
O--FRAGMENTABILITY AND ANALYTICITY

I. NAMIOKA AND R. POL

Abstract. We present a new characterization of cr-fragmentability and
illustrate its usefulness by proving some results relating analyticity and cr-
fragmentability. We show, for instance, that a Banach space with the weak
topology is cr-fragmented if, and only if, it is almost tech-analytic and that
an almost tech-analytic topological space is cr-fragmented by a lower-semicon-
tinuous metric if, and only if, each compact subset of the space is fragmented
by the metric.

Introduction. Let (X, r) be a Hausdorff space and let p be a pseudo-metric
on X. Given an e>0, a non-empty subset A of X is said to be fragmented by
p down to E if each non-empty subset of A has a relatively r-open non-empty
subset of p-diameter less than e. The set A is said to be fragmented by p if A
is fragmented down to s for each e>0. The set A is said to be a-fragmented
by p if, for each e > 0, A can be decomposed as A = (Ĵ °= 1 An with each An

fragmented by p down to e.
The notion of fragmentability has been introduced by Jayne and Rogers

[JR] as an abstraction of phenomena often encountered, for example, in Banach
spaces with the Radon-Nykodym property, in weakly compact subsets of
Banach spaces and in the duals of Asplund spaces. The notion of cr-fragment-
ability is introduced in [JNR1] in order to extend the study of compact frag-
mented spaces to non-compact spaces. It turns out that the question of whether
a given Banach space with the weak topology is cr-fragmented is closely con-
nected with the question of the existence of an equivalent Kadec (and, in
particular, locally uniformly convex) norm. Therefore it seems inevitable that
cr-fragmentability will play a central role in linear topological characterizations
of those Banach spaces that admit Kadec or locally uniformly convex
renorming.

In the present note, we offer a new characterization of cr-fragmentability
that gives a new perspective on the relation between fragmentability and cr-
fragmentability. Roughly speaking, a space X is cr-fragmented by a metric p
if, and only if, it is the image under the projection onto X of a subset of X x NN

that is fragmented by the metric induced by p. We then illustrate the new
characterization by deriving from it two results. First, we show that a Banach
space with the weak topology is cr-fragmented by the norm metric if, and only
if, it is "cover-analytic" in the sense of Hansell [Ha2], and this is the case if,
and only if, it is "almost tech-analytic", a notion to be introduced in Section
4. We next prove a generalization of the main theorem in [JNR1]. Our point
of view makes the technical part of the proof simpler compared to the original
one.
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The paper is organized as follows. The main theorem is formulated and
proved in Section 1. Sections 2-3 are preliminaries for the first application of
the main theorem, which is given in Section 4. The second application is in
Section 5.

We acknowledge with gratitude useful exchanges of e-mail messages with
Professor Holicky and with Professor Hansell during the preparation of the
manuscript, and the enlightenment we have received from Professor Michael
on the subject of completeness. The second named author thanks the KBN
for a grant.

§1. The main theorem. The following lemma is a variation of a well-known
theorem (see [JR, Lemma 1]). It is recorded here in the form useful for the
present paper. The proof follows a familiar pattern and is omitted.

1.1. LEMMA. Let (X, r) be a Hausdorff space with a base 38, let p be a
pseudo-metric on X, let S be a non-empty subset of X and let £ > 0. If S is
fragmented by p down to e, then there are transfinite sequences {Sa: a < T} and
{Ua: a<T} such that:

(1) S = ( J { S a / a < r } ;
(2) Uae08, 0 + Sa<= Ua and p-diam Sa<s for each a<T;
(3) ifa<P<T, then UanSp = 0; and
(4)foreachy<r,{J{Sa:a<7} = S {
Conversely, if there are transfinite sequences {Sa: a<T} and {Ua: a<T)

satisfying (l)-(3), then S is fragmented by p down to s.

The next lemma is proved in [JNR2].

1.2. LEMMA. Let (X, r) be a Hausdorff space and let p be a metric on X
whose topology is stronger than x. If {X, r) is a-fragmented by p, then it is a-
fragmentedby p using p-closedsets, i.e., for each e>0, X is a countable union
of p-closed sets each fragmented by p down to e.

The theorem that follows is the main theorem of the present paper. We
denote by NN the countable product of the discrete set N = {1, 2, 3,. . .} of the
natural numbers provided with the product topology. The space NN is metriz-
able, and we shall fix a metric d so that (MN, d) is complete. For a, a'eNN,
let d(a, a') = 0 if a = &. Otherwise let d(cr, a') = n~l, where n is the least
natural number such that a(n)^cr'(n). The open n"'-ball around a is
{o-'ef\T: <j(i) = o\i) for /<«}. This set is denoted by [CT(1), . . . , cr(n)].

1.3. THEOREM. Let (X, r) be a Hausdorff space and let p be a metric for
X. Then the following statements are equivalent.

(a) (X, r) is a-fragmented by p.
(b) There is a subset M of XxNN that projects onto X and is fragmented

by the metric d, where d((x, a), (xr, <r')) = max (p(x, x'), d{a, a')).
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(c) There is a subset MofXxMN that projects onto X and is fragmented
by the pseudometric p where p((x, a), (x', a')) = p(x, x').

(d) The same as (c) with NN replaced with an arbitrary second countable
Hausdorff space.

Furthermore, if the topology of p is stronger than r, then in (b) and (c) M
can be chosen to be closed in {X, p) x MN, i.e., d-closed.

Proof, (a) =s> (b). Let p\ and p2 be the projections of X x NN onto X and
f*yN respectively. For each n, we can write X={JT=iX?, where each X" is
fragmented by p down to «"'. Let

M={(x, a)eXxNN: xeX"a(n) for each neN}.

Then clearly pt(M)=X. (If the topology of p is stronger than r, then, by
Lemma 1.2, each X" can be chosen to be p-closed. Then, as easily seen, M is
closed in (X, p) x NN.)

We must show that M is fragmented by d. Let 0^AaM and e > 0. Choose
an NBN SO that (N+ I)"1 < e, and let aep2(A) and F=[cr(l),. . . , a(N)].
Then V is an open subset of NN such that Bd= A n ( J x F ) # 0 and
Pi(B) <=X%W. Hence there is a r-open subset Uof X such that Un
andp-diam(C/n^1(5))<e. Then (t/x V) r\A^0, and (x, CT)E(£/X
implies that ere Kand xe Unp^B). Hence if (x, <r), (x', cr')e(UxV)nA then
p(x, x') < s and rf(cr, cr') ̂  (A^+ 1)-1 <_s, whence d((x, a), (x', a')) < s.

(b) => (c). This is trivial since p^d.
(c) => (d). Also trivial.
(d) => (a). Let Y be a second countable Hausdorff space, and let M be a

subset of Xx Y that projects onto X and is fragmented by p. Let f be a
countable base for the topology of Y and let J1 be a base for X x y given by

@={Ux V: [/is open i n l a n d F e f } .

Fix £>0. Then by Lemma 1.1, there are transfinite sequences {Ma : a <T}
and {t/a x Va : a <T} satisfying:

(1) M=[j{Ma:a<T};
(2) Ua x Vae^, 0^MacUax Va and p-diam Ma<e for each a <T; and
(3) (UaxVa)nMp = 0 whenever a<ji<T.
For each F e f , let TF= {a: a <T and Fa = F}. Also let /;: X x 7-^X be

the projection map. Then {p(Ma): aeTv} and {Ua: aeTv} are transfinite
sequences of subsets of X which satisfy condition (2) of Lemma 1.1. If a,
/JerV and a<fi, then Uanp(Mp) = 0 since Mp^UpX VpcXx V and
(£/o x F)nM/j = 0 by (3) above. Hence by Lemma 1, Xv

d=
\J{p(Ma): aeTv) is fragmented by p down to s, and by (1), X=p{M) =
0{p(Ma): a <T} = U{-*V: KeiT}. This proves (a) because V is countable.

§2. Cover-complete and almost Cech-complete spaces. A cover ^ of a topo-
logical space is called exhaustive if, whenever A is a non-empty subset of X,
there exists & Ue<W such that Un A is non-empty and relatively open in 4̂.
The following lemma is due to Michael [Mil].

https://doi.org/10.1112/S0025579300011670 Published online by Cambridge University Press

https://doi.org/10.1112/S0025579300011670


cr-FRAGMENTABILITY AND ANALYTICITY 175

2.1. LEMMA. A cover <% of a topological space X is exhaustive if, and only
if, % can be well-ordered in such a way that [J{Ve<%: V^ U} is open in X for
each UeW.

A sequence {*„ : neN} of families of subsets of a topological space X is
called complete if, whenever si is a family of subsets of X with the f.i.p. (the
finite intersection property) that contains an ^«-small set for each neN, then
(]{A: Aesi}¥:0- A Hausdorff space X is said to be cover-complete [Ha2]
(or partition-complete [TW]) if there exists a complete sequence of exhaustive
covers.

A Tychonoff space X is called Cech-complete if X is a G^-subset of @X, and
this is the case if, and only if, X is a Gg-subset in an arbitrary compactification.
It is shown by Frolik [Fro] that a Tychonoff space X is Cech-complete if, and
only if, there exists a complete sequence of open covers of X. Since an open
cover is an exhaustive cover, each Cech-complete space is cover-complete.

A family si of subsets of a topological space is an almost cover if \Js/ is
dense in X. After [Mi2], a Hausdorff space is called almost complete (or almost
Cech-complete in [AL]) if there exists a complete sequence of open almost
covers of X. It is easy to see that if % is an exhaustive cover of X, then the
family {U°\ Uetft} of interiors U° of U is an open almost-cover of X [Mi2].
Hence each cover-complete space is almost complete. The next theorem is due
to Frolik [Fro].

2.2. THEOREM. A Tychonoff space is almost complete if and only if it
contains a dense Cech-complete subspace.

Finally, we note that a closed subspace of a cover-complete (resp. Cech-
complete) space is again cover-complete (resp. Cech-complete). We call a
Tychonoff space X hereditarily almost complete if each closed subspace of X is
almost complete. By remarks made above, we see the following:

2.3. LEMMA. A cover-complete Tychonoff space is hereditarily almost
complete.

2.4. Remarks. (1) It is proved in [Mil] that for a metrizable space X the
following conditions are equivalent: (a) X is completely metrizable, (b) X is
Cech-complete and (c) X is cover-complete. Also note that a scattered Haus-
dorff space is always cover-complete (hence almost complete), since the set of
all singletons is an exhaustive cover of the space.

(2) Let X be an uncountable Polish space. A subset A of X is called per-
fectly meager {always of first category in [Ku, Section 40]) if, for each perfect
set P in X, P n A is of the first category {i.e., meager) in P. We show that if
A is a perfectly meager subset of X, then B d= X\A is hereditarily almost com-
plete. Let F be a closed subset of X and let F= P u S where P is perfect and
S is scattered. Then for F n B to be almost complete it is sufficient that PnB=
P\{P n A) be almost-complete since, being scattered, S n B is almost complete.
By hypothesis, P n A is of the first category in P and P is completely metrizable.
Hence, P\{PnA) = PnB contains a dense G5-subset of P, and therefore, by

https://doi.org/10.1112/S0025579300011670 Published online by Cambridge University Press

https://doi.org/10.1112/S0025579300011670


176 I. NAMIOKA AND R. POL

Theorem 2.2, P n B is almost complete. This proves the claim. Now there are
2N| perfectly meager subsets of X [Ku, Section 40 III] which exceed the number
of analytic (hence coanalytic) subsets of X if the Continuum Hypothesis (CH)
is assumed. Thus we have seen that, under (CH), each uncountable Polish space
contains a hereditarily almost complete set that is not analytic {and hence not
cover-complete). This shows that the converse of Lemma 2.3 is false under
(CH).

§3. Property Jf. A topological space X is said to have property Jf, if
for each compact Hausdorff space K and each continuous map <p: X-+(C(K),
pointwise), the set of all points of continuity of the map q>: X->(C(K), norm)
is a dense (and, necessarily, a Gs-) subset of X.

3.1. LEMMA. If a Tychonoff space X contains a dense subset Y with prop-
erty Jf, then X has property Jf.

Proof. By [StR], Y (and hence X) is a Baire space. Let K be a compact
Hausdorff space, and let (p:X-+(C{K), rp) be a continuous map, where xp is
the pointwise topology.

For an e > 0, let

Oe= U {U: Uis open inX and diam <p( £/)<£}•

Here, the diameter is relative to the norm. As in [N], it suffices to prove that
O£ is dense in X. Let Wbe a non-empty open subset of X. Then by hypothesis,
(p\ Y: Y-*(C(K), norm) is continuous at some point pe Yn W. Then there is
an open neighborhood V of p va.X such that Vc W and diam q>(Yn V) ^ e.
Since (p is zycontinuous, (p(V)c(p(Yn V)Tp. Because the norm in C(K) is rp-
lower-semicontinuous, the tyclosure does not increase the diameter. Therefore,

diam <p(V)^diam (p(Yn F)T" = diam (p(Yn V)^s.

Hence VcOe and Wr\ Oe=> V¥=0.

As shown in [N], each Cech-complete space has property Jf. Hence by
Theorem 2.2 and the above, we have the following corollary.

3.2. COROLLARY. Each almost complete Tychonoff space (in particular,
each cover-complete Tychonoff space) has property Jf.

The definition of property Jf immediately implies the following theorem
(cf. [N, Theorem 2.3]).

3.3. THEOREM. Let X be a space with property Jf, let E be a Banach
space, and let (p: X-*(E, weak) be a continuous map. Then the set of all points
of continuity of the map <p: X->(E, norm) is a dense Gs-subset of X.

§4. (j-fragmentability and analyticity in Banach spaces. We begin with the
following observation.
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4.1. LEMMA. Let (X, x) be a Hausdorff space, and let p be a metric on X
such that (X, p) is complete and the p-topology is stronger than x. If (X, r) is
fragmented by p, then (X, x) is cover-complete.

Proof. Let neN. Then since (X, x) is fragmented by p down to /T1, by
Lemma 1.1, there is a transfinite sequence {Xa : a < Fn} of non-empty subsets
of X such that X={J{Xa: a<rn}, XanXp = 0 whenever a<fi<Tn, p-
diam Xa<n~1 for each a and (J {Xa : a < y} is open for each y < Tn. If we let
aUn={Xa : a<Tn), then by Lemma 2.1, <>Un is an exhaustive cover of X. We
show that {<%„: ne IU} is complete. Let s4 be a family of subsets of X with the
f.i.p. that contains an ^,,-small set for each neN. Then by completeness of
(X, p), f]{Ap:Aes/}^0. By hypothesis A"<=AT for each Aes/, and there-
fore [){AT:Aes/}*0.

A Tychonoff space X is said to be Cech-analytic if there is a Cech-complete
subspace of X* NN that projects onto X. This definition is due to Fremlin
[Fre], and, for basic properties of such spaces, refer [Fre], [JNR1] or [Ha3].
Analogously, Hansell [Ha2] defines the space X to be cover-analytic if there is
a cover-complete subspace o f ! x N N that projects onto X. Clearly Cech-
analytic spaces are cover-analytic (see Section 2). Similarly, the space X is
called almost Cech-analytic if there is a hereditarily almost complete subset of
Xx NN that projects onto X. By Lemma 2.3, a cover-analytic space is almost
Cech-analytic, but the converse is not true as seen from the example in Remarks
2.4(2). (Note that, by Remarks 2.4(1), a cover-analytic subset of a Polish space
is analytic.)

4.2. THEOREM. Let (X, x) be a Hausdorff space and let p be a metric on
X such that (X, p) is complete and the p-topology is stronger than x. If (X, r)
is a-fragmented by p, then (X, x) is cover-analytic.

Proof. Let d be the metric on X* NN as in Theorem 1.3, viz. d((x, <J),
(x', cr')) = max (p(x, x'), d(a, <J')). Then by Theorem 1.3, there exists a sub-
space Mcz(X, x) x f̂ JN that is rf-closed and fragmented by d and that projects
onto X. Since (X, p) is complete, (Xx NN, d) is complete and so is (M, d).
Also 3-topology is stronger than that of (X, r) x NN. It follows from Lemma
4.1 that M is cover-complete, and hence (X, x) is cover-analytic.

In certain situations, the converse of the above is true as seen in the next
Theorem. If s/ is a family of subsets of a topological space X, a Souslin-$4
set is a subset L of X of the form

L={J{f){A(<r\n): neN}: creNN}
with each set A(cr\n) in si, where o\n denotes the finite sequence cr(l),
o"(2),..., <T(M) for each creNN. Given such a representation of L, one can
associate to it a subset A of X x f̂ JN defined by

A = {(x, (T)eXxNN:xeA((x\n) for each neN}.

Clearly A projects onto L, and it can be readily seen that A is closed in X x (\IN

whenever each A(o\ri) is closed in X.
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4.3. THEOREM. Let S be a subset of a Banach space E. Then the implica-
tions (a) => (b) => (c) hold among the following conditions:

(a) {S, weak) is cover-analytic;
(b) (S, weak) is almost Cech-analytic; and
(c) (S, weak) is a-fragmented by the norm-metric p.
If S is a Souslin-!F set, where !F is the family of norm closed sets in E, then

(a), (b) and (c) are equivalent.

Proof, (a) => (b) is remarked above. Assume (b). Then there is a heredit-
arily almost complete subspace M of (S, weak) x f̂ lN such thatp(M) = S, where
p denotes the projection Sx I\IN-+S. By Theorem 1.3, for (c) to hold it is
sufficient that M be fragmented by p where p((x, a), (x\ a')) = p(x, x'). Let
£ > 0 and let A be a non-empty subset of M. Then the closure A of A in M is
almost complete in the relative topology. Hence by Corollary 3.2 and Theorem
3.3, the map p\A: A-*(E, norm) has a point of continuity. It follows that
there exists an open subset U of (S, weak) x f̂ JN such that UnA^0 and p-
diamp(UnA) = p-diam (Un A)< e. Since UnA=£0 whenever UnA^0,
M is fragmented by p down to s. This proves (b) => (c).

If Se^, then (S, p) is complete, and (c)=>(a) follows directly from
Theorem 4.2. For the case of Souslin-^" sets, an additional argument is neces-
sary. So let S be a Souslin-J^ set that satisfies (c). Then by the remark preced-
ing the theorem, there is a closed subset S of (E, norm) x NN such that/>i(£) =
S, where p\\ Ex NN-*E is the projection. Let d be the product metric on
Ex NN as in Theorem 1.3. Then (L, d) is complete. Denoting by r the topol-
ogy of the product (E, weak) x NN, we show that (£, r) is cr-fragmented by d.
Clearly, it is sufficient to see that (S* NN, r) is a-fragmented by d. Let e>0.
Then it is possible to write S and f̂ T as S=IJ{Sm:meN} and NN =
U {Vn : n e N } where (Sm, weak) is fragmented by p down to e for each m and
rf-diam (Vn)< s for each n. Then it is easy to check that (Sm *Vn,r) is frag-
mented by d down to s. Since S x N N = Q{5m x Vn : (m, n)e N x N} and e is
arbitrary, (Sx NN, T) is cr-fragmented by d.

Clearly rf-topology is stronger than r. Hence by Lemma 4.2 the space
(S, r) is cover-analytic, which means that, for some cover-complete subset
Mc(£,weak)xNNxNN , / ) 2 (M) = I where p2: Ex MN x NN->E* MN is the
projection given byp2(x, a, &) = {x, a). Then p\p2{M)= px{£) = S and, if one
identifies MNxMN with WN, then/?i/?2 is just the projection E x NN^E. Hence
(S, weak) is cover-analytic.

4.4. Remarks. (1) In Theorem 4.3, if E= C(K) for some compact Haus-
dorff space, all the conclusions are still valid when the weak topology is replaced
with the topology of pointwise convergence. The proof is identical except that
Theorem 3.3 is not needed.

(2) In Theorem 4.3, consider the additional condition:
(a') (S, weak) is Cech-analytic.

Since, as noted above, (a') => (a), we obtain (a') => (c) for each subset S of the
Banach space E. This result is essentially obtained in [JNR1] although only
the case S=E is enunciated there [JNR1, Proposition 6.3]. Even in the case
of S=E, we do not know if the converse (c)=>(a') holds. However, in view
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of the theorem above, this question can be restated as follows. Is (E, weak)
Cech-analytic whenever it is cover-analytici

(3) If a TychonofT space M is almost complete then M contains a dense
tech-complete subspace by Theorem 2.2. It follows that each almost Cech-
analytic space contains a dense Cech-analytic subspace. Now suppose that E
is a Banach space such that (E, weak) is cr-fragmented by the norm-metric.
Then by Theorem 4.3 each Souslin-J^ subset of E is almost Cech-analytic in
the weak topology and therefore contains a weakly dense Cech-analytic sub-
space. We do not know if the converse is true or not.

(4) Professor P. Holicky informed us that (a)«s>(c) can be derived from
his Theorem 6 in [Ho]. This theorem depends on [Hal], and, as pointed out
by Hansell (private communication), it applies only to Souslin-J^ sets. Also
Holicky's argument relies on as yet unpublished fact that being "almost K-
descriptive" is equivalent to being cover-analytic. Our proof via the new char-
acterization of cr-fragmentability (Theorem 1.3) seems more direct and, pos-
sibly, much simpler.

§5. Fragmentability and cr-fragmentability. In [JNR1], the result men-
tioned in Remarks 4.4(2) is a consequence of the main theorem, vis. [JNR1,
Theorem 4.1], the most difficult part of which states that a Cech-analytic space
X is (T-fragmented by a lower-semicontinuous metric p if, and only if, each
compact subset of X is fragmented by p. In this section we give a simpler
proof of this theorem assuming somewhat less—almost Cech-analyticity of X
rather than Cech-analyticity. We begin with a lemma which is a non-metrizable
variant of a special case of Theorem 1 in Mycielski [My].

5.1. LEMMA. Let Z be a non-empty Cech-complete space and let R be a
closed reflexive relation on Z, i.e., R is a closed subset ofZ x Z that includes the
diagonal A. If no point of A is in the interior of R, then there exists a compact
subset K of Z and a continuous surjective map q>: K->2N such that
((p~\t;) x <p~\ £')) nR = 0 whenever t, and %' are distinct points in 2N.

Proof. Let {Gn: ne N} be a sequence of open subsets of PZ such that Z=
0{Gn:neN}. By hypothesis, for each non-empty open subsets f/of /3Z, there
are x, yeUnZ such that (x, y) $R, where R is the closure of R in fiZ x fiZ.
Let The the set of all finite sequences in 2= {0, 1}, and, for each teT, let l(t)
be the length of t. By induction in /(/), we choose a family {U(i): teT} of
non-empty open subsets of fiZ such that, for each teT,

(i)
(ii) U(t)<=GK0,

(iii) U(tO) u U(tl)c U(t) and U(tO) n U(t\) = 0, and
(iv) (U(tO)*U(tl))nR = 0.
(i) Starts the induction with / ( 0 ) = 0. Suppose U(f)i=0 has been chosen.

Then there are x0, xieU(t)c\Z such that (x0,xi)$R. Then one can choose
open neighbourhoods U(tO) and U(tl) of x0 and Xi respectively satisfying (iii)
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and (iv). Since x0, XieZnG,(l)+i, we can also satisfy U(ti)cG,(l)+] for i =
0, 1. This concludes the inductive step.

Let K= CC= i U {UU) • I (0 = »}• Then AT is a compact subset of Z. Define
cp:K^2N so that ¥>"'(£) = \){U($\n): neN} for each § = ( 6 , £>,. . -)e2N.
Here <jj|n = (£,\,. .., £„)• Then <p satisfies all the conditions of the lemma.

5.2. THEOREM. Let p be a lower-semicontinuous metric on a Tychonoff
space X. Then the implications (a) => (b) => (c) hold among the following condi-
tions. Further, ifX is almost Cech-analytic then all the conditions are equivalent.

(a) X is a-fragmented by p.
(b) Each compact subset of X is fragmented by p.
(c) Whenever q> is a continuous map of a compact subset L of X onto 2H,

the p-distances of the inverse images of distinct points of 2N cannot be
bounded away from zero.

Proof. By [JNR, Theorem 4.1], it is sufficient to prove (c) => (a) assuming
that X is almost tech-analytic, i.e., there exists a hereditarily almost complete
subset M o{ X*NN with p(M)=X, where p is the projection J x NM-*X.
Suppose (a) is false. Then by Theorem 1.3, M is not fragmented by p where
p((x, a), {x1, cr')) — p(x, x'). This means that there is a closed non-empty sub-
space N of M and an £ > 0 with the following property:

(*) for each open set UcX x NN with Nr\Ujt0, p-diam (NnU)^ e.
Being closed in M, N is almost complete, and hence by Theorem 2.2 N

contains a dense tech-complete subspace Z. The property (*) again holds with
N replaced with Z, because the lower-semicontinuity of p (hence, of p) implies

p-diam (ZnU) = p-diam (ZnU) = p-diam (NnU) = p-diam (N n U)

whenever Uis open in Xx pyN and ZnU^0. Therefore, if R is the relation
on Z defined by

R = {((x, a), (x', cr'))eZxZ: p((x, a), (x', a')) = p(x, X')^E/2},

then R satisfies the conditions of Lemma 4.5.
It follows that there is a compact subset K of Z and a continuous map (p

of K onto 2N such that, for {x, a), (x1, a')eK, (p(x, cr)^<p(x', a') implies that
p((x, a), (xr, a')) = p(x, x') > e/2. Let L=p(K). Then L is a compact subset
ofX. Define a map/: L-»2N by f(x) = (p(Knp~\x)). This map is well-defined,
continuous and surjective by the property of <p stated above. It is also clear
that if % and £' are distinct points of 2N, then/~'(<^) and/~'(^') are separated
by p-distance at least e/2. This contradicts (c), and hence (c) => (a) holds.

By the usual trick of choosing a minimal map, one immediately obtains the
following corollary.

5.3. COROLLARY. Let p be a lower-semicontinuous metric on an almost
Cech-analytic space X. IfX is not a-fragmented by p, then there exists a compact
perfect subset K of X and a continuous map f of K onto 2N such that, for some
£>0, p-dist ( / " ' (£) , / " ' (£ ' ) ) ;>£ whenever £ and | ' are distinct points o/2N.
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By letting p to be the trivial 2-valued metric, as in the proof of [JNR1,
Corollary 4.5.1], we obtain the following (compare [Ha2, Corollary 1.2]).

5.4. COROLLARY. An almost Cech-analytic space is either a-scattered {i.e.,
a countable union of scattered subsets) or contains a non-empty compact perfect
set.
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