWitt, 1975). In that context, the vacuum

contributes to the RIC.

Elementary particle physics has been very successful in modeling the vacuum

as having special relativistic (SR) symmetries and certain physical properties

such as zero electric charge density, and so on. The standard model of particle

physics appears not to need or use any concepts associated with the so-called

quantum gravity program, a conjectural program based on the belief that the

equations of GR and those of QM should be unified. The jury is out on all

programs of research that attempt to give a detailed model of the vacuum, such

as quantum gravity, string theory, and noncommutative geometry such as that

of Snyder (Snyder, 1947a,b).
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Figure 11.1. Amplitude propagation across the information void.

The question of what the best model of the “internal” vacuum of the RIC

could be is a crucial one, because there are many contexts where the answer will

influence the calculation of the quantum signal amplitudes of relevance to QDN.

For example, we may well need to take spacetime curvature into account if we are

sending signals across vast distances. Such a scenario is found in all observations

in astronomy and cosmology.

We have indicated previously that QDN has nothing to say about the infor-

mation void or the vacuum, precisely because QDN models what is happening

at the signal detectors. Therefore, we will need to bring in standard physics

theory, such as relativistic quantum field theory, to help us write down signal

amplitudes between those detectors. Should that appear to make QDN rather

limited, we point out that standard theories do have their limitations as well,

such as the appearance of infinite renormalization constants in quantum field

theory. We interpret that as the same problem seen from the opposite direction.

It will probably be only by a judicious combination of QDN (or whatever should

replace it) on the apparatus side of the physics coin and of standard relativistic

quantum field theory on the reductionist side that we will find a better approach

to empirical physics than with just either alone.

In QDN notation, signal amplitude propagation across the information void is

represented by featureless lines, as in Figure 11.1.

11.3 The Wollaston Prism

A Wollaston prism is a quantum optics module that splits up a beam of light

into two orthogonally polarized beams. Figure 11.2 is a schematic QDN diagram

of such a device.

Consider an initial total state

|Ψ0) ≡
{
α|s10〉+ β|s20〉

}
⊗ 10, (11.1)

where 10 ≡ Â1
000 and|si0〉 is a stage-Σ0 polarization state vector in two-

dimensional photon polarization Hilbert space H0. Here i = 1 or 2 represents

either of two orthogonal polarizations such as horizontal and vertical. The

coefficients α and β are complex numbers. If the initial state is normalized to

unity, then |α| 2 + |β| 2 = 1.
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Figure 11.2. The Wollaston prism.

The contextual evolution operator1 U1,0 from stage Σ0 to stage Σ1 is assumed

semi-unitary, mapping from a two-dimensional contextual subspace of the initial

four-dimensional Hilbert space H0 ⊗Q1
0 to the final eight-dimensional one H1 ⊗

Q1, where H1 is a copy of H0 and Q1 ≡ Q1
1Q

2
1. The assumed rules for the

Wollaston prism are

U1,0{|s10〉 ⊗ 10} = |s11〉 ⊗ 11, U1,0{|s20〉 ⊗ 10} = |s21〉 ⊗ 21, (11.2)

where 11 ≡ Â1
101 and 21 ≡ Â2

101.

Using contextual completeness we have

U1,0 = |s11〉〈s10| ⊗ 1110 + |s21〉〈s20| ⊗ 2110 (11.3)

and its retraction

U1,0 = |s10〉〈s11| ⊗ 1011 + |s20〉〈s21| ⊗ 1021. (11.4)

These operators satisfy the semi-unitary relation

U1,0U1,0 = {|s10〉〈s10|+ |s20〉〈s20|} ⊗ 1010 = IH0 ⊗ Ic0, (11.5)

the identity operator for the initial contextual total Hilbert space H0 ⊗Qc
0.

There are two generalized Kraus matrices associated with stage Σ1, given by

M1
1,0 ≡ 11U1,0 = |s11〉〈s10| ⊗ 10,

M2
1,0 ≡ 21U1,0 = |s21〉〈s20| ⊗ 10, (11.6)

with retractions

M1
1,0 = |s10〉〈s11| ⊗ 10,

M2
1,0 = |s20〉〈s21| ⊗ 10. (11.7)

From these, the generalized POVM operators associated with Σ1 are given by

E1
1,0 ≡ M1

1,0M
1
1,0 = |s10〉〈s10| ⊗ 1010,

E2
1,0 ≡ M2

1,0M
2
1,0 = |s20〉〈s20| ⊗ 1010. (11.8)

1 As stated in a previous chapter, we drop the superscript “c” denoting “contextual.”
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In this particular case, these POVMs satisfy the relations Ei
1,0E

j
1,0 = δijEi

1,0 (no

sum over i) and

E1
1,0 + E2

1,0 =
{
|s10〉〈s10|+ |s20〉〈s20|

}
⊗ 1010 = IH ⊗ Ic0, (11.9)

the identity operator for the initial contextual Hilbert space H⊗Qc
0. From these

operators we find the conditional outcome rates

Pr(11|Ψ0) ≡ Tr
{
E1

1,0�0

}
= |α|2, Pr(21|Ψ0) ≡ Tr

{
E2

1,0�0

}
= |β|2, (11.10)

assuming complete efficiency. Here �0 ≡ |Ψ0)(Ψ0|.

11.4 The Newtonian Prism

Newton’s researches in optics revealed features of light that demonstrate fun-

damental properties of relevance to us here (Newton, 1704). In this section we

discuss two of his observations with prisms.

The Splitting of Light

Newton found that a beam of white light incident on a prism P 1 would be

split into a spectrum, a set of emerging rays each of a different color, according

to anyone looking at it.2 If any one of those single-color component subbeams

were in turn passed through another prism P 2, no further splitting occurred;

Figure 11.3(a). From this, Newton concluded that the primary colors in white

light were associated with properties of that light, and not induced by the prism.

Figure 11.3(b) shows the same process as described by QDN.

Significantly, Newton took the view that the perception of color itself was

a sensation induced in the mind by the processes of visual observation. His

reasoning is based on empirical evidence: he noticed that superposing certain

primary colors in the spectrum emerging from a prism created colors such as

purple, in the mind of the observer, that were not contained in the original

spectrum. In that respect he could reasonably be regarded as having a deeper

view of observation than that generally associated with classical mechanics (CM),

which pays no lip service to the observer and their subjective perceptions.

Newton’s idea was vindicated subsequently by the development of the theory

of color vision (the colors that humans believe they “see”), principally by Young

and Helmholtz. They proposed that the human eye uses three distinct types of

receptor (that is, detector). The signal information from these detectors is then

processed to trigger the color sensations that we think we see.

The QDN modeling is based on the tensor product total Hilbert space Hn

at stage Σn defined as Hn ≡ HEM
n ⊗ Qn, where HEM

n is the standard RQFT

2 Note that this expression is based on the ancient and misleading paradigm that observers
look “at” objects.
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Figure 11.3. (a) Newtonian prism P 1 splits an incoming beam of white light
from source S (the Sun) into subbeams associated with primary colors. Prism
P 2 does not split any one of those subbeams further. (b) The QDN schematic
of the same process.

Hilbert space containing free photon states3 and Qn is the apparatus quantum

register at that stage. Relevant states in HEM
n are constructed in terms of a

suitable orthonormal set {|in〉 : i = 1, 2, . . . K}, with orthonormality condition

〈in|jn〉 = δij .

With reference to Figure 11.3(b), the stage-Σ0 normalized incident state |Ψ0)

is defined as

|Ψ0) ≡
K∑
i=1

ψi
0|i0〉 ⊗ 10,

K∑
i=1

|ψi
0|2 = 1. (11.11)

The action of the first prism P 1 in Figure 11.3 is taken to be

|Ψ0) →
P 1

|Ψ1) =

K∑
i=1

ψi
0|i1〉 ⊗ Âi

101, (11.12)

which models the splitting up of the original beam into its primary colour

constituents.

Three points to note here are the following.

Index Labels

The electromagnetic state indices i0 and i1 have a temporal subscript that labels

stages only and does not affect the “value” of the index. So, for example, we take

i1 = i0 ≡ i.

Discreteness

Contrary to what we might anticipate from experience with RQFT, the elec-

tromagnetic index in in the above is discrete, not continuous, because we can

3 Any reference to photons is for convenience. The “basis” states here form a discrete set and
therefore are not plane wave solutions but approximate them suitably.
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only ever have a discrete set of detectors. This overturns the usual approach

to RQFT, which presupposes a spectrum of photon states with a continuous

frequency range. We do not need to deal with any supposed continuity in HEM
n ,

because the only parts of it that we can ever deal with are found at the finite,

discrete detector end. Everything done here is contextual: it is the presupposition

that an unobserved (and unobservable) continuum of states should play a role

in, for example, Feynman graph integrals that contributes to the divergence of

renormalization constants in RQFT. In the laboratory, all signals are finite.

The effect of the first prism P 1 on the incident beam is modeled by the action

of a contextual semi-unitary evolution operator U1,0, given by

U1,0 ≡
K∑
i=1

|i1〉〈i0| ⊗ Âi
10110, (11.13)

where K is the number of subbeams in the emerging spectrum that is relevant to

the discussion. Newton chose K to be 7, referring to the subbeams as red, orange,

yellow, green, blue, indigo, and violet (Newton, 1704). This choice is dependent

on the observer, for if we had equipment that could detect infrared or ultraviolet

light, we would have a different value for K.

Coherence versus Incoherence

When physical process are affected by either constructive or destructive inter-

ference of amplitude waves, there are two factors to take into account: the

amplitudes should have the same frequency (more or less), and if so, they should

be coherent. In the case of white light, neither of these factors is in play because by

definition, white light consists of waves of many different frequencies, and these

are necessarily incoherent. That does not mean that we cannot describe such

situations with our QDN formalism. Newton’s recombination experiment is a

demonstration of incoherent superposition but not of constructive or destructive

interference.

With reference to Figure 11.3(a), we see that only one chosen subbeam, labeled

i in Figure 11.3(b), enters the second prism P 2, all the other subbeams being

blocked off. Then we may write

U2,1

{
|i1〉 ⊗ Âi

101

}
≡ |i2〉 ⊗ Âi

202. (11.14)

But what about the other, blocked subbeams?

There is a significant point here that we will be able to address more carefully

in Chapter 25 and that has to do with information extraction versus decommis-

sioning. By the term decommissioning , we mean the blocking off of signals and

the elimination of the corresponding detectors from further consideration. We can

see this in Figure 11.3(a), where all except one of the spectral subbeams emerging

from P 1 are blocked off, with the remaining one allowed to pass through prism P 2.

The QDN approach to this issue is two-fold. In Figure 11.3(b), all of the

stage-Σ1 detectors except i1 are shown shaded. This indicates that those
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components are either blocked off or observed irreversibly, with consequent

information extraction. This blocking off/information extraction plays no further

role in the experiment, and so is represented in the diagram by null tests taken

from stage Σ1 to stage Σ2. On the other hand, Figure 11.3(b) indicates that i1
sends a signal through the prism P 2 that is subsequently observed at i2, which

is now shown shaded in the figure.

Since the evolution from stage Σ1 to stage Σ2 is essentially trivial (which is

what null tests are in practical terms), we may also write

U2,1

{
|j1〉 ⊗ Â

j
101

}
≡ |j2〉 ⊗ Â

j
202, j 	= i. (11.15)

Hence we deduce

U2,1 =
K∑

j=1,
j �=i

|j2〉〈j1| ⊗ Â
j
20201A

j
1︸ ︷︷ ︸

null tests

+ |i2〉〈i1| ⊗ Âi
20201A

i
1︸ ︷︷ ︸

through P 2

. (11.16)

Although the two terms on the right-hand side of this expression look similar,

they are very different contextually. A practical difference would be that |j2〉 is
an exact copy (in HEM

2 ) of |j1〉 (in HEM
1 ), for j 	= i, whereas |i2〉 would not be

an exact copy of |i1〉 because of, say, attenuation effects as that subbeam passed

through P 2.

The point here is that context underpins the significance of everything, and

that context is determined by the observer. If they decide to block off all sub-

beams except the one labeled i, and then actually do that, then that action

(not the decision alone) automatically brings in empirically significant context

that involves separate dynamics and apparatus. It is the essence of Wheeler’s

participatory principle quoted on Chapter 1 that action be actually carried out

when discussing quantum processes.

We see from this that the freedom that the observer has to choose how to

rearrange apparatus creates a contextuality. This is emphasized in the next part

of our description of the Newtonian prism, the recombination of a split spectrum

back into the original beam.

The Recombination of Light

In his remarkable book Opticks, Newton discusses an extraordinary variant of the

prism experiment shown in Figure 11.3(a) (Newton, 1704). He inverted prism P 2

and placed a lens between the two prisms. The lens refocused the spectrum emerg-

ing from P 1 onto P 2, as shown in Figure 11.4(a). The result was to recombine the

spectrum, back into the original form of a beam of white light emerging from P 2.

Certainly, the recombined beam would not be precisely the same as the original,

in that there would be some attenuation due to passing through glass, but as in

the case of friction in mechanics, such effects can be regarded as secondary and

not relevant to the main discussion.
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Figure 11.4. (a) Newton used lens L and prism P 2 to recombine the spectrum
from prism P 1 back into a beam of white light. (b) In the QDN schematic of
the same process, the lens and second prism constitute module LP .

The QDN stage diagram for Newton’s recombination experiment is shown in

Figure 11.4(b), with the following analysis.

Stage Σ0

The initial labstate is

|Ψ0) ≡
K∑
i=1

ψi
0|i0〉 ⊗ 10,

K∑
i=1

|ψi
0|2 = 1. (11.17)

Stage Σ0 → Σ1

The evolution operator U1,0 that models the action of prism P 1 is given by

U c
1,0 =

K∑
i=1

|i1〉〈i0| ⊗ Âi
10110. (11.18)

Hence the labstate |Ψ1) emerging from prism P 1 is given by

|Ψ1) ≡ U1,0|Ψ0) =
K∑
i=1

ψi
0|i1〉 ⊗ Âi

101. (11.19)

Stage Σ1 → Σ2

The evolution operator U2,1 that models the undoing action of the module LP

consisting of the lens L and the prism P 2 is given, by inspection, by

U2,1 =
K∑
i=1

|i2〉〈i1| ⊗ Â1
20201A

i
1. (11.20)

Here, we have chosen to represent the action of LP as refocusing the spectrum

from P 1 onto labstate 12 ≡ Â
1

202. The final outcome total state |Ψ2) is therefore

given by
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|Ψ2) ≡ U2,1|Ψ1) =

K∑
i=1

ψi
0|i2〉 ⊗ 12. (11.21)

Comparing this with the original labstate (11.17), we see that the final total

state |Ψ2) is a persistent image of |Ψ0). Therefore, the combination of prism P 1

followed by prism P 2 is equivalent to a null test of the original beam.

It might be believed that we have encountered an example of semi-unitary

evolution where the initial quantum register had a larger rank than the final

quantum register. In fact, that is not the case. The action of the lens between

the prisms is designed to focus on a one-dimensional subspace of the stage-Σ1

register, a subspace containing the image of the original beam. It is that subspace

alone that is then mapped by the lens and second prism into the one-dimensional

subspace representing the outgoing recombined beam.

When Newton’s recombination experiment is examined in fine detail, only then

can it be appreciated how extraordinarily difficult it is to model what happens

with some degree of correctness. The reader is invited to model this experiment

using only quantum electrodynamics (QED) in its standard formulation, and

they will then see what we mean.

11.5 Nonpolarizing Beam Splitters

Despite the implication in its name, a beam splitter will in general have two

input channels and two outcome channels, as shown in Figure 11.5. In fact, it

is perhaps best to think of a beam splitter as a specific example in quantum

optics of a more general two-two particle scattering process that satisfies certain

properties, such as unitarity and various conservation laws, such as conservation

of energy, momentum, and charge.

In applications, we shall be interested in coherent, signality-one, normalized

initial labstates |Ψ0) involving both channels 10 and 20, of the generic form

|Ψ0) ≡ ψ1|s10〉 ⊗ Â1
000 + ψ2|s20〉 ⊗ Â2

000, (11.22)

B

Figure 11.5. The beam splitter.
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where |ψ1|2 + |ψ2|2 = 1, and |si0〉, i = 1, 2, are initial, normalized one-photon

states, not necessarily orthogonal. In this scenario, the polarization properties

associated with each input channel are unspecified, so the discussion here is

rather general in that respect.

The dynamics is specified by stating the beam splitter rules for each input

channel. In general, semi-unitary evolution applies (if we ignore inefficiency and

dissipation), so we write

U1,0

{
|s10〉 ⊗ Â1

000

}
= α|s11〉 ⊗ Â1

101 + β|s11〉 ⊗ Â2
101,

U1,0

{
|s20〉 ⊗ Â2

000

}
= γ|s21〉 ⊗ Â1

101 + δ|s21〉 ⊗ Â2
101, (11.23)

where the beam splitter coefficients satisfy the semi-unitary relations

|α|2 + |β|2 = |γ|2 + |δ|2 = 1, α∗γ + β∗δ = 0. (11.24)

It will be useful now and later to define the matrix of coefficients

B ≡
[
α β

γ δ

]
. (11.25)

Then the semi-unitary relations (11.24) tell us that B is in fact a unitary matrix.

It is easy to prove from (11.24) that |α| = |δ| and |β| = |γ|, so we may write

α ≡ ueiA, β ≡ veiB , γ ≡ veiC , and δ ≡ ueiD, where |u|2 + |v|2 = 1 and the

phases A, B, C, and D are real. Now define the phase E by 2E ≡ A+D. Then

it is straightforward to show that B can be written in the form

B ≡ eiE
[
a −b∗

b a∗

]
, (11.26)

where |a|2+ |b|2 = 1 and the phase arguments of a and b are linear combinations

of A, B, and C. We shall refer to the right-hand side of equation (11.26) as the

standard form of a 2× 2 unitary matrix.

Usually, the phase E in the standard form may be ignored. As for the complex

coefficients a and b, these are related by Fresnel’s equations for the reflection and

transmission of light through optical media. Suppose a monochromatic beam of

light passes through medium μ1 and is incident on a plane surface boundary

of medium μ2. Generally, it will split into a reflected part that goes back into

medium μ1 and a transmitted part that moves into μ2. If the speed of light c1

in μ1 is greater than the speed of light c2 in μ2, then the reflected part will be

out of phase with the incident beam by π, that is, equivalent to a sign change.

There is no such change in the phase of the transmitted part. If, conversely, c1 is

less than c2, then there are no phase changes in either reflected or transmitted

parts.

With this information there are two forms we may choose for B:

Form 1
B =

[
t −r

r t

]
, (11.27)
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where t and r are real and satisfy the equation t2 + r2 = 1.

Form 2
B =

[
t ir

ir t

]
, (11.28)

where t and r are real and satisfy the equation t2 + r2 = 1.

In stage diagrams such as Figure 11.5, where the square representing the beam

splitter is rotated as shown to face the two input ports 10 and 20, we shall

adopt the convention that 21 and 11 are the transmitted and reflected beams,

respectively, associated with input port 10, while they are the reflected and

transmitted beams, respectively, associated with input port 20. This convention

is used with Form 2 above throughout this book in the encoding of our computer

algebra program MAIN, discussed in the next chapter.

In many experiments discussed in the literature, Form 2 is assumed, with

t and r taken equal, that is, t = r = 1/
√
2. In our computer algebra program

MAIN discussed in the next chapter, we do not do this. We use Form 2, but it is

generally most instructive to leave the transmission and reflection coefficients

arbitrary up to the required constraints. For instance, ti and ri will be the

transmission and reflection coefficients for beam splitter Bi and will be arbitrary,

apart from the condition that (ti)2 + (ri)2 = 1.

Signality-Two Input

On occasion, the possibility arises that a signality-two labstate or its equivalent

is incident on a beam splitter. We shall refer to this as beam splitter saturation.

The dynamics for such a scenario has to be decided contextually. One possibility

is that the two photons (speaking loosely) do not emerge and are absorbed by

the device. In such a case, the output channels of the beam splitter remain in

their ground states. On the other hand, we could decide to model what happens

as a case of transparency, such that the output labstate is a signality-two state

with both output detectors registering a signal.

Exercise 11.1 Suppose a calibrated beam splitter satisfies the semi-unitary

dynamics

U1,000 = 01,

U1,0Â
1
000 = αÂ1

101 + βÂ2
101,

U1,0Â
2
000 = γÂ1

101 + δÂ2
101, (11.29)

where α, β, γ, and δ satisfy the semi-unitary relations (11.24).

Show that if

U1,0Â
1
0Â

2
000 = a01 + bÂ1

101 + cÂ2
101 + dÂ1

1Â
2
101, (11.30)

where |a|2 + |b|2 + |c|2 + |d|2 = 1 and U1,0 is semi-unitary, then a = b = c = 0

and |d|2 = 1.
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11.6 Mirrors

Mirrors are important modules in many experiments. The basic action of a mirror

is to deflect electromagnetic radiation, that is, change path direction.

Depending on the physics, mirrors can also change the phase of electromagnetic

waves. According to Fresnel’s laws of optics, light incident from air on a mirror

undergoes a phase shift of π, if reflecting from the front surface of a mirror, while

there is no phase shift on rear surface reflection.

Naturally occurring mirrors can have a severe influence on signal detection

amplitudes. For example, television signals received at an aerial are built up

from the superposition of all the signals that have followed separate paths from

the transmitting station to that aerial. If a transmitted signal has one path

that goes in line of sight from transmitter to detector and another path that

goes from transmitter, is reflected from the surface of the sea, and then arrives

at the detector, then destructive interference can occur, thereby degrading the

overall detected signal (Laven et al., 1970). Moreover, if the sea level changes

due to tidal action, then the interference varies during the day and cannot be

eliminated easily.

In stage diagrams, mirrors are labeled M .

11.7 Phase Changers

Mirrors are a specific example of more general modules referred to as phase chang-

ers. Such modules are fundamental to experiments where quantum interference

is used to explore material properties, such as in interferometry.

Although phase changers can be used in any context, an important scenario

involves electromagnetic signals, because in classical optics, Maxwell’s equations

lead to the conclusion that light is a wave process involving transversely oscillat-

ing electric and magnetic waves. Phase changer modules other than mirrors will

be labeled by the phase angle involved.

11.8 Polarization Rotators

Electromagnetic waves have transverse electric and magnetic field polarization

degrees of freedom, and this plays a significant role in many experiments. Gen-

erally, the convention is to define the polarization of a plane polarized electro-

magnetic wave as that of the electric field component. By default, the magnetic

polarization is orthogonal to the electric field polarization.

We shall encounter some experiments where a polarized electromagnetic wave

passes through a module that turns the wave’s polarization plane by a known

angle. Such a module will be labeled Rθ in stage diagrams, where θ is the angle

of rotation.
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11.9 Null Modules

A null module is any process that essentially does nothing to a signal. Because of

this, a signal that is passed through a succession of null modules can be thought

of as “on hold” until such time as the observer decides to look.

Null modules are used to model the concept of persistence, discussed in

Chapter 18. On that account, null modules should not be considered trivial in

the sense of identity operators, the action of which does nothing observable.

In contrast, null modules require the right context and reflect a fundamental

property of physics: that structures can persist over time in an observable sense.

Given a rank-r quantum register Qn at stage Σn, a computational basis repre-

sentation of a complete null operator (one that acts on the whole register) Nn+1,n

that maps into stage Σn+1 register Qn+1 of the same rank is

Nn+1,n =

2r−1∑
i=0

in+1in. (11.31)
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