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Abstract

We formulate and prove two versions of Miyachi’s theorem for connected, simply connected nilpotent
Lie groups. This allows us to prove the sharpness of the constant 1/4 in the theorems of Hardy and of
Cowling and Price for any nilpotent Lie group. These theorems are proved using a variant of Miyachi’s
theorem for the group Fourier transform.
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1. Introduction

A theorem of Hardy [8], proved in 1933, says that a function f and its Fourier
transform f̂ cannot both have arbitrarily rapid Gaussian decay unless f is identically
zero. Defining ϕa(x)= e−ax2

, we can state Hardy’s theorem more precisely as
follows. If both f/ϕa and f̂ /ϕb are in L∞(R) for some positive numbers a and b, then
f = 0 whenever ab > 1/4. Moreover, when ab = 1/4 the function f is a constant
multiple of ϕa and when ab < 1/4 there are infinitely many linearly independent
functions satisfying both conditions. In 1982, Cowling and Price [6] generalized
Hardy’s theorem by replacing the L∞ estimates by L p estimates. They proved that if
f/ϕa ∈ L p(R) and f̂ /ϕb ∈ Lq(R) for some p and q satisfying 1≤ p, q ≤+∞, then
f = 0 whenever ab > 1/4. The same conclusion holds even when ab = 1/4 provided
that at least one of p and q is finite. In 1997, Miyachi [10] proved the following
generalization of Hardy’s theorem.

THEOREM 1.1. Let f be an integrable function on R such that

f/ϕa ∈ L1(R)+ L∞(R), (1.1)
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for some positive a. Further assume that∫
R

log+
(

ebλ2
| f̂ (λ)|

c

)
dλ <+∞, (1.2)

for some positive numbers b and c. If ab = 1/4, then f is a constant multiple of the
Gaussian ϕa .

Observe that when f/ϕa ∈ L p(R), it also belongs to L1(R)+ L∞(R). The
condition f̂ /ϕb ∈ Lq(R) also implies that the integral∫

+∞

−∞

log+
(

ebλ2
| f̂ (λ)|

c

)
dλ

converges for some positive constant c. Thus Miyachi’s theorem generalizes both the
Hardy and the Cowling–Price theorems.

Over the last decade, the theorems of Hardy and of Cowling and Price have received
considerable attention. Various generalizations of these theorems in several contexts
such as semisimple Lie groups, symmetric spaces and nilpotent Lie groups have been
proved. We refer to the surveys of Folland and Sitaram [7], Thangavelu [14], the
papers [1–4] and the monograph [13] for more about such theorems. The first aim of
this paper is to prove certain analogues of Miyachi’s theorem in the context of nilpotent
Lie groups. Recall that Kaniuth and Kumar [9] produced an analogue of Hardy’s
theorem for connected, simply connected nilpotent Lie groups. More precisely, they
proved the following result.

THEOREM 1.2. Let G be a connected, simply connected nilpotent Lie group. Let
f : G→ C be a measurable function such that

| f (x)| ≤ Ce−a‖x‖2
∀x ∈ G, (1.3)

for some positive a. Further assume that for some positive b,

‖πξ ( f )‖H S ≤ Ce−b‖ξ‖2 (1.4)

for all ξ ∈W , a suitable cross-section for the generic coadjoint orbits in g∗. Then f
is zero almost everywhere on G whenever ab > 1/4.

Precise definitions of the norms x 7→ ‖x‖ on G and ξ 7→ ‖ξ‖ on g∗ and of the cross-
section W will be given later. Recently, the first author of this paper and Ben Salah
(see [3]) proved an analogue of the Cowling–Price theorem in the same context; they
proved the following result.

THEOREM 1.3. Let G be a connected, simply connected nilpotent Lie group and f be
a measurable function on G. Suppose that 2≤ p, q ≤+∞, and let a and b be positive
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numbers such that ∫
G

epa‖x‖2
| f (x)|p dx <+∞, (1.5)∫

W
eqb‖ξ‖2

‖πξ ( f )‖qH S|Pf(ξ)| dξ <+∞, (1.6)

where Pf(ξ) stands for the Pfaffian at ξ . Then f is zero almost everywhere on G
whenever ab > 1/4.

The second aim of the present paper is to investigate the sharpness of the constant
1/4 in both the Hardy and the Cowling–Price theorems. We will prove that the constant
1/4 is sharp in Hardy’s theorem for any nilpotent Lie group, provided that the second
decay condition is replaced by

|Pf(ξ)|1/2‖πξ ( f )‖H S ≤ Ce−b‖ξ‖2
∀ξ ∈W.

Such a result is currently known only for the Heisenberg group (see [13]). Some recent
results concerning this point are also available for some restrictive classes of solvable
Lie groups (see [2]). Concerning the Cowling–Price theorem, we will show that
any function which fulfills both the conditions (1.5) and (1.6) of Theorem 1.3 above
vanishes almost everywhere whenever ab ≥ 1/4, provided that min(p, q) <+∞ and
the second decay condition is replaced by∫

W
eqb‖ξ‖2

‖πξ ( f )‖qH S|Pf(ξ)|q/2 dξ <+∞.

These results are immediate consequences of a variant of Miyachi’s theorem. Our
proofs make use of the orbit method and Plancherel theory. At present we do not
know how to handle the case where ab < 1/4 in the context of arbitrary nilpotent Lie
groups. In the case of Heisenberg groups, we formulate and prove a heat kernel version
of Miyachi’s theorem. The main theorems are stated in the next section.

2. Main results

2.1. A variant of Miyachi’s theorem for the real line. Note that when ab > 1/4,
Miyachi’s theorem allows us to conclude that f = 0. For applications to nilpotent
Lie groups the following version (which is slightly weaker than the original result) is
required. As we will see later, this is due to the fact that the function x 7→ log+ x is
not convex whereas x 7→ x log+ x is. We first prove the following variant of Miyachi’s
theorem.

THEOREM 2.1. Let f be an integrable function on R which satisfies

f/ϕa ∈ L1(R)+ L∞(R), (2.1)∫
R

ebλ2
| f̂ (λ)| log+

(
ebλ2
| f̂ (λ)|

c

)
dλ <+∞ (2.2)

https://doi.org/10.1017/S144678870900038X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870900038X


4 A. Baklouti and S. Thangavelu [4]

for some positive numbers a, b and c. If ab > 1/4, then f is zero almost everywhere.
If ab = 1/4, then f is a constant multiple of the Gaussian ϕa . If ab < 1/4, then there
exist infinitely many linearly independent functions satisfying (2.1) and (2.2).

PROOF. First let us assume that ab < 1/4. Then for any r satisfying a < r < 1/4b, the
Gaussian ϕr meets the conditions (2.1) and (2.2). The case where ab = 1/4 is a direct
consequence of Miyachi’s theorem. Now let b′ be such that ab ≥ ab′ = 1/4. Then∫

R
log+

(
eb′λ2
| f̂ (λ)|

c

)
dλ ≤ c−1

∫
R

eb′λ2
| f̂ (λ)|log+

(
eb′λ2
| f̂ (λ)|

c

)
dλ

≤ c−1
∫

R
ebλ2
| f̂ (λ)|log+

(
ebλ2
| f̂ (λ)|

c

)
dλ

< +∞.

Thanks to Miyachi’s theorem, we get f = Aϕa and then f̂ = Bϕb′ for some
constants A and B. This simply means that the integral (2.2) diverges unless A = 0, as
was to be shown. 2

COROLLARY 2.2. When hypothesis (2.2) is replaced by∫
R

e2bλ2
| f̂ (λ)|2 log+

(
ebλ2
| f̂ (λ)|

)
dλ <+∞

the same conclusions as in Theorem 2.1 hold.

2.2. Applications to nilpotent Lie groups. We assume henceforth that G = exp(g)
is a connected, simply connected nilpotent Lie group. For such groups, the exponential
map is a global C∞ diffeomorphism and the unitary dual is homeomorphic to the space
of coadjoint orbits when these spaces are endowed with their usual topologies. We
begin by setting up notation in order to state our main results. Let

{0} = g0 ⊂ g1 ⊂ · · · ⊂ gn = g

be a Jordan–Hölder sequence for the nilpotent Lie algebra g, that is, a flag of ideals
of g such that dim g j = j , when j = 0, . . . , n. We extract from this sequence a
Jordan–Hölder basis {X1, . . . , Xn} by taking X j ∈ g j\g j−1, when j = 1, . . . , n. So
obviously g1, that is, RX1, is a central ideal of g. Let {X∗1, . . . , X∗n} be the basis of
g∗ dual to {X1, . . . , Xn}; it is a Jordan–Hölder basis for the coadjoint action of G
on g∗. Given ξ ∈ g∗, an index j ∈ {1, . . . , n} is said to be a jump index for ξ if

g(ξ)+ g j 6= g(ξ)+ g j−1

where g(ξ) is the radical of the bilinear form (X, Y ) 7→ Bξ (X, Y )= ξ([X, Y ]).
Let e(ξ) be the set of jump indices for ξ . This set contains dim(Oξ ) indices, which is
an even number. Moreover, there are disjoint sets of indices S and T such that S ∪ T =
{1, . . . , n}, and a G-invariant nonempty Zariski open set U of g∗such that e(ξ)= S for
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all ξ ∈ U . We let MS(ξ)= (ξ([X i , X j ]))i, j∈S , and then the Pfaffian Pf(ξ) is given by
|Pf(ξ)|2 = det MS(ξ) for all ξ . Define VT = span{X∗i | i ∈ T }, define VS analogously,
and let dξ be the element of Lebesgue measure on VT normalized so that the unit
cube spanned by {X∗i | i ∈ T } has volume 1. Then g∗ = VT ⊕ VS and W = U ∩ VT is
a cross-section for the coadjoint orbits through points in U . Furthermore, if dξ also
denotes the element of Lebesgue measure on W , then µ is the Plancherel measure for
Ĝ, where dµ= |Pf(ξ)| dξ . The Plancherel formula reads:

‖ϕ‖22 =

∫
G
|ϕ(g)|2 dg =

∫
W
‖πξ (ϕ)‖

2
H S dµ(ξ) ∀ϕ ∈ L1(G) ∩ L2(G),

where ‖T ‖H S denotes the Hilbert–Schmidt norm of an operator T on a Hilbert space.
We now introduce a norm function on G by setting

‖exp(x1 X1 + · · · + xn Xn)‖ =

√
x2

1 + · · · + x2
n ∀(x1, . . . , xn) ∈ Rn.

The composed map from Rn via g to G

(x1, . . . , xn) 7→

n∑
j=1

x j X j 7→ exp
( n∑

j=1

x j X j

)
is a diffeomorphism and maps the Lebesgue measure on Rn to the Haar measure on G.
In this setup, we shall always identify g and sometimes G as sets with Rn . We shall
also identify g∗ with Rn by the map ξ = (ξ1, . . . , ξn) 7→

∑n
j=1 ξ j X∗j . We consider

the Euclidean norm of g∗ with respect to the dual Jordan–Hölder basis {X∗1, . . . , X∗n},
that is, ∥∥∥∥ n∑

j=1

ξ j X∗j

∥∥∥∥=√ξ2
1 + · · · + ξ

2
n = ‖ξ‖.

Our first main result is the following theorem.

THEOREM 2.3. Let G be a connected, simply connected nilpotent Lie group and f be
a measurable function on G satisfying

ea‖·‖2 f ∈ L2(G)+ L∞(G), (2.3)∫
W

eb‖ξ‖2
‖πξ ( f )‖2H S log+

(
eb‖ξ‖2

‖πξ ( f )‖H S

c

)
|Pf(ξ)| dξ <+∞, (2.4)

for some positive numbers a, b and c. Then f is zero almost everywhere on G
whenever ab > 1/4.

Using this result, we can obtain analogues of the Hardy and the Cowling–Price
theorems for nilpotent Lie groups when 2≤ p, q ≤+∞ proved in [3, 9].

Our second main result is concerned with another version of Miyachi’s theorem.
The idea is to seek the sharpness of the constant 1/4 in Theorem 2.3 above, by mildly
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changing the second decay condition. Recall the Jordan–Hölder basis {X1, . . . , Xn}

of g that was constructed through the ascending central series of g. So a= RX1 is
contained in the center of g. For y = (y2, . . . , yn) ∈ Rn−1, define the complex valued
function fy on R by

fy(t)= f (t, y)= f

(
exp

(
t X1 +

n∑
j=2

y j X j

))
= f

(
exp t X1 exp

( n∑
j=2

y j X j

))

and f ∗y (t)= fy(−t). We prove the following theorem.

THEOREM 2.4. Let G be a connected, simply connected nilpotent Lie group and f be
a measurable function on G satisfying

ea‖·‖2 f ∈ L2(G)+ L∞(G), (2.5)∫
W

e2b‖ξ‖2
‖πξ ( f )‖2H S log+

(
eb‖ξ‖2

|Pf(ξ)|1/2‖πξ ( f )‖H S

c

)
× |Pf(ξ)| dξ <+∞, (2.6)

for some positive numbers a, b and c. If ab > 1/4, then f is zero almost everywhere
on G and if ab = 1/4, then f (t, y)= f (0, y)e−at2

for all t ∈ R.

We now come back to Hardy’s uncertainty principle. The following result is a
direct consequence of Theorem 2.4 that shows the sharpness of the constant 1/4 in the
condition ab = 1/4.

COROLLARY 2.5. Let G be a connected, simply connected nilpotent Lie group and
f : G→ C be a measurable function such that for some positive numbers a, b and c,

| f (x)| ≤ ce−aπ‖x‖2
∀x ∈ G,

|Pf(ξ)|1/2‖πξ ( f )‖H S ≤ ce−bπ‖ξ‖2
∀ξ ∈W.

If ab > 1/4, then f is zero almost everywhere on G, and if ab = 1/4, then f (t, y)=
f (0, y)e−at2

for all t ∈ R and y ∈ Rn−1.

Concerning the Cowling–Price theorem, we obtain the following generalization.

COROLLARY 2.6. Suppose that G is a connected, simply connected nilpotent Lie
group and that p and q satisfy 2≤ p, q ≤+∞ and min(p, q) <+∞. Let f be a
measurable function on G such that, for some positive numbers a and b,∫

G
epa‖x‖2

| f (x)|p dx <+∞,∫
W

eqb‖ξ‖2
‖πξ ( f )‖qH S|Pf(ξ)|q/2 dξ <+∞.

Then f is zero almost everywhere on G whenever ab ≥ 1/4.

https://doi.org/10.1017/S144678870900038X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870900038X


[7] Miyachi’s theorem for nilpotent Lie groups 7

We now specialize to the case of the Heisenberg group Hn . As a set, this is just
Cn
× R. The case of Hardy’s theorem where ab = 1/4 for the Euclidean Fourier

transform can be viewed as a result characterizing the heat kernel associated with the
standard Laplacian on Rn . Therefore it is natural to measure the decay of functions
on the Heisenberg group Hn in terms of the heat kernel qa associated with the sub-
Laplacian. Such a heat kernel version of Hardy’s theorem for the Heisenberg group
was proved by the second author in [12]. The Fourier transform q̂a(λ) of the heat
kernel is the operator e−aH(λ), where H(λ)=−1+ λ2

|x |2 is the scaled Hermite
operator on Rn . Thus the Hardy condition on the Fourier transform side reads
‖ f̂ (λ)eaH(λ)

‖op ≤ C . Generalizing Hardy’s theorem, a version of the Cowling–Price
theorem was obtained in [11]. Following similar ideas, we can prove the following
version of Miyachi’s theorem for the Heisenberg group.

THEOREM 2.7. Suppose f is a measurable function on Hn that satisfies

f/qa ∈ L1(Hn)+ L∞(Hn), (2.7)

‖ f̂ (λ)ebH(λ)
‖op ≤ C ∀λ ∈ R\{0}. (2.8)

Then f is zero almost everywhere on Hn whenever a < b.

The proof of this theorem is very similar to that of Hardy’s theorem and hence not
given here. We refer to [13, Theorem 2.9.2] for details. As in Hardy’s theorem, the
equality case (where ab = 1/4) remains open. In [13] the equality case was treated by
replacing the assumption on f by | f λ(z)| ≤ Cλqλa (z) where f λ stands for the partial
Fourier transform of f in the central variable at λ. But unfortunately, we can only
conclude that f = qa ∗3 ϕ where ϕ is a tempered distribution on R with an L∞ Fourier
transform. In the above, ∗3 stands for convolution in the central variable. We therefore
look for suitable conditions on f and f̂ which will completely characterize the heat
kernel qa .

Let us consider the Euclidean case for a moment, with pn
a standing for the heat

kernel on Rn . The conditions | f ∗ pn
b(x)| ≤ Cpn

a+b(x) and | f̂ (ξ)| ≤ Ce−a|ξ |2 imply
that f = cpn

a . Note that the heat kernel pn
a extends to Cn as an entire function

and pn
a (ix) makes sense. Considering functions on Rn+m , define p̃n+m

a (x, y)=
pn+m

a (ix, y). Then | f (x, y)| ≤ Cpn+m
a (x, y) leads to | f ∗m p̃n+m

a (x, y)| ≤ Cpm
2a(y)

(here ∗m stands for convolution in the y variable). It is easy to see that this latter
condition on f together with | f̂ (ξ, η)| ≤ Ce−a(|ξ |2+|η|2) leads to the conclusion that
f = cpn+m

a . Indeed, we let

gη(x)=
∫

Rn
e−iy·η f (x, y) dy

and then the condition on f shows that |gη(x)| ≤ Cηe−|x |
2/4a . This, together with the

assumption on f̂ , allows us to conclude that gη = C(η)pn
a or f (x, y)= pn

a (x)h(y) for
all x ∈ Rn and y ∈ Rm . Another application of Hardy’s theorem proves that h = Cpm

a .
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With the above as a motivation we might try to holomorphically extend the heat
kernel qa and use its restriction qa(ix, iy, it) to measure the decay of the function f .
Unfortunately, qa does not extend as an entire function and qa(ix, iy, it) does not make
sense for all (x, y, t). Instead, we look at the heat kernel ka associated with the full
Laplacian on Hn which is given by

ka(x, y, t)=
∫
∞

−∞

e−iλt e−aλ2
qλa (x, y) dλ.

Note that ka extends to C2n+1 as an entire function. Rather than using ka(ix, iy, it) we
use the kernel

q̃a(x, y, t)=
∫
∞

−∞

e−iλt e−aλ2
(

sinh λa

λ

)2n

qλa (ix, iy) dλ

which is related to ka(ix, iy, t). Note that if f = qa , then f ∗3 q̃a(x, y, t)= ce−t2/4a

and f̂ (λ)eaH(λ) is a bounded operator for all λ 6= 0. These two properties characterize
the heat kernel, as we show below.

THEOREM 2.8. Let f be a measurable function on Hn that satisfies

| f ∗3 q̃a(x, y, t)| ≤ Ce−t2/4a
∀(x, y, t) ∈Hn, (2.9)

‖ f̂ (λ)eaH(λ)
‖op ≤ C ∀λ 6= 0. (2.10)

Then f is a constant multiple of qa .

This is not yet the ideal analogue of Hardy’s theorem. We would like to
know whether the condition | f (x, y, t)| ≤ Cqa(x, y, t) for all (x, y, t) ∈Hn implies
assumption (2.9) of the theorem. It will be so if q̃a is nonnegative. Unfortunately, we
do not know whether this is so or not. In the absence of this information, the theorem
above is the best analogue of Hardy’s theorem that we can prove. We also have the
following version of Miyachi’s theorem.

THEOREM 2.9. Let f be a measurable function on Hn that satisfies

f ∗3 q̃a(x, y, t)= ( f1(x, y, t)+ f∞(x, y, t))e−t2/4a, (2.11)

where f1 ∈ L1(Hn) and f∞ ∈ L∞(Hn), such that ‖ f1(x, y, ·)‖1 ≤ C for all x, y ∈ Rn

and ∫
R

log+
(
‖ f̂ (λ)eaH(λ)

‖op

c

)
dλ <+∞. (2.12)

Then f is a constant multiple of qa .

We prove this result in Section 3. Hardy’s theorem follows as an immediate
corollary.
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3. Proofs of the main results

We proceed in this section to prove our main results. We fix as above a Jordan–
Hölder basis {X1, . . . , Xn} of g such that X1 ∈ z(g) (the center of g), and define the
function fy on R by fy(t)= f (t, y) for all t ∈ R and y ∈ Rn−1.

PROOF OF THEOREM 2.3. Define the function g by

g(t)=
∫

Rn−1
fy ∗ f ∗y (t) dy.

We prove our theorem by using some estimates on g and its Euclidean Fourier
transform ĝ. We begin with the following lemma on g.

LEMMA 3.1. Let f satisfy the hypothesis of the theorem and g be defined as above.
Then for any r satisfying 0< r < a/2,

g/ϕr ∈ L1(R)+ L∞(R).

In particular, g is integrable with respect to Lebesgue measure.

PROOF. Since ea‖·‖2 f ∈ L2(G)+ L∞(G), we have ea‖·‖2 f = u1 + u∞ where u∞ ∈
L∞(G) and u1 is in L2(G) and vanishes outside a set of finite measure, hence is
also in L1(G). Then the function f defined by F(x)= f (x)− e−a‖x‖2u1(x) satisfies
|F(x)| ≤ Me−a‖x‖2 . From [9], therefore, |F̃(t)| ≤ Me−at2/2 for all t ∈ R, where F̃ is
the function defined on R by

F̃(t)=
∫

Rn−1
Fy ∗ F∗y (t) dy.

We then have

F̃(t)=
∫

Rn−1
({ fy − e−a|·|2e−a‖y‖2(u1)y} ∗ { f ∗y − e−a|·|2e−a‖y‖2(u1)

∗
y})(t) dy.

Thus we see that F̃(t)= J1(t)− J2(t)− J3(t)+ J4(t), where J1(t)= g(t),

J2(t)=
∫

Rn−1
( fy ∗ {e

−a|·|2e−a‖y‖2(u1)
∗
y})(t) dt,

J3(t)=
∫

Rn−1
({e−a|·|2e−a‖y‖2(u1)y} ∗ f ∗y )(t) dt

and

J4(t)=
∫

Rn−1
({e−a|·|2e−a‖y‖2(u1)y} ∗ {e

−a|·|2e−a‖y‖2(u1)
∗
y})(t) dy.

Thus F̃(t)= g(t)+ h(t) where the function h is defined as a sum of the last three
integrals, each of which is of the form

∫
Rn−1Uy ∗ Vy(t) dy for some functions U and V
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on the group G. Thus eat2/2g(t)= eat2/2 F̃(t)− eat2/2h(t). As eat2/2
|F̃(t)| ≤ C for

all t ∈ R, it is sufficient to show that h/ϕa/2 ∈ L1(R). If r < a/2, then∫
R

er t2
|J2(t)| dt ≤

∫
R

∫
Rn−1

∫
R
| fy(s)|e

−a(t−s)2e−a‖y‖2er t2
|u1(s − t, y)| dt dy ds

=

∫
R

∫
Rn−1
| fy(s)|

∫
R

e−au2
e−a‖y‖2er(s−u)2

|u1(u, y)| du dy ds

≤

∫
R

∫
Rn−1
| fy(s)|

∫
R

e−au2
e−a‖y‖2e2r(s2

+u2)
|u1(u, y)| du dy ds

=

∫
R

∫
Rn−1
| fy(s)|e

2rs2
∫

R
e(2r−a)u2

e−a‖y‖2
|u1(u, y)| du dy ds

=

∫
Rn−1

(∫
R
| fy(s)|e

2rs2
ds

)(∫
R

e(2r−a)u2
e−a‖y‖2

|u1(u, y)| du

)
dy

which is dominated by(∫
Rn−1

{∫
R
| fy(s)|e

2rs2
ds

}2

dy

)1/2

×

(∫
Rn−1

{∫
R

e−(a−2r)u2
e−a‖y‖2

|u1(u, y)| du

}2

dy

)1/2

.

As the integral ∫
Rn−1

(∫
R

e−(a−2r)u2
e−a‖y‖2

|u1(u, y)| du

)2

dy

converges (by the Cauchy–Schwarz inequality), we see that∫
R

er t2
|J2(t)| dt ≤ M

(∫
Rn−1

(∫
R
| fy(s)|e

2rs2
ds

)2

dy

)1/2

,

for some positive M . Choose a positive ε such that 2r + 2ε = a0 < a. We then have∫
R

er t2
|J2(t)| dt ≤ M

(∫
Rn−1

(∫
R

e−2εs2
| fy(s)|e

a0s2
ds

)2

dy

)1/2

.

With a1 = a − a0, the last integral is dominated by∫
Rn−1

(∫
R

e−εs
2
e−εs

2
| fy(s)|e

a(s2
+‖y‖2)e−a1(s2

+‖y‖2) ds

)2

dy.

Recalling the definition of u1 and u∞, the above integral is bounded by∫
Rn−1

(∫
R

e−εs
2
e−εs

2
(|u1(s, y)| + |u∞(s, y)|) ds

)2

e−2a1‖y‖2 dy.
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Therefore
∫

R er t2
|J2(t)| dt is bounded by a constant multiple of∫

Rn−1

∫
R

e−2εs2
e−2a1‖y‖2(|u1(s, y)|2 + |u∞(s, y)|2 + 2|u1(s, y)||u∞(s, y)|) ds dy,

which is finite. This completes the estimate of J2. The same computation can be
done for the remaining integrals defining the function h. We first pay attention to the
function J3. Using the computations above, we get∫

R
er t2
|J3(t)| dt ≤

∫
R

∫
Rn−1

∫
R
| fy(−s)|e−a(t−s)2e−a‖y‖2er t2

|u1(t − s, y)| dt dy ds

which, after a change of variables, can be put in the form∫
R

∫
Rn−1
| fy(s)|

∫
R

e−au2
e−a‖y‖2er(s+u)2

|u1(u, y)| du dy ds

and the estimate for J3 follows. We finally tackle the integral
∫

R er t2
|J4(t)| dt . Denote

by H the function on G such that Hy(t)= e−a|t |2e−a‖y‖2u1(t, y) for all y ∈ Rn−1; then

we easily see that x 7→ ea‖x‖2
|H(x)| ∈ L1(G) and the computations above allow us to

show that this integral converges. 2

We now consider the Fourier transform ĝ of the function g ∈ L1(R). An easy
computation shows that

ĝ(ξ)=
∫

Rn−1
| f̂y(ξ)|

2
dy, (3.1)

and consequently ĝ ≥ 0 and∫
R

ĝ(ξ) dξ =
∫

Rn
| fy(ξ)|

2 dy dξ = ‖ f ‖22. (3.2)

In view of (3.2), the function f is zero almost everywhere on G if and only if the
function g is zero almost everywhere on R.

We need a localized version of the Plancherel measure (see [5]). Let Z(G) be the
(closed connected) center of G and A be a closed connected subgroup of Z(G) with
Lie algebra a. Then Z(G)= exp z(g) and A = exp a. For ψ ∈ a∗, define the (unitary)
character χψ of A by the formula

χψ (exp(s X1))= e−2π isξ1 .

Take χ = χψ , and let
Ĝχ = {π ∈ Ĝ : π|A = χ · I }.

Then Ĝχ is a closed subset of Ĝ and is homeomorphic to the orbit space g∗ψ/G,

where g∗ψ = ψ + a⊥. Furthermore, it is the unitary dual (the set of unitary and

topologically irreducible representations) of the convolution algebra L1(G/A, ψ).
Here, L p(G/A, ψ) is defined (when 1≤ p <+∞) as the set of all measurable
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functions ϕ : G→ C such that ϕ(ga)= χ(a)ϕ(g) for all g ∈ G and a ∈ A, and

‖ϕ‖
p
L p(G/A,ψ) =

∫
G/A
|ϕ(g)|p dg <+∞.

Note that L1(G/A, ψ) is a Banach ∗-algebra. The convolution of ϕ and ϕ′ in
L1(G/A, ψ) is defined here by

ϕ ∗ ϕ′(g)=
∫

G/A
ϕ(u)ϕ′(u−1g) du ∀g ∈ G

and the involution is defined by f ∗(x)= f (x−1). It is easy to check that the function
ϕ ∗ ϕ′ has the required covariance relation with respect to the character χ . So in this
case, the localized Plancherel formula reads: for ϕ ∈ L2(G/A, ψ), if

π̃(ϕ)=

∫
G/A

ϕ(g)π̃(g) dg ∀π̃ ∈ Ĝχ ,

then ∫
G/A
|ϕ(g)|2 dg =

∫
Ĝχ

tr π̃(ϕ∗ ∗ ϕ) dµχ (π̃)

where the measure µχ is obtained in the following way. Let Wψ =W ∩ g∗ψ . For

ϕ ∈ L1(G/A, ψ) ∩ L2(G/A, ψ),

‖ϕ‖2 =

(∫
Wψ

‖πl(ϕ)‖
2
H S|Pf(l)| dl

)1/2

. (3.3)

We henceforth take a= RX1. If d is the maximal dimension of coadjoint orbits in
g∗, then T has n − d elements and so VT can be identified with Rn−d . In an abuse of
notation we write VT = RX∗1 ⊕ Rn−d−1 and let

p∗ : VT → RX∗1, ξ 7→ ξ1 X∗1

denote the canonical projection. As W is a Zariski open set of VT , p∗(W)=O is also
a nonempty Zariski open set of R. So it will be convenient to write elements ξ ∈W
as (ξ1, ξ

′), where ξ1 ∈O and ξ ′ ∈Wξ1 = {ξ
′
∈ Rn−d−1

| (ξ1, ξ
′) ∈W}. It turns out

that Wξ1 is also a Zariski open set of Rn−d−1 for each fixed ξ1 ∈O. The set Wξ1

corresponds obviously to the cross-section Wψ used in the localized version of the
Plancherel formula in (3.3). We now prove the following lemma.

LEMMA 3.2. For all ξ1 ∈O,

ĝ(ξ1)=

∫
Wξ1

|Pf(ξ)|‖πξ ( f )‖2H S dξ ′.

PROOF. Let ξ1 ∈O, and Vn(ξ1)= (ξ1 − 1/2n, ξ1 + 1/2n) for all n ∈ N∗. From [9,
p. 491],

ĝ(ξ1)= lim
n→+∞

n
∫

Vn(ξ1)

∫
Wη1

|Pf(η)|‖πη( f )‖2H S dη′ dη1,
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where η = (η1,η
′). Nowπη( f )= π̃η( fη1), where π̃η = πχη1

and fη1(g1)= F 1 f (η1,g1).
It follows that

ĝ(ξ1)= lim
n→+∞

∫
G/A

n
∫

Vn(ξ1)

| fη1(g1)|
2 dη1 dg1.

We will use the dominated convergence theorem. We first observe that

n
∫

Vn(ξ1)

| fη1(g1)|
2 dη1 = | fcn (g1)|

2

for some cn ∈ Vn(ξ1). Moreover,

| fcn (g1)|
2
=

∣∣∣∣∫
R

f
(
g1es X1

)
e−2π iscn ds

∣∣∣∣2 ≤ (∫
R

∣∣ f
(
g1es X1

)∣∣ ds

)2

.

If we can show that the integral

E =
∫

G/A

(∫
R

∣∣ f
(
g1es X1

)∣∣ ds

)2

dg1

converges, then we can apply the dominated convergence theorem. But this is easy to
see. We first identify G/A with Rn−1 by a Borel cross-section. Let r be a positive
number such that 4r < a. Then

E ≤
∫

Rn−1

(∫
R

e−rs2
e−rs2

e−2r‖y‖2e2r‖(s,y)‖2
| f (s, y)| ds

)2

dy

≤

∫
Rn−1

∫
R

e−2rs2
e−4r‖y‖2e4r‖(s,y)‖2

| f (s, y)|2 ds dy

≤

∫
Rn

e−2rs2
e−4r‖y‖2(|u1(s, y)| + |u∞(s, y)|)2 ds dy

< +∞,

which proves our claim. Here u1 and u∞ are as in the proof of Lemma 3.1.
Finally, we can apply the dominated convergence theorem to get

ĝ(ξ1) =

∫
G/A

lim
n→+∞

| fcn (g1)|
2 dg1

=

∫
G/A
| fξ1(g1)|

2 dg1

=

∫
Wξ1

‖πη( f )‖2H S|Pf(η)| dη′,

using (3.3) again. This completes the proof of the lemma. 2

We can now complete the proof of Theorem 2.3 by showing that g = 0. Suppose
that ε < b, 2r < a and 2εr > 1/4. Writing η = (λ, η′),

e2ελ2
ĝ(λ)≤

∫
Wλ

e2ε‖η‖2
‖πη( f )‖2H S|Pf(η)| dη′.
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Let t (λ)=
∫

Wλ
e−2ε‖η‖2

|Pf(η)| dη′, for all λ ∈ R∗. Then clearly t is a bounded
continuous function on R that never vanishes on R∗. Let C = ‖t‖∞, and consider

e2ελ2
ĝ(λ)

Cc2 =

∫
Wλ

e4ε‖η‖2
‖πη( f )‖2H S

Cc2 e−2ε‖η‖2
|Pf(η)| dη′

=

∫
Wλ

[
t (λ)e4ε‖η‖2

‖πη( f )‖2H S

Cc2

]
e−2ε‖η‖2

|Pf(η)|
t (λ)

dη′.

Let

K (λ)= e2ελ2
ĝ(λ) log+

e2ελ2
ĝ(λ)

Cc2 .

Applying Jensen’s inequality to the convex function x 7→ x log+ x and the probability
measure with element (e−2ε‖·‖2

|Pf(·)|)/(t (λ)) dη′, we see that

K (λ) ≤
∫

Wλ

e2ε‖η‖2
‖πη( f )‖2H S log+

(
t (λ)e2ε‖η‖2

‖πη( f )‖2H S

Cc2

)
|Pf(η)| dη′

≤ 2
∫

Wλ

e2ε‖η‖2
‖πη( f )‖2H S log+

(
eε‖η‖

2
‖πη( f )‖H S

c

)
|Pf(η)| dη′

≤ 2
∫

Wλ

eb‖η‖2
‖πη( f )‖2H S log+

(
eb‖η‖2

‖πη( f )‖H S

c

)
|Pf(η)| dη′.

We finally get that∫
R

K (λ) dλ ≤ 2
∫

W
eb‖η‖2

‖πη( f )‖2H S log+
(

eb‖η‖2
‖πη( f )‖H S

c

)
|Pf(η)| dη

< +∞.

As 2rε > 1/4, Theorem 2.1 shows that g vanishes almost everywhere, proving the
theorem. 2

PROOF OF THEOREM 2.4. For a fixed Schwartz function ϕ on Rn−1, define the
function F on R by

F(t)=
∫

Rn−1
f (t, y)ϕ(y) dy ∀t ∈ R.

Starting from the first decay condition of Theorem 2.4 concerning f , we observe that

F(t)=
∫

Rn−1
e−a(t2

+‖y‖2)(u1(t, y)+ u∞(t, y))ϕ(y) dy

for all t ∈ R, and so

eat2
F(t)=

∫
Rn−1

e−a‖y‖2u1(t, y)ϕ(y) dy +
∫

Rn−1
e−a‖y‖2u∞(t, y)ϕ(y) dy.
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Let

F1(t)=
∫

Rn−1
e−a‖y‖2u1(t, y)ϕ(y) dy

and

F∞(t)=
∫

Rn−1
e−a‖y‖2u∞(t, y)ϕ(y) dy.

Then it is clear that F1 ∈ L1(R) and F∞ ∈ L∞(R). On the other hand,

F̂(λ)=
∫

Rn−1
f̂y(λ)ϕ(y) dy,

and therefore

|F̂(λ)|2 ≤ M
∫

Rn−1
| f̂y(λ)|

2 dy

for some positive constant M . By (3.1), this implies that

|F̂(λ)|2 ≤ Mĝ(λ)= M
∫

Wλ

‖πη( f )‖2H S|Pf(η)| dη′,

which leads to the estimate

e2bλ2
|F̂(λ)|2 ≤ MC

∫
Wλ

e2b‖η‖2
‖πη( f )‖2H S|Pf(η)|

e−2b‖η′‖2

C
dη′,

where C is chosen so that (e−2b‖η′‖2)/C is the density of a probability measure on Wλ.
Using Jensen’s inequality as before, we see that the expression

(1/Mc2)e2bλ2
|F̂(λ)|2 log+

(
ebλ2
|F̂(λ)|

c
√

Mc

)
is dominated by

1

c2

∫
Wλ

e2b‖η‖2
‖πη( f )‖2H S log+

(
eb‖η‖2

‖πη( f )‖H S|Pf(η)|1/2

c

)
|Pf(η)| dη′.

This proves that the integral∫
R

e2bλ2
|F̂(λ)|2 log+

(
ebλ2
|F̂(λ)|

c
√

Mc

)
dλ

converges. We now make use of Corollary 2.2. When ab > 1/4, we see that f vanishes
almost everywhere. When ab = 1/4, a similar argument to that in [13] shows that
f (t, y)= f (0, y)e−at2

for all t ∈ R and y ∈ Rn−1, as was to be shown. 2
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PROOF OF COROLLARY 2.6. The function ea‖·‖2 f belongs to L p(G) by assumption,
and hence to L1(G)+ L∞(G). On the other hand, whenever q > 2, the function f
fulfills the second decay condition of Theorem 2.4. This implies that f vanishes almost
everywhere whenever ab > 1/4. In the case where ab = 1/4, the function takes the
form f (t, y)= f (0, y)e−at2

for all t ∈ R and y ∈ Rn−1. This implies that the integral∫
G

epa‖x‖2
| f (x)|p dx

diverges unless f (0, ·) vanishes almost everywhere on Rn−1, as was to be shown.
We now look at the case where q = 2. The fact that ea‖·‖2 f belongs to L p(G) shows

that t 7→ eat2
F(t) belongs to L p(R), where F is the function defined in the proof of

Theorem 2.3. Now∫
R

e2bλ2
|F̂(λ)|2 dλ ≤

∫
R

e2bλ2
(∫

Rn−1
| f (λ, y)ϕ(y)| dy

)2

dλ

=

∫
R

e2b(λ2
+|y|2)

(∫
Rn−1

e−b|y|2
| f (λ, y)ϕ(y)| dy

)2

dλ

≤ M
∫

R

∫
Rn−1

e2b‖(λ,y)‖2
| f (λ, y)|2 dy dλ

< +∞,

for some positive constant M . By the classical Cowling–Price theorem for the real
line, F is zero almost everywhere whenever ab ≥ 1/4 and hence so is f . 2

PROOF OF THEOREM 2.8. By taking the inverse Fourier transform in the central
variable, we observe that the first assumption on f leads to

| f λ(x, y)|q̃a
λ(x, y)≤ ‖ f1(x, y, ·)‖1 + ‖ f ‖∞ ≤ C.

Recalling the definition of q̃a we observe that

q̃a
λ(x, y)= cne−aλ2

(
sinh λa

λ

)2n

qλa (ix, iy)= cne−aλ2
qλa (x, y)−1.

Therefore the above condition on f λ can be rewritten as | f λ(x, y)| ≤ C(λ)qλa (x, y)
for all x, y ∈ Rn and λ 6= 0. This, together with the second assumption, namely,
‖ f̂ (λ)eaH(λ)

‖op ≤ C , allows us to proceed as in [13, Theorem 2.9.6] to conclude
that f λ(x, y)= C(λ)qλa (x, y). The function g(·)= f ∗3 q̃a(0, 0, ·) satisfies g(t)=

(g1(t)+ g∞(t))e−t2/4a with g1 ∈ L1(R) and g∞ ∈ L∞(R). Moreover,

ĝ(λ)= f λ(0, 0)qλa (0, 0)−1e−aλ2
= C(λ)e−aλ2

so that
ĝ(λ)eaλ2

= C(λ)= ‖ f̂ (λ)eaH(λ)
‖op.
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Therefore the function g satisfies the hypotheses of Miyachi’s theorem and hence
g(t)= ce−t2/4a . This means that C(λ) is a constant and hence f λ = cqλa for all λ,
or f = cqa , proving the theorem. 2
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