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Bi-cross validation of spectral clustering hyperparameters
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One challenge impeding the analysis of terabyte scale X-ray scattering data from the Linac Coherent
Light Source (LCLS) is determining the number of clusters required for the execution of traditional
clustering algorithms. Here, we demonstrate that the previous work using bi-cross validation to deter-
mine the number of singular vectors directly maps to the spectral clustering problem of estimating
both the number of clusters and hyperparameter values. Applying this method to LCLS X-ray scat-
tering data enables the identification of dropped shots without manually setting boundaries on detector
fluence and provides a path toward identifying rare and anomalous events. © International Centre for
Diffraction Data 2020. [doi:10.1017/S0885715620000214]
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I. INTRODUCTION

X-ray free electron lasers (X-FELs) (Ishikawa et al.,
2012) are remarkable instruments capable of producing highly
coherent X-ray pulses less than 20 fs in duration. Since their
inception, X-FELs have made contributions to a diverse
range of disciplines spanning from condensed matter
(Higley et al., 2019) and atomic molecular optics (Yang
etal., 2018) to structural biology (Nogly et al., 2018) and fem-
tosecond chemistry (Hong et al., 2015). Compared to third-
generation light sources, X-FELs require high-throughput
data systems (Thayer et al., 2016) for writing to the disk on
a per-pulse basis. Originally developed in order to filter out
low fluence shots in post processing, shot-by-shot recording
has since shifted the data collection paradigm and provided
researchers with the means to compensate X-ray/laser timing
jitter (Droste et al., 2019), outrun X-ray damage accumulation
in protein crystallography experiments (Kupitz et al., 2017;
Spence, 2017), and offers the potential to extract new physics
by identifying rare events (Schoenlein et al., 2017).

Data accumulated over the course of a Linac Coherent
Light Source (LCLS) user experiment regularly exceeds 20
TB and approximately 2.5 years analyzing such data is
required before the results are published. Efforts to expedite
the analysis have motivated the development of a high-
performance computing infrastructure, novel algorithms
(Yoon et al., 2011), and user-friendly abstraction layers
(Damiani et al., 2016) similar to graphical user interfaces pro-
vided by commercial software vendors. One promising avenue
for streamlining data analysis is the exploitation of clustering
algorithms. Such algorithms are currently used to cluster dif-
fraction images of protein conformations collected in diffract
and destroy experiments (Yoon et al., 2011). With the
increased data rates anticipated for LCLS2, clustering algo-
rithms will have the potential to identify and isolate the rare
events of charge separation, migration, and accumulation
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during multi-step catalytic processes in molecular complexes
and devices (Schoenlein et al., 2017). One impediment to
achieving these goals is the challenge of estimating the hyper-
parameters and the number of clusters required for the execu-
tion of clustering algorithms.

k-Means clustering is the process of labeling data based
solely on the distribution of the data itself. For linearly sepa-
rable clusters, this is accomplished by drawing a set of deci-
sion boundaries in the form of hyperplanes that minimize
the intracluster variance summed over all clusters (Lloyd,
1982). This method, however, prescribes no approach for
how many clusters one should choose. Early works estimating
the number of clusters used a combination of gap methods
(Tibshirani et al., 2001), distortion methods (Sugar and
James, 2003), stability approaches (Tibshirani and Walther,
2005; Von Luxburg, 2010), and nonparametric methods
(Fujita et al., 2014). These approaches are generally consid-
ered to be heuristic with well-understood limitations and
require assumptions about the cluster distribution. More recent
work (Fu and Perry, 2019) has made exciting progress in both
implementing and laying the theoretical foundation for
abstracting bi-cross validation (BCV) (Owen and Perry,
2009) away from its matrix formulation to estimate the num-
ber of clusters for use with the k-means algorithm. This
approach, however, requires preconditioning rotations to dis-
criminate when multiple clusters are spaced along a single fea-
ture dimension and can only label clusters that are linearly
separable. In that work (Fu and Perry, 2019), it was predicted
that applying BCV to the Laplacian matrix after the eigenvec-
tor transformation would provide a convex loss function for
estimating the number of clusters.

Here, it is shown that spectral clustering hyperparameters,
including the number of clusters, can be estimated by perform-
ing BCV on the inverted Laplacian matrix and finding the
local minima of the resultant BCV loss function. In spectral
clustering, data are embedded into a higher dimensional
graph representation called the Laplacian matrix (Von
Luxburg, 2007, 2010). The multiplicity of the Laplacian’s
smallest eigenvalues is equal to the number of clusters.
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BCV is a powerful least squares method for estimating the
number of dominant singular vectors needed to reconstruct
the matrix without over fitting the data to the noise (Owen
and Perry, 2009). Inverting the Laplacian matrix converts
the problem of cluster number estimation from one of estimat-
ing the number of smallest singular vectors into the problem of
estimating the number of largest singular vectors that, in turn,
can be solved using BCV.

The main result of this work is captured in Eq. (7) which
connects the spectral clustering and BCV frameworks. The
range where this technique succeeds and fails is explored
using simulated data sets. Applying this technique to experi-
mental LCLS X-ray scattering data separates low fluence
from high fluence X-ray pulses and provides a path toward
identifying clusters of rare events.

Il. THEORY

We consider a set of X-ray scattering data stored within a
matrix X, with elements X;; where i and j are the row and col-
umn indices, respectively. All entries contained within a row
were measured at the same instant, and all entries within a sin-
gle column measure the same quantity. For the case of LCLS
data, potential column labels are incident X-ray pulse energy,
scattered pulse energy, photon energy, X-ray/laser jitter cor-
rection, or laser delay stage position. The process of cluster-
ing, in this context, means creating columns that assign
labels such as “signal of interest”, “low fluence shots”, “outli-
ers”, or “rare events”.

In the spectral clustering approach, clusters are identified
by applying k-means clustering on the k smallest eigenvectors,
v, of the Laplacian matrix, L, where k is the number of clus-
ters. Formally,

L=W-D (1)

where D is the degree matrix. The weighting W matrix chosen
here is calculated using the radial basis function (RBF) kernel
(Chung et al., 2003) such that
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where i and j are the row and column indices of W, and I is a
hyperparameter that is inversely proportional to the root of the
expected distance between points within a cluster.
Traditionally, I' is treated as a scalar. In practice, the
Laplacian is normalized by

Ln:D—l/Z LD—1/2: I— D—1/2W D_1/2 (3)

where L, is the normalized Laplacian. Using these definitions,
the spectral clustering method proceeds by solving the gener-
alized eigenvector problem

L,v = ADv, (€]

implementing k-means on the diagonalized feature space and
propagating the resultant labels from k-means back to X.
The procedure for estimating the number of clusters and I'
by performing BCV on the inverted Laplacian, L ', proceeds
as follows. The Laplacian is, by construction, a singular
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matrix that cannot be inverted. This drawback is circumvented
by introducing a regularization term, R. That is

L.=L,+ &R ®)

where £ is a scalar regularization parameter. Here, £ is empir-
ically determined to be of the order 1 x 10~ to 1 x 10~ "%, The
matrix R is

R =H-H'L,H (6)

where H is a Haar distributed random matrix (Mezzadri,
2006). Adding £ R to Ly, as opposed to adding £ H directly,
guarantees that the resultant matrix L. can be inverted. The
BCV loss function for L_! is calculated as described in
Owen and Perry (2009) by breaking L !into quadrants.

4 _[A B
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The bottom-right quadrant has been labeled in this work as E,
deviating from the notation in the previous literature (Owen
and Perry, 2009) so as not to be confused with the degree
matrix D. Here, A was designated as the holdout, and 2 x 2
BCV was configured such that the sub-matrices A, B, C,
and E have the same number of rows and columns. This sub-
matrix partitioning is close to the optimal 52% holdout size for
square matrices (Perry, 2009). The BCV loss function is

BCV(T) = 3 (A - B@E) O )

ij

where (lAEk)Jr is the Penrose pseudo inverse of (Ek),
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and Ek is the singular value decomposition (SVD) reconstruc-
tion of E using the k number of basis vectors. The procedure
starting from Eq. (7) was iterated ~40 times with L ! being
shuffled each iteration before being decomposed into the sub-
matrices in Eq. (7). The BCV score used to determine the
number of clusters is the average BCV score over all iterations.

lll. NUMERICAL SIMULATIONS

The performance of this approach was benchmarked for a
range of hyperparameters using Scikit-learn version 0.19.1,
Numpy version 1.14.2, and Scipy version 0.19.1 packages
(Oliphant, 2006, 2007; Pedregosa et al., 2011; Van Der Walt
etal.,2011). Source code containing an executable step-by-step
walk through can be cloned from this repository (Zohar, 2019).

In Figure 1(a), a set of five simulated clusters projected
from a seven-dimensional feature space onto two dimensions
(2D) are shown. Panel (b) shows seven simulated clusters gen-
erated in a two-dimensional feature space. The BCV loss func-
tion minimum was found by iterating over increasing values of
cluster number, k, and length scales, I', and calculating the
BCV loss function at each point. The BCV score’s depen-
dence on k for the clusters in panels (a) and (b) is shown in
panels (c) and (d), respectively. The different color lines
shown in panels (c) and (d) correspond to increasing values
of the regularization parameter. The BCV score in panel (c)
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Figure 1. (Color online) (a) A set of 150 samples occupying a 7D feature
space are clustered into five groups and projected onto 2D. (b) The
intercluster spacing is reduced by reducing the feature space from 7D to 2D
and increasing the number of clusters from 5 to 7. (¢) The BCV score
dependence on the number of clusters for regularization parameter values of
1x 107" (blue), 6.3x 107" (orange), 1x107'? (green), and 2.5x 1077
(red). The score minimum occurs at 5 which is the expected number of
clusters. (d) When the interclustering spacing is reduced, BCV does not
robustly estimate the number of clusters, since the score minimum (black
dots) does not occur at the same k value for all values of £ and only occurs
at the expected value of 7 for E=2.5x 107>,

has a minimum at k=35 correctly identifying the number of
clusters. This estimate is robust for changing regularization
values except for large regularization, where the score mini-
mum no longer occurs at the expected number of clusters
and moves to arbitrarily large k. The intercluster distance for
points in panel (b) is decreased with respect to panel (a) by
increasing the number of clusters from 5 to 7 and reducing

the feature space dimension from 7 to 2. The BCV score for
the points in panel (b) is shown in panel (d). For a fixed
value of T', the cluster number estimation procedure is not
robust since the score minimum does not reliably estimate
the number of clusters for all values of &.

In Figure 2(a), a set of clusters in 2D are shown. The clus-
ters can be partitioned into 3 or 11 different groups, depending
on the Gaussian kernel width, I', chosen to construct the affinity
matrix. The BCV scores plotted as a function of the number of
clusters are shown in panels (b), (c), (d), and (e) for values of I'
equal to 0.005, 0.028, 0.158, and 1.58, respectively. The differ-
ent colored curves are for different values of the regularization
parameter £. For the smallest regularization values (blue
curves), two global minima occurring at I' values of 1.58
[Figure 2(b)] and 0.005 [Figure 2(e)] occur at k equal to 3
and 11, respectively. In Figure 3, a heat map of the BCV’s
score value’s dependence upon the Gaussian kernel width
and the number of clusters is shown for £=10""%. The RBF
parameter I' can be converted into a characteristic length
scale o, using I' = 1/(20'2). The two local minima observed at
k=11 and k=3 have corresponding o values of the orders of
1 and 10, respectively, which correspond to two different length
scales at which the clusters can be grouped. The ability to esti-
mate both the number of clusters and the spectral clustering I'
hyperparameter is advantageous compared to previous methods
which provide a loss function that estimates the number of clus-
ters but not any additional hyperparameters.

IV. EXPERIMENTAL DATA

In Figure 4, the results from applying this approach to an
X-ray scattering experiment are shown. The scattered X-ray
intensity, incident X-ray intensity, photon energy, and other
machine parameters were measured at the soft X-ray beamline
at the SLAC Linear Accelerator’s LCLS just below the Cu L3
edge. The sample under study was an yttrium barium copper
oxide (YBCO) thin film that has been shown to exhibit high-
temperature superconductivity. The feature space is 12 dimen-
sions with column labels corresponding to the intensity of
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Figure 2.

(Color online) Demonstration of cluster identification at different length scales. (a) A set of 150 samples clustered into 11 groups that appear as three clusters

on longer length scales. (b) Density map of their score dependence on I and k. Regularization values are 1 x 10™'* (blue), 6.3 x 10™' (orange), 1 x 10~'? (green), and
2.5x10° (red). The score as the function of the cluster number k is shown for I' equal to 0.005, 0.028, 0.158, and 1.58 for panels (b), (c), (d), and (e), respectively.
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Figure 3. Density map of the score dependence on I" and k for E=1x 107",
The dark and light regions correspond to low and high BCV loss function
values, respectively. Cross sections of this density map for fixed values of
I are shown in Figure 2(b)—(e).

X-rays scattered off the sample, the incident intensity downstream
of the monochromator, four different incident intensity diagnos-
tics from upstream of the monochromator, laser delay-stage posi-
tion, laser power, arrival time monitor mean and FWHM, photon
energy, and the photon energy product with the incident intensity
downstream of the monochromator. Multiplying the photon
energy with the intensity linearizes the chromatic nonlinearity
observed when the photon energy is tuned to the steep part of
an X-ray absorption edge (Zohar and Turner, 2019).

The problem of heterogeneous density present in spectral
clustering is circumvented by feature engineering an additional
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Figure4. (Color online) (a) The BCV score minimum occurs for 11 clusters.

(b) Histogram of the incident pulse energy measured in a gas detector
upstream of the monochromator. The orange and blue histograms
correspond to the dropped shots and signal of interest, respectively. (c)
Histogram of the photon energy generated upstream of the monochromator.
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column that contains an estimate of the point density in the local
vicinity. This was accomplished by appending the diagonal val-
ues of the degree matrix, calculated for 7000 samples using a I'
=1x 1072, to the feature space. Clustering was performed on a
total of 750 rows from this feature space. Eleven clusters are
identified with the populations of the dominant first three clus-
ters containing on average 573, 62, and 43 data points. The rest
of the data points are spread over the remaining clusters. As
shown in Figure 4, this approach separates out the dominant
cluster (blue histogram), which corresponds to signal of inter-
est from the dropped shots with no fluence (orange histogram).
It is stressed that the last figure presented here is analyzed on
less than 1% of the entire data and does not represent the
expected number of clusters if the full data sets were to be used.

V. DISCUSSION

There are several advantages for using the matrix formu-
lation (Owen and Perry, 2009) of BCV as opposed to the
abstracted BCV form in the nonembedded feature space (Fu
and Perry, 2019). One advantage is that the preconditioning
rotation steps needed for preventing clusters from laying
along one non-separable dimension are no longer required.
Another advantage is that since the matrix BCV formulation
does not require a classification step, there are no additional
hyperparameters that need to be estimated.

The ability to simultaneously estimate both the I' parameter
and the number of clusters is not serendipitous. Intuitively, it is
understood that asking “how many clusters are present in some
region” cannot be separated from the question of “what length
scales do those same clusters appear on?”. This line of thinking
agrees with the limiting cases of very small and very large I'
values, where the number of estimated clusters will be equal
to either one or the number of points respectively. Looking for-
ward, there are several prerequisites that would need to be met
for this approach to be widely adopted. A mathematical proof
demonstrating that the BCV loss function minimum correctly
estimates the hyperparameters would have to be shown. This
proof would provide insight on how to estimate the regulariza-
tion parameter by exploiting the regularized Laplacian’s condi-
tion number and using the eigenvector decomposition of the
inverted Laplacian as opposed to SVD decomposition.

VI. CONCLUSION

A direct matrix implementation of BCV for estimating both
the number of clusters and kernel hyperparameters used in spec-
tral clustering has been demonstrated. This was accomplished
by applying the matrix formulation for BCV directly to the
inverted Laplacian matrix. The resulting BCV loss function
has robust minima that occur at different cluster numbers
depending upon the length scales determined by the RBF kernel
parameter. The results here provide a path toward generalized
hyperparameter optimization for spectral clustering algorithms.
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