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The Franson Experiment

20.1 Introduction

Experimental violations of the Bell and Leggett–Garg inequalities studied in

Chapters 17 and 19, respectively, show that quantum states of systems under

observation (SUOs) cannot be interpreted classically. Interpretations that claim

to do this require contextually incomplete modifications of classical principles,

such as a breakdown of classical locality. Such modifications merely serve to make

standard quantum mechanics (QM) more appealing.

However, that is only one side of the observer–SUO fence. In this chapter,

we start to explore the other side of that fence, where the observer and their

apparatus live. Our focus is a thought experiment proposed by Franson (Franson,

1989), which suggests that apparatus cannot always be treated classically. Three

scenarios are discussed, each involving different time scales, with corresponding

different outcomes.

20.2 The Franson Experiment

In the following, we refer to “photons” as if they were actual particles, but that

is only a convenient and intuitive way of describing what at the end of the day

are just clicks in detectors. There are experiments, for example, where it is not

reasonable to think of the sources of photons (such as certain crystals) as point

like (Paul, 2004).

Franson’s proposed experiment FRANSON has parameters that can alter out-

comes significantly. There are three significant choices of parameters, leading to

three distinct scenarios labeled FRANSON-1, FRANSON-2, and FRANSON-3.

The basic architecture consists of a coherent pair of photons, produced at a

localized source S, sent in opposite directions toward a pair of separated Mach–

Zehnder interferometers, as shown in Figure 20.1. Each photon passes through

its own interferometer and, depending on path taken, can suffer a change in
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Figure 20.1. FRANSON-1: the Franson experiment for ΔT < τ2 � τ1. S is
the photon pair source, the Bi are beam splitters, the M i are mirrors, and the
φi are phase changers.

phase φ and a time delay ΔT . The time delay ΔT is assumed the same for each

interferometer in any given run. The phase changes φ1, φ2 associated with the

different interferometers can be altered by the observer, but are fixed before and

during each run.

The experiment hinges on the relationship between three characteristic times

(Franson, 1989).

Coherence Time τ1
In quantum optics experiments, a finite electromagnetic wave train of length L

moving at the speed of light c takes a time τ ≡ L/c to pass a given point. Such

a time is known as a coherence time. In the Franson experiment, the coherence

time τ1 is that associated with the production of the photon pair by stage Σ1.

It is a characteristic of the photon pair source S and of the collimation proce-

dures applied subsequently. While τ1 cannot be altered, it can be determined

empirically. We shall assume that τ1 is the same for each photon.

Emission Time τ2
The second characteristic time is τ2, the effective time interval within which

both photons in a pair can be said to have been emitted. This can be measured

during calibration by coincidence observations of detectors 13 and 23 with all

beam-splitters removed. It is assumed τ2 can be determined empirically and

that τ2 � τ1. This last inequality is crucial to FRANSON because when this

inequality holds, the observer has no way of knowing when a photon pair was

created during the relatively long time interval τ1.
1 It is this lack of knowledge

that leads to quantum interference in the FRANSON-3 scenario discussed below.

The spectacular aspect of FRANSON is that unlike the double-slit experiment,

1 Of course, “photon creation” is a vacuous metaphysical picture extrapolated from
observations done after the source has been triggered. There is no evidence, based on the
given apparatus, for the belief that anything has been “created” at S.

https://doi.org/10.1017/9781009401432.021 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401432.021


20.3 FRANSON-1: ΔT � τ2 273

where the observer does not know from which point in space a photon came, here

the observer does not know at which point in time the photon pair was produced.

Travel Time Difference ΔT

The third characteristic time is ΔT , the time difference between a photon trav-

eling along the short arm of its interferometer and along its long arm. This time

is adjustable but fixed during each run and is assumed the same for each of the

two interferometers in that run.

There are three scenarios we shall discuss: FRANSON-1, for which ΔT � τ2;

FRANSON-2, for which τ1 � ΔT ; and FRANSON-3, for which τ2 � ΔT � τ1.

In Franson’s original analysis (Franson, 1989), photon spin did not play a role.

Therefore, in all scenarios considered here, photon spin is assumed fixed once a

given photon pair has been created.

20.3 FRANSON-1: ΔT � τ2

The relevant figure for this scenario is Figure 20.1. We discuss the experiment in

terms of its stages, as follows.

Stage Σ0

The initial total state is

|Ψ0) ≡ |s0〉 ⊗ Â1
000, (20.1)

where |s0〉 represents the initial source spin state.

Stage Σ0 to Stage Σ1

By stage Σ1, the initial state has split into a correlated pair of photons moving

in opposite directions. The creation of this pair by this stage is represented by

the action of the contextual evolution operator U1,0:

|Ψ1) ≡ U1,0|Ψ0) = |s1〉 ⊗ Â1
1Â

2
101, (20.2)

where |s1〉 represents the combined spin state of the photon pair at this stage.

Stage Σ1 to Stage Σ2

The stage-Σ1 photons pass through beam splitters B1 and B2 as shown. One

output channel from each beam splitter leads directly to a final beam splitter,

while the other output channel is deflected by a mirror through a phase changer

before being deflected onto that final beam splitter. The four beam splitters Bi,

i = 1, 2, 3, 4, are parametrized by real transmission and reflection coefficients ti,

ri respectively, according to the prescription given by Eq. (11.28).
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The labstate evolution is given by

U2,1

{
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1Â
2
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}
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t1Â1
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1
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1+φ2)122

}
,

(20.3)

where φ1 and φ2 are total phase change factors due to the increased path length

of the long arms of the interferometers and phase-shift plates introduced in those

long arms by the observer. In the last line in (20.3), we show the computation

basis representation (CBR) of the expression in the previous line.

Stage Σ2 to Stage Σ3

There are four terms to consider in the transition from Σ2 to Σ3:
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2
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03. (20.4)

This is all the information needed for our computer algebra program MAIN

to evaluate the answers to all maximal questions. These answers turn out to

be complicated, long polynomials in the ti and ri parameters, so are not listed

here. However, setting them to the empirically useful value ti = ri = 1/
√
2, i =

1, 2, 3, 4, as assumed by Franson (Franson, 1989), gives the relative coincidence

rates

Pr
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. (20.5)

Each of these rates shows angular dependence due to independent “photon

self-interference” within each separate interferometer. This form of interference

will be referred to as local. There are no global interference effects involving both

interferometers and no post selection of data is required.

20.4 FRANSON-2: τ1 � ΔT

In this variant of the Franson experiment, the photon wave trains 32, 42 reflected

at B1 and B2, respectively, travel along the long arms of their respective inter-

ferometers at the speed of light or less, depending on the medium through which
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Figure 20.2. FRANSON-2: the Franson experiment for τ2 � τ1 � ΔT .

they move. Because now the travel time difference ΔT is very much greater than

the coherence time τ1, these wave trains arrive at B3 and B4 long after the

transmitted wave trains 12 and 22 have impinged on B3 and B4, respectively. In

consequence, no local or global interference can take place. In fact, the observer

can now obtain total information concerning the timing of each coincidence

outcome in every run of the experiment and know precisely what path was taken

by each photon.

Under this circumstance, the four original detectors 13, 23, 33, and 43 used

in FRANSON-1 now have to be regarded as eight separate detectors, i3, i =

1, 2, . . . , 8, as shown in Figure 20.2. The first four of these register photon clicks

from short-path photons, while the last four signal clicks from those that have

traveled the long paths. This information is specific to each photon and does not

involve any photon pairs.

Significantly, the final-stage quantum register involved in this scenario and

the next one, FRANSON-3, is 256-dimensional. However, our computer algebra

program MAIN has no difficulty dealing with this because it has been encoded

to process only the relevant contextual Hilbert spaces, and these are of greatly

reduced dimensions.

This demonstrates a fundamental point about apparatus. In the conventional

usage of apparatus, experimentalists tend to regard their equipment as having

some sort of “transtemporal” identity, or persistence. In Figure 20.2, for example,

beam splitters B3 and B4 would most likely persist in the laboratory as material

objects, during the long interval ΔT between their interaction with wave-trains

12 and 22 and with the delayed wave-trains 32 and 42. Even classically, however,

this need not be the case. It is conceivable that ΔT could be so long, such as

several years, that the beam splitters could be destroyed and rebuilt at leisure

between the observation of any short-arm photons and any long-arm photons.
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Whatever the actuality in the laboratory, from a quantum point of view, the

beam splitters receiving short- and long-arm photons should be considered as

completely separate pieces of equipment in this scenario (but not in the next).

In other words, apparatus and how it is used is time dependent. The analysis in

the next section shows that the rules for doing this can be quite nonclassical and

appear to violate the ordinary rules of causality.

For the FRANSON-2 scenario, τ1 � ΔT , the dynamics follows the same rules

as in the previous section up to the transition from stage Σ2 to stage Σ3. At this

point, the transformation rules have to take into account the possibility that the

observer could know the timings of all events. The rules for this transition are now
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2
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2Â
4
202

}
= |s3〉 ⊗

{
t3Â5
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3

}
03.

(20.6)

which should be compared with (20.4).

In this scenario, we find sixteen nonzero coincidence rates, each of the form

Pr(Âi
3Â

j
303|Ψ0), where i = 1, 3, 5, 7 and j = 2, 4, 6, 8. All of them are independent

of φ1 and of φ2. For example, Pr(Â1
3Â

6
3|Ψ0) = (t1r2t3t4)2, and so on. In the case of

symmetrical beam-splitters, where ti = ri = 1/
√
2, all 16 rates are equal to 1/16.

For FRANSON-2, the detectors behave in a manner consistent with the notion

that photons are classical-like particles propagating along definite paths.

We should comment on the choice of stage diagram for FRANSON-2, as

this impacts significantly on the encoding of program MAIN. Our choice of

introducing detectors 53, 63, 73, and 83 seems inevitable but puzzling, because it

could be claimed that in a real experiment, there would only be four final stage

detectors, not eight. However, our observation above that the long-arm photon

signals could occur perhaps many years after the short-arm signals addresses that

point: the observer will have real evidence that one set of signals has arrived

long before the other set. The fact that the same atoms could persist in the

configuration of detectors 13, 23, 33, and 43 until they did service as detectors

53, 63, 73, and 83 is irrelevant.

A related point is that, for simplicity, we chose to model all of the eight final-

stage detectors to be associated with stage Σ3, but that is not necessary. It would

perhaps have been more logical to assign the long-arm detectors to a separate,

later stage, but that would have been an inessential complication in programming

that would make no difference to the calculations or to the conclusions drawn

from them.

FRANSON-2 is an important illustration that the observer–apparatus side of

quantum physics can contain real surprises. The next variant, FRANSON-3, is

even more surprising.
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Figure 20.3. FRANSON-3: the Franson experiment for τ2 � ΔT � τ1.

20.5 FRANSON-3: τ2 � ΔT � τ1

This is the actual scenario discussed by Franson (Franson, 1989). In the following,

S stands for “short path” and L for “long path.” The fundamental change

induced by the observer’s setting of ΔT such that τ2 � ΔT � τ1 is that,

unlike the previous scenario, the observer cannot now use individual times of

detector clicks to establish which of the coincidences S–S or L–L has occurred

in a given run of the experiment. This presumes that a given run lasts at least

as long as the coherence time, and that coincidence observations are being made

at times greater than a critical time τc ≡ τs +ΔT into any given run. Here τs is

the earliest time that a wave train following an S path could take to a stage Σ3

detector. Coincidence observations of interference involving any L path at any

time earlier than τc into a given run will not occur, simply because any wave

train taking such a path would still be on its way to stage Σ3 detectors.

FRANSON-3 is discussed and modeled assuming observations are made at

times later than τc. In that regime, it will then not be possible for the observer to

use detection times to distinguish between S–S correlations and L–L correlations.

However, the observer will be able to filter out the two separate S–L correlations.

The relevant diagram is Figure 20.3, which is identical to Figure 20.2 except

now 53 is replaced by (3∨5)3, 73 is replaced by (1∨7)3, 63 is replaced by (4∨6)3,

and 83 is replaced by (2 ∨ 8)3, where for example 3 ∨ 5 means “3 or 5.” Which

alternative is taken depends on the contextual information available in principle

to the observer.

The dynamics for this scenario is identical to that for the previous one, except

for the last equation in (20.6), which is replaced by

U3,2

{
|s2〉 ⊗ Â3

2Â
4
202

}
= |s3〉 ⊗

{
t3Â3
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3

}{
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3

}
03. (20.7)
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With this amended information, program MAIN gives the following nonzero

coincidence rates:

Pr
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2
)
, (20.8)

and eight others that each have value 1/16, for the symmetric case ti = ri =

1/
√
2, i = 1, 2, 3, 4.

These results are a spectacular demonstration of temporal nonlocality as well

as spatial non-locality: interference is occurring between S–S and L–L outcomes.

Note that in actual FRANSON-3 type experiments, the observer would have

to measure the times at which coincidence clicks were obtained during each run

and then post-select, that is, filter out, those coincidences corresponding to the

{S–S, L–L} processes and those corresponding to {S–L, L–S}.

20.6 Conclusions

Since the publication of Franson’s original paper, there has been great interest

in empirical confirmation of FRANSON-3 predictions. While there is still some

room for debate concerning the interpretation of the experiment, the results

of Kwiat et al. (1993) vindicate Franson’s prediction, which corresponds to

Pr(Â1
3Â

2
303|Ψ0) =

1
4 cos

2( 12φ
1 + 1

2φ
2) in our approach.

Assuming the quantum theoretical interpretation of this experiment is correct,

then there is an extraordinary lesson to be learned, not about systems under

observation in particular, but about the rules concerning the use of apparatus

and how these can differ spectacularly from those expected classically. The inter-

ference of the S–S and L–L amplitudes in FRANSON-3 cannot be envisaged

in a classical way to occur locally in time. Any attempt to think about such

interference in terms of photons as actual particles would lead to bizarre concepts

that would never be acceptable conventionally. The conclusion is that a two-

photon state is not equivalent under all circumstances to a state with two separate

but entangled photons. A more recent quantum optics experiment with similar

conclusions has been reported by Kim (Kim, 2003).

The weight of evidence points to the conclusion that quantum outcome

amplitudes are dynamically correlated with contextual information held by the

observer. When some information is absent, then quantum interference can occur.

This supports the position of Heisenberg and Bohr concerning the fundamental

principles and interpretation of quantum physics. Quantum optics experiments

such as FRANSON are providing more and more evidence that QM is not just

a theory of SUOs but also a fundamental perspective on the laws of observation

in physics. It is our considered view that the surface of those laws has only been

scratched to date.
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