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Abstract. The 2-ball property is shown to be transitive. Combining this
with some results on the decomposability of convex bodies, we produce new
examples of Banach spaces which contain proper semi-M-ideals. These semi-
M-ideals are not hyperplanes, nor are they the direct sums of examples which
are hyperplanes.

We shall be concerned here with subspaces of Banach spaces which have
the n-ball property for some neNu{li} . Recall that a closed subspace Mof
a Banach space X is said to have the n-ball property (neN) if, whenever
B(al,rl),..., B(an, /•„) are closed balls in X, with fl"=1 B(at, r , )^0 , and
MnB(di, r , ) ^ 0 for each i, then Mnn"=iB(a .> r, + e ) ^ 0 for every e>0.
If the conditions B(ax, rx)n B(a2,r2)^0, M nB(ax,rx)9

i0 and a2eM
imply that Mr, B(ax, r, + e)n B(a2, r2 + e) # 0 for every e >0, then we say
that M has the l^-ball property in X. If we can take e = 0 in these definitions,
then we speak of the strong n-ball property (neNu{l^ ) . These concepts
were first studied by Alfsen and Effros, who showed, amongst other things,
that a subspace with the 3-ball property already has the n-ball property for
all n [1, Theorem 1.5.9]. For further work along these lines, see [2, Ch. 2],
[9] and [11]. We refer to [17] for an account of the duality theory of such
subspaces, elementary approximation theory, and for most definitions omitted
in this paper.

Examples of M-ideals (i.e., subspaces with the 3-ball property) are well
known these days, predominantly from Banach algebras and operator theory.
They include:

any ideal in a C*-algebra;
certain ideals in uniform algebras;
the compact operators in B(lp), for K p < o o ;
the compact operators in B(X, c0), for any Banach space X.

Examples of subspaces which have the 1 -̂ball property but not the 2-ball
property (i.e., are not semi-M-ideals) are also well known now. They include:

subalgebras (other than ideals) in CR(K), for any compact Hausdorfi
space K;
the compact operators in B(Lx(ix), /,), for almost any measure n;
the compact operators in B(C(KX), C(K2)), when Kx is dispersed and K2

is extremally disconnected.

Again the examples have a somewhat algebraic flavor.
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THE TWO-BALL PROPERTY 191

However, when we search for some subspaces, which have the 2-ball
property but not the 3-ball property, examples are rather thin on the ground.
In complex Banach spaces, not even one example is known. (There is good
reason to believe that, in complex Banach spaces, the 2-ball property is
equivalent to the 3-ball property [18].) In real Banach spaces, a typical example
is X = L^/A) and M = {/e X: jfdfj. = 0}, where /J. is any measure for which
the dimension of Li(/x) is at least three. For the case when L,(/x) is 3-
dimensional, this was the first counterexample, produced originally by Alfsen
and Efiros [1, Theorem 1.5.9]. More generally, let us recall that a Banach
space X is a base norm space if its unit ball U has a closed proper face F,
known as the base, such that the convex hull of —Fu F contains the interior
of U. This is easily shown to be equivalent to the usual definition in terms of
vector orderings [16, Ch. 9]. Lima [9, Section 3] showed that a real Banach
space is a base norm space, if, and only if, it contains a hyperplane with the
2-ball property. We digress to give a short proof of this, via a similar result
for the l|-ball property. For any set 5 in a Banach space X we denote by S,
the intersection of 5 with the closed unit ball of X. If M is a subspace of X,
then Mx will denote its metric complement, Mx = {xeX: ||x|| = d(x, M)}.

PROPOSITION 1. Let M be a hyperplane in a real Banach space X. Then
(i) M has the \\-ball property in X, if, and only if, int X, <= co (M, u Mx);

and
(ii) M has the strong \\-ball property in X, if, and only if,

Proof. We only prove (i), since the proof of (ii) is quite similar. (=>)
Choose a in the interior of X, and set d = d{a, M). If d = 0 then a e M,,
so we assume that 0<d<l. Courtesy of the l^-ball property, there is an
xeM nB(a,d)nB(0,\-d). It follows immediately that

a = x + (a - x ) e (1 - d)Ml + dMf.

(«=) Suppose M = ker/ where fe X* and ||/|| = 1. We set

M± = {xeXl:f(x) = ±l}.

Then M+ and M~ are closed, convex sets and, by hypothesis,

int X, c co (M, u M + u M") = co (M, u M + ) u c o ( M , u M").

Now consider aeX and r > 0 such that M nB(a,r)^0 and ||a|| < r + l . We
assume without loss of generality t h a t / ( a ) > 0 , so (r+ l)~'a eco (M, u M+).
Then

a = (r+l-f(a))x+f(a)b

for some x e M , , beM+. Now M n B(a, r)*0 forces |/(a)| = d(a, M)« r.
Thus | |a-x | | = ||(r-/(a))x+/(a)b||=£r, and so xe M n B(0,l) n B(a, r), as
required.

The assumption that M is a hyperplane is not needed in the first half of
the preceding proof. However, it is essential in the second half. For if X = /^(3)
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and M is the linear span of (0,1, 2), then X, = co (M, u Mf), but M fails the
13-ball property. Nonetheless a subspace M has the 13-ball property in X, if,
and only if, it has the 13-ball property in N for every 1-dimensional extension
N of M. Thus Proposition 1 can be interpreted as a characterization of the
13-ball property.

Garkavi [4, p. 477] was the first to give an example showing that the 13-ball
property is strictly weaker than the strong 13-ball property. In fact, he showed
that any nonreflexive space can be renormed so that a given hyperplane has
the l|-ball property but not the strong 13-ball property.

PROPOSITION 2 [9]. A real Banach space X is a base norm space, if, and
only if, it contains a hyperplane with the 2-ball property.

Proof. (=>) Let M be a hyperplane parallel to the base. By Proposition
1, M has the 13-ball property. According to [17, Theorem 4], it suffices to
show that M has the unique extension property. G i v e n / e M* with ||/|| = 1,
we must show that

sup {/(>-)- \\y - a\\: y e M} 5* inf {/(z) + \\z - a\\: zeM}, for all aeX.

We may assume that d(a, M) = 1. The base may then be taken to be (a- M),.
Given e > 0, we can find x e int M, with f(x) > 1 - e. Now

for some y,zeM n B(a, 1) and some A e [0 ,1 ] . But xe M, so A = \. Thus

as required.
(<=) Let M be a hyperplane with the 2-ball property. Then M = ker/ for

some/eM* with ||/|| = 1. Since M is proximinal in X [17, Theorem 3],
F = X1n/~1(l) is a nonempty, closed proper face of X,. To show that
c o ( - F u F ) contains the interior of Xt, first fix a e F.

Now let xeX be given, with | |x| |<l. Put A =3(l+/(x)); then 0<A<l.
Now M n £ ( a , 1)^0 and d(a-\~lx, M) = | /(a-A~!x) | = A~'(l-A) so that
the 2-ball property gives us some

b £ Mn B{a, 1)n B(a -\~*x, A~\l -\)).

Put y = a-b and z = (l-\y\\y-x). Clearly y e F. Also

and ||z|| = A(l-A)" ' | |a-A"1x-b | |« : l , whence zeF. Thus

x = A y - ( l - A ) z e c o ( - F u F ) .

Recall that a real Banach space is an order unit space, if, and only if, it
contains a 1-dimensional semi-L-summand [10, Theorem 4.7]. Given this,
and Proposition 2, the duality between order unit spaces and base norm spaces
[16, Chapter 9] follows immediately from the duality between semi-L-
summands and the 2-ball property [17].
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So, the best known examples of subspaces with the 2-ball property but not
the 3-ball property are all hyperplanes. Of course, examples which are not

1 hyperplanes can easily be constructed by taking direct sums, or even injective
' tensor products. If M (respectively N) has the 2-ball property in X (respec-

tively Y), then M®N has the 2-ball property in X® Y, provided we take
the Zoo-norm on the direct sums. If M fails the 3-ball property in X and N is
a proper subspace of Y, then M®N has codimension at least two in X© V,
and the 3-ball property fails. (We allow the possibility that N = {0}.) One of
our purposes here is to exhibit examples of codimension two which do not
admit such trivial decompositions.

Our technique is to first show that the 2-ball property is transitive, and
then use some ideas from Shephard [14]. In the process we study transitivity
of the n-ball properties in general. Note that we are only concerned with
isometric problems in this paper. As remarked after [18, Proposition 4], any
real Banach space (of dimension at least three) can be renormed so that a
given hyperplane has the 2-ball property but not the 3-ball property.

Recall that M is said to be L-proximinal in X [12] if it is proximinal and
\\x\\ = d(x, M) + d(0, PM(x)) for all xeX. Part (i) of the next result was first
proved by Godini [5, Corollary 4].

PROPOSITION 3. (i) A closed subspace M of a Banach space X has the
\\-ball property, if, and only if, it is L-proximinal.

(ii) Furthermore, it has the strong \\-ball property, if, and only if, it is
L-proximinal and the infimum defining d(0, PM(x)) is attained, for all xeX.

Proof. As before, it is only necessary to prove part (i) in detail. (=>) For
any xeX, e>0, the 1 -̂ball property gives us a point

y e M n B(x, d(x, M)) n B(0, \\x\\ - d(x, M) + e)

= PM(x)nB(0,\\x\\-d(x,M) + e).

Letting e-»0 we obtain d(0, PM(x))=s ||x|| -d(x, M). This is sufficient, as the
reverse inequality is trivial.

(<=) Given any x e int M,, we set e = 1 - ||x||. Choose y e PM(x) so that
\\y\\<d(0,PM(x)) + e = l-d(x,M).Thenx = y + (x-y)eco(MiuMf). By
Proposition 1, M has the lf-ball property.

THEOREM 4. Let X, Y and Z be Banach spaces satisfying X <= Y<=Z.
Suppose that X is a semi-L-summand in Z.

(i) / / YIX has the \\-ball property in Z/X, then Y has the \\-ballproperty
in Z.

(ii) If Y/X has the strong \\-ball property in Z/X, then Y has the strong
l^-ball property in Z.

(iii) If Y/X is a semi-L-summand in Z/ X, then Yis a semi-L-summand in Z.
(iv) / / Y/X is an L-summand in Z/X, and also X is an L-summand in Z,

then Y is an L-summand in Z.

Proof. For any ze Z, we note for later use that d(z + X, Y/X) = d(z, Y).
(This is true whether or not X is a semi-L-summand.) Also, let 77: Z-» X be
the semi-L-projection.
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(i) Let ZGZ. We must show that \\z\\ = d{z, Y) + d(0, PY(z)). Choose
e>0. We know that \\z + X\\ = d(z + X, Y/X) + d(0, PY/x(z + X)). Choos-
ing x + XePY/x(z + X) so that \\x + X\\<d(0, PY/X(z + X)) +e, we obtain
\\z + X\\>\\(z + X)-(x + X)\\ + \\x + X\\-e. Then

= \\x + X\\ + \\z-x + X\\

It follows that \\ir(z)-Tr(x) — Tr(z — x)\\<E. Now set y = x + ir(z-x)eY.
Then yePY{z), because \\z-y\\ = \\z-x +X\\ = d(z +X, Y/X) = d(z,Y).
Furthermore,

||z|| = ||7r(z)|M|z + X||

> || TT(X) + ir(z -x)\\ - e + \\x - ir(x)\\ + d(z,Y)-e

= \\x + ir(z-x)\\ + d(z, Y)-2e

= \\y\\ + d(z,Y)-2s.

Since e was arbitrary, ||z|| 3=d(0, PY(z)) + d(z, Y). The reverse inequality is
trivial, so Y has the l|-ball property in Z.

(ii) Similar to the proof of part (i), but with e = 0.
(iii) By [17, Theorem 5], it suffices to show that Y is a Chebyshev sub-

space of Z. This follows from [3, Theorem 9], but we would rather give
a direct argument. Note that if yePY(z), then y + Xe PY/X(z + X) and
ir(z-y) = 0. (Since \\{y + X)-{z + X)\\^\\y-z\\ = d(z,Y) = d(z + X,Y/X)
and \\y-z\\ = d(z + X,Y/X)^\\(y + X)-(z + X)\\ = d(y-z,X).) Now sup-
pose that y,,y2e PY(z)- Since Y/X is Chebyshev in Z/X, we must have

yx + X = y2 + X.

Hence y, = y, + 7r(z-y2 + y2-v,) = y\+yi~yi + TT{Z-y2) =y2- This shows
that PY(z) is a singleton.

(iv) This part can be established by a simple direct argument. Alternatively,
the semi-L-projection given by part (iii) is easily verified to be linear.

THEOREM 5. Let X c Y c Z be Banach spaces such that X has the m-ball
property in Y, and Y has the n-ball property in Z, where n & 2. Then X has the
min {m, n}-ball property in Z.

Proof. We assume that w5=l|, otherwise there is nothing to prove. By
X° and Y° we denote the annihilators of X and Y when considered as
subspaces of Z. When Y* is identified with Z*/ Y°, the annihilator of X in
Y* becomes X0/ Y°. Thus X0/ Y° has the l|-ball property (or is a semi-L-
summand, or an L-summand, depending on the value of m) in Z*/ Y°. Since
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y° is a semi-L-summand in Z*, the various cases of Theorem 4 tell us that
X° has the l|-ball property (or is a semi-L-summand, or an L-summand) in
Z*. The conclusion then follows from standard duality results [17].

Thus the 2-ball property is transitive. This was already known for the
3-ball property [1, p. 138]. Our next result shows that the l|-ball property is
not transitive.

EXAMPLE 6. There is no analogue of Theorem 5 for n = I3.

Proof. Take Z = R3, equipped with the /rnorm, y = {(a,a,j3):all3eR}
' and X = {(a, a, 2a): a e R}. Routine calculations show that X is an M-

summand in Y, and so has the n-ball property for every n. Note that every
extreme point of Z, lies in Y or Y±. Proposition 1 then tells us that Y has
the l|-ball property in Z. However, Proposition 1 also shows us that X° does
not have the lj-ball property in Z*. Thus X fails to have even the 1̂ -ball
property in Z.

For the remainder of this paper, we will consider only Minkowski spaces,
i.e., finite dimensional real Banach spaces. In this situation, every M-ideal is
automatically an M-summand. As in [18], we will call a Banach space a
proper semi-M-ideal if it is a semi-M-ideal, without being an M-summand,
in some larger Banach space. Following Shephard [14], a convex body P is
said to be reducible if P = \(.Q — Q) for some convex body Q which is not a
translate of P. It is clear from Proposition 2 that a Banach space is a proper
semi-M-ideal, if, and only if, its unit ball is reducible, if, and only if, it contains
nontrivial sets of constant width [8]. Griinbaum [6] showed that a
parallelogram is not reducible. Thus R2, equipped with the /, (or l^) norm is
not a proper semi-M-ideal. Conversely, Straus and Asplund [6] showed that
any symmetric 2-dimensional convex body, other than a parallelogram, is
reducible. Thus every 2-dimensional Banach space, not isometric to /< (̂2), is
a proper semi-M-ideal. Even the 2-dimensional Hilbert space is a proper
semi-M-ideal.

Determining which n-dimensional Banach spaces are proper semi-M-ideals
is not so easy when u s 3 . The existence [8, p. 621] of nontrivial sets of
constant width in R" shows that its unit ball is reducible. (Consider a complete
set of unit diameter, containing a regular simplex with sides of unit length.)
Hence the n-dimensional Hilbert space is a proper semi-M-ideal. Various
authors, ranging for example from [7] to [15], have studied properties of sets
of constant width in Minkowski spaces. To the best of our knowledge, only
Shephard [14] has attempted to determine which Minkowski spaces have
nontrivial sets of constant width. He examined the problem of reducibility
for polytopes. From [14] it follows, for example, that cubes, octahedrons and
icosahedrons are not reducible, but that dodecahedrons are reducible. Thus
/](3) and /«,(3) are not proper semi-M-ideals, but the Banach space whose
unit ball is a regular dodecahedron is a proper semi-M-ideal. For complete-
ness, let us mention the positive results of Shephard.

•m

J THEOREM 7 [14]. Let P b? a symmetric polytope in R".
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(i) Let F be an (n — \)-face of P, whose absolutely convex hull is not all
of P. Suppose that exactly n edges of P meet at every vertex of F. Then
P is reducible.

(ii) Suppose P is the vector sum of line segments. Then P is reducible, if,
and only if, some three of the segments are coplanar.

(iii) Suppose P—Q+R, where the symmetric polytopes Q and R lie in two
subspaces whose intersection is a singleton. Then P is reducible, if, and
only if, at least one of Q, R is reducible.

We will not explicitly make use of Theorem 7. However, the next result
derives from a careful study of the work in [13] and [14].

THEOREM 8. There is a 4-dimensional Banach space Z, containing no
M-summands, but which contains a 2-dimensional proper semi-M-ideal, X.
Moreover, the unit ball of X is an octagon, so X has no M-summands.

Proof. In R3, let the polytope P be the convex hull of the twelve points

(±4,3, ±1), ( -5 , ±2,1), ±(7,0,1), (5, ±2, -1 ) and (0, - 7 , ±1).

Let the polytope Q be the convex hull of the fourteen points

(±2, ±5, ±1), ( -5 , ±2,1), (5, ±2, -1 ) and ±(7, 0,1).

Straightforward calculations show that Q = ^(P-P).
Put Z = R4, and let F = {(x, y,z,\): (x, y, z) e P}. We make Z into a Banach

space by giving it the norm whose unit ball is co ( - F u F). It is clear that Z
is a base norm space, and that the hyperplane y = R3©{0} has the 2-ball
property in Z. A careful inspection of the 24 extreme points of its unit ball
shows that Z has no nontrivial M-summand.

The unit ball of Y is \{F - F) = Q©{0}, which is obviously the convex
hull of two opposite heptagonal faces. Thus Y is also a base norm space, and
X = R2©{0}2 has the 2-ball property in Y.

By Theorem 5, X has the 2-ball property in Z, notwithstanding the fact
that it has codimension two. Since X, is an octagon, X contains no semi-M-
ideals, let alone M-summands.

Arguments like this, inspired by Theorems 5 and 7, can obviously be used
to exhibit many more examples of proper semi-M-ideals. We will give only
one more.
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EXAMPLE 9. There is a 4-dimensional Banach space containing no M-
summands, but which does contain a 2-dimensional proper semi-M-ideal, whose
unit ball is a hexagon.

Proof. Let Z = R4, equipped with the norm

\\(w,x,y,z)\\=ma.x(\w\,\x-w\,\y-w\,\z-w\,\x + y-w\).

Any extreme point (w, x, y, z) of Zx must satisfy w = ±l, and so K = {0}©R3

is a semi-M-ideal in Z. Routine calculations then show that X = {0}® R2® {0}
is a semi-M-ideal in Z, and that X; is a hexagon. One might argue that this
example is slightly degenerate, since X is actually an M-summand in Y.
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