
Adv. Appl. Prob. 51, 967–993 (2019)
doi:10.1017/apr.2019.39

© Applied Probability Trust 2019

EXACT SIMULATION OF THE EXTREMA
OF STABLE PROCESSES

JORGE I. GONZÁLEZ CÁZARES∗ ∗∗ AND

ALEKSANDAR MIJATOVIĆ,∗ ∗∗∗ University of Warwick and
The Alan Turing Institute

GERÓNIMO URIBE BRAVO,∗∗∗∗ Universidad Nacional Autónoma de México

Abstract

We exhibit an exact simulation algorithm for the supremum of a stable process over
a finite time interval using dominated coupling from the past (DCFTP). We establish
a novel perpetuity equation for the supremum (via the representation of the concave
majorants of Lévy processes [27]) and use it to construct a Markov chain in the
DCFTP algorithm. We prove that the number of steps taken backwards in time before
the coalescence is detected is finite. We analyse the performance of the algorithm
numerically (the code, written in Julia 1.0, is available on GitHub).

Keywords: Random variate generation; perpetuities; simulation; perfect simulation;
dominated coupling from the past; stable process

2010 Mathematics Subject Classification: Primary 65C10
Secondary 65C05

1. Introduction

This paper describes an algorithm for generating exact samples of the extrema of a stable
process (see Algorithm 1.1 below) based on dominated coupling from the past (DCFTP), a
coupling method for exact simulation from an invariant distribution of a Markov chain on an
ordered state space (see [21] and the references therein). The chain in Algorithm 1.1 is based
on a novel characterization for the law of the supremum of a stable process at a fixed time
in Theorem 1.1. Perpetuity (1.1) is established via the stochastic representation for concave
majorants of Lévy processes [27] and the scaling property of stable laws (see Section 2 below
for the proof of Theorem 1.1).

Theorem 1.1. Let Y = (Yt)t∈[0,∞) be a stable process with the stability and positivity parame-
ters α and ρ, respectively (see Appendix A). Define Y1 = sups∈[0,1] Ys and let (B,U, V, S, Y1)
be a random vector with independent components, where U, V are uniform on (0, 1), B is
Bernoulli with parameter 1 − ρ, and S has the law of Y1 conditioned on being positive. Then
the following equality in law holds:

Y1
d=�1/α(U1/αY1 + (1 − U)1/αS), (1.1)

Received 9 July 2018; revision received 22 May 2019.
∗ Postal address: University of Warwick, Coventry CV4 7AL, UK.
∗∗ Email address: jorge.gonzalez-cazares@warwick.ac.uk
∗∗∗ Email address: a.mijatovic@warwick.ac.uk
∗∗∗∗ Postal address: Instituto de Matemáticas, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, México.
Email address: geronimo@matem.unam.mx

967

https://doi.org/10.1017/apr.2019.39 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.39
http://www.appliedprobability.org
mailto:jorge.gonzalez-cazares@warwick.ac.uk
mailto:a.mijatovic@warwick.ac.uk
mailto:geronimo@matem.unam.mx
https://doi.org/10.1017/apr.2019.39

968 J. I. GONZÁLEZ CÁZARES ET AL.

where �= 1 + B(V1/ρ − 1). Furthermore, the law of Y1 is the unique solution to (1.1).

The universality of stable processes makes them ubiquitous in probability theory and
many areas of statistics and natural and social sciences (see the monograph [30] and the
references therein). The problem of efficient simulation of stable random variables in the
context of statistics was addressed in [15]. Among the path properties, the running supremum

Yt = sups∈[0,t] Ys
d= t1/αY1 of a stable process is of special interest (see [1], [16], [22], and

[29]) as it arises in application areas such as optimal stopping, the prediction of the ultimate
supremum, and risk theory (see [2] and [29]).

In general, we have no access to the density, distribution, or even characteristic function of
Y1, making a rejection sampling algorithm (see [11, Section II.3]) for Y1 difficult to construct.
More precisely, if Y has no positive jumps, the strong Markov property and the fact that
Y does not jump over positive levels imply that Y1 has the same law as Y1 conditioned on
being positive [25]. In all other cases, the law of Y1 is not accessible in closed form, and the
information about it in the literature is obtained via analytical methods based on the Wiener–
Hopf factorization. If Y has no negative jumps, [1] gives an alternating series expression for the
density, while [16] and [22] give a double series representation for a dense class of parameters.
The coefficients in these representations are complicated, and it is not immediately clear how
one could use them to design a simulation algorithm. Moreover, in the general case, when α
is rational the series representation is proved to be convergent for finitely many ρ only [23].
Our simulation algorithm is based on purely probabilistic methods (it may be regarded as a
generalization of the exact simulation algorithm for Vervaat perpetuities in [18]) and as such
covers the entire class of stable processes.

1.1. Exact simulation algorithm

The perpetuity in (1.1) above gives rise to an update function x �→ φ(x, �) of a Markov
chain on (0,∞), where the components of the random vector � are the random variables in
Theorem 1.1 (see (3.1) below for the precise definition of φ). The invariant distribution (i.e.
invariant probability measure as defined in [24, p. 229]) for the chain X′ = {X′

n}n∈Z, defined
by X′

n = φ(X′
n−1, �n−1) with {�n}n∈Z a sequence of independent copies of �, equals that of

Y1. However, since x �→ φ(x, �) is strictly increasing in x with probability one, no coalescence
occurs, making X′ unusable for DCFTP purposes. Fortunately, the structure of the perpetuity
in (1.1) is such that the update function φ can be modified to a multigamma coupler [26] x �→
ψ(x, �), which is constant on a subinterval in (0,∞) with positive probability and globally
non-decreasing. The definition of ψ , given in Lemma 3.1 below, was inspired by [18], where
such a modification was applied to Vervaat perpetuities. The construction requires an addition
of a single independent uniform random variable to the vector � and yields a Markov chain
X = {Xn}n∈Z on (0,∞) via Xn =ψ(Xn−1, �n−1), where {�n}n∈Z are independent copies of�.
The invariant distribution of X equals that of Y1 and the coalescence occurs at every step with
positive probability. The former follows from Theorem 1.1 and the fact that the chains X and X′
have the same transition probabilities (see Lemma 3.1 below) and the latter is a consequence
of the structure of ψ .

Our aim is to sample X0, whose law equals that of Y1. By construction of ψ it follows
that ψ(x, �) =ψ(a(�), �) for any x ∈ (0, a(�)], where θ �→ a(θ) is a positive deterministic
function explicitly given in (3.3) of Lemma 3.1 below. The coalescence for X occurs every
time the inequality Xn ≤ a(�n) is satisfied, since, if −σ is such a time, then X−σ+1 =
ψ(a(�−σ), �−σ) disregards the value X−σ and hence the entire trajectory of X prior to time
−σ + 1.

https://doi.org/10.1017/apr.2019.39 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.39

Exact simulation of the extrema of stable processes 969

The task now is to detect whether the event {Xn ≤ a(�n)} occurred without knowing the
value of Xn (if we had access to Xn for any n ∈Z, we would have a sample from the law
of Y1!). DCFTP [21] suggests looking for a process D = {Dn}n∈Z satisfying Dn ≥ Xn for all
n ∈Z, which can be simulated backwards in time (starting at 0) together with the independent,
identically distributed (i.i.d.) sequence {�n}n∈Z. It is possible to define such a process D, which
turns out to be stationary but non-Markovian, by ‘unwinding’ the recursion for X backwards
in time and bounding the terms (see (3.8) in Section 3).

Algorithm 1.1. (Exact sampling from the law of Y1.)

1. Starting at 0, sample {(Dn, �n)}n∈Z backwards in time until

−σ = sup{n ≤ 0: Dn ≤ a(�n)}
2. Put X−σ+1 =ψ(a(�−σ), �−σ)

3. Compute recursively Xn =ψ(Xn−1, �n−1) for n = −σ + 2, . . . , 0

4. return X0

The backward simulation of {(Dn, �n)}n∈Z in step 1 of Algorithm 1.1 is discussed in
Section 4 below. It relies on two ingredients: (A) the simulation of the indicators of independent
events with summable probabilities and (B) the simulation of a random walk with negative
drift and its future supremum. By the Borel–Cantelli lemma, only finitely many indicators in
(A) are non-zero. A simple and efficient algorithm for the simulation of the entire sequence
is given in Section 4.1 below. The algorithm for (B) has been developed in [4, Section 4].
For completeness, in Section 4.2 below we present the algorithm from [4, Section 4] applied
to the specific random walk that arises in definition (3.8) of our dominating process D. The
algorithm in [4, Section 4] requires the simulation of the walk under the original measure as
well as under an exponential change of measure. In our case the increments of the random walk
in question are shifted negative exponential random variables. This makes the dynamics of the
walk explicit and easy to simulate under both measures (see Section 4.2 below for details),
making the implementation of Algorithm 1.1 quite fast. More precisely, Algorithm 5.1 below
(a version of Algorithm 1.1) was implemented in Julia; see the GitHub repository [19] for the
code and a simple user guide. This implementation outputs approximately 104 samples every
1.15 seconds (see Section 5 for details).

Note that the random time σ in Algorithm 1.1 dictates the number of simulations, as steps 2–
4 in the algorithm require only deterministic computation. In order to prove that σ is finite, we
couple D with a dominating process D′, which is a component of a multi-dimensional positive
Harris-recurrent Markov chain
 (see (3.9) for the definition of D′ and Lemma 3.2 of Section 3
below). Note that we need not be (and in fact are not) able to simulate D′. We apply the general
state-space Markov chain theory [24, 28] to prove the following result (see Section 3 below for
details).

Theorem 1.2. The random time σ in Algorithm 1.1 is finite a.s. (almost surely). Moreover,
E[σ |
0]<∞ a.s.

Fill and Huber [18, Theorem 5.1] provide a sharp estimate on E[σ] for an analogous
algorithm in the context of Vervaat perpetuities. Their analysis is based on the fact that their
dominating process D is a birth–death Markov chain and is hence time-reversible with skip-
free increments and an explicit invariant distribution (shifted geometric). In the context of
Theorem 1.2, the dominating process D is non-Markovian, its increments are diffuse, have

https://doi.org/10.1017/apr.2019.39 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.39

970 J. I. GONZÁLEZ CÁZARES ET AL.

heavy tails and the multi-dimensional Markov chain
 used to bound D has a non-explicit
invariant probability measure π (which also has heavy tails). These heavy tails make the chain
frequently take large values, which in turn makes the coalescence events and probabilities
harder to trace, bound and control. Moreover, the law of the time-reversal of
 (with respect
to π) is very different from that of
. The key step in the proof of Theorem 1.2 is provided
by [28, Theorem 8.1.1], which allows us to conclude that the time-reversed chain has a Harris-
recurrent modification. However, a quantitative bound on the expected number of steps taken
backwards in time in Algorithm 1.1 remains an open problem.

1.2. Related literature

Exact simulation algorithms for various instances of a general perpetuity equation X d=
A0X + A1 (with (A0, A1) and X independent) have been developed in the literature.

Fill and Huber [18] studied the case A0 = A1 ≥ 0, E[A0]< 1, specializing to the Vervaat
perpetuity for A0 = U1/β with U uniform on (0, 1) and β ∈ (0,∞); see also [9] and [12]. Briefly
put, Fill and Huber first identified the update function and constructed a multigamma coupler.
The identified dominating process is a simple random walk with a partially absorbing barrier
and whose invariant law is that of a shifted geometric random variable. A sped-up version of
a DCFTP algorithm [12] in the case β = 1 (i.e. when X follows the Dickman distribution) is
given in [13].

Devroye and James [14] developed the double CFTP algorithm in the case A0 = V and A1 =
(1 − V)Z, where V takes values in [0, 1] (and has a computable density) and Z is independent of
V with support in an interval [0, c] for some c<∞. This structure appears similar to perpetuity
(2.1) of Proposition 2.1 below, where A0 = U1/α and A1 = (1 − U)1/α max{Y1, 0} with Y1 an
α-stable random variable independent of the uniform U. Proposition 2.1 provides a key step in
the proof of Theorem 1.1 above, which in turn is the cornerstone of Algorithm 1.1. The upper
bound c on the support of Z in [14] is inversely proportional to the coalescence probability
of the chain in the double CFTP algorithm, making its direct application to perpetuity (2.1)
impossible, since max{Y1, 0} not only has infinite support but also a heavy tail. Moreover, even
if we could construct a stochastic (rather than constant) upper bound on the relevant support,
this bound would necessarily still have a heavy tail, making the coalescence in a generalization
of the algorithm in [14] unlikely. This would then yield long (possibly infinite) running times
for such a generalization.

Dassios, Lim, and Qu [10] studied the generalized Vervaat perpetuity where A1 = A0A2
for independent A2 and A0 = U1/β with U uniform on (0, 1). By calculating the Laplace
transform from the perpetuity, they showed that X has the law of the marginal of a pure-jump
Lévy process at time β with Lévy density ν(dx) = |x|−1(P(A2 > x)1x>0 + P(A2 <−x)1x<0) dx.
Techniques similar to those in [6], based on infinite divisibility, are used to devise the
simulation algorithm under the conditions A2 ≥ 0 and limx↓0 P(A2 ≤ x)/x<∞, without relying
on Markov chain techniques. The calculation of Laplace transforms based on perpetuities (2.1)
or (1.1) yields complicated equations for the Laplace transform. Furthermore, even if we could
solve for the Laplace transform of Y1, we could not follow the simulation approach from [10],
as Y1 is typically not infinitely divisible.

Blanchet and Sigman [4] used a version of a multigamma coupler, allowing A1 to have
a heavy tail but assuming the independence of A0 and A1, a requirement clearly violated by
perpetuities (1.1) and (2.1) in the present paper. Moreover, a certain domination condition [4,
equation (2) in Assumption (B)] for the density of A1 is stipulated, which plays an important

https://doi.org/10.1017/apr.2019.39 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.39

Exact simulation of the extrema of stable processes 971

role in constructing the coalescence probability. This dominating condition is hard to establish
for the density of a stable law conditioned on being positive, appearing in perpetuity (1.1).
Thus, even if one could remove the assumption on the independence of A0 and A1 in [4], this
technical requirement would make it hard to apply the sampling algorithm from [4] directly in
our setting.

The structure of the multigamma coupler used in the present paper is closer to that of [18]
(see also Section 1.1 above and Lemma 3.1 below) than that of [4]. Despite the differences
between the samplers in [4] and the one used here, the construction of our dominating process
was inspired by the one presented in [4]. However, we were unable to use the dominating
process V+

k in [4, equation (9)] directly, which appears to be bounded from below by the
deterministic function k �→ eak/2/(1 − e−a/2) (for all positive integers k and some constant
a> 0) tending to infinity exponentially fast and hence suggesting a positive probability of
never detecting coalescence. It appears that this issue could be circumvented in the general
context of [4] by a simple adaptation of our dominating process defined in (3.8) below, which
is based on the idea of adaptive bounds (see Figure 1 in Section 4.1).

A perpetuity can be understood as the special case of the stochastic fixed-point equation

X d= f (X ,U) in a general state space for independent X and U and some measurable function
f . See the monograph [20] for a comprehensive survey on the variety of Markov chain
techniques, such as CFTP and DCFTP, used to obtain exact samples of X .

The problem of the exact simulation of the first passage event of a spectrally positive stable
process (resp. a Lévy process with infinite activity and finite variation) is addressed in [8] (resp.
[7]). Algorithm 1.1 solves this problem for all stable processes as follows: for any x> 0, define
the first passage time τx := inf{t> 0: Yt ≥ x} and note that the equality of events {τx > t} =
{Yt < x} for all t ∈ (0,∞) and the scaling property yield the equality in law τx

d= (x/Y1)α .
We conclude the introduction by noting that Proposition 2.1 easily implies the asymptotic

behaviour at infinity of the distribution function of Y1 stated in [3, Proposition VIII.1.4,
p. 221]. Excluding the spectrally negative case, perpetuity (2.1) and the Grincevic̆ius–Grey
theorem [5, Theorem 2.4.3] yield limx→∞ 2P(Y1U1/α > x)/P(Y1 > x) = 1. By Breiman’s
lemma [5, Lemma B.5.1] we have limx→∞ 2P(Y1U1/α > x)/P(Y1 > x) = 1, implying
limx→∞ P(Y1 > x)/x−α = �(α) sin (παρ)/π via the classical tail behaviour of the stable law
[30, Section 4.3].

The remainder of the paper is structured as follows. In Section 2, we establish perpetuity
(2.1) and apply it in the proof of Theorem 1.1. In Section 3 we define the update function
ψ (in Lemma 3.1), construct the dominating process and prove Theorem 1.2 above. Section 4
discusses the backward simulation of {(Dn, �n)}n∈Z. Finally, a numerical performance analysis
is found in Section 5.

2. Stochastic perpetuities

Let Y be a stable process with stability and positivity parameters α and ρ, respectively
(see Appendix A below for definition). Since Y0 = 0 and the scaling property yield Yt =
sups∈[0,t] Ys

d= t1/αY1 for all t ∈ [0,∞), we may restrict our attention to Y1. Let S(α, ρ) and
S(α, ρ) denote the laws of Y1 and Y1, respectively. Since P(Yt > 0) = ρ for any t> 0, the
extreme cases ρ ∈ {0, 1} are excluded from our analysis as they correspond to Y having
monotone paths. Let U(0, 1) denote the uniform law on (0, 1) and define x+ = max{x, 0} for
any real number x ∈R.

https://doi.org/10.1017/apr.2019.39 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.39

972 J. I. GONZÁLEZ CÁZARES ET AL.

Proposition 2.1. Let (Y1, Z,U) ∼ S(α, ρ) × S(α, ρ) × U(0, 1). Then the law of Y1 is the
unique solution of the following perpetuity:

Y1
d= U1/αY1 + (1 − U)1/αZ+. (2.1)

To prove this result, we need the next definition. For any a< b, the concave majorant of
a function f : [a, b] →R is defined as the smallest concave function c : [a, b] →R, such that
c(t) ≥ x(t) for every t ∈ [a, b]. The proof of Proposition 2.1 exploits the fact that the supremum
of a function lies on its concave majorant, at the end of all (if any) faces with positive slope.
Following the classical result for the complete description of a concave majorant of random
walks, Pitman and Uribe Bravo [27] described the continuous-time analogue of these results
for Lévy processes ([27] is phrased in terms of the convex minorant, but through a change of
sign their results cover the concave majorant). The idea is as follows: fix a sample path of Y
and pick a random face of its concave majorant above an independent uniform point in [0, 1].
The length of the chosen face is distributed as V ∼ U(0, 1) and its height is distributed as the
increment of a stable process over a time interval of duration V . Moreover, after removing
this face (together with the path underneath it) the remainder of the concave majorant behaves
like a concave majorant of a stable process over the time interval [0, 1 − V]; see [27]. This
recursive relation and the scaling property of Y will yield the perpetuity in (2.1).

Proof. A stick-breaking process {�n}n≥1 on [0, 1] is defined recursively as follows:

�n = Vn(1 − Ln−1), n ≥ 1,

where Ln−1 = �1 + · · · + �n−1, L0 = 0 and {Vn}n≥1 is a sequence of i.i.d. random variables
with law U(0, 1) (independent of Y). Let C = (Ct)t∈[0,1] be the concave majorant of the Lévy
process Y . Let (dn − gn,Cdn − Cgn)n≥1 be the lengths and heights of the faces of C picked at
random, uniformly on lengths and without replacement (gn and dn denote the beginning and
end times for the nth face). Theorem 1 of [27] asserts the following equality in law:

(dn − gn,Cdn − Cgn)n≥1
d= (�n, YLn − YLn−1)n≥1.

The concave majorant (Ct)t∈[0,1] is piecewise linear, with the corresponding slopes forming
a non-increasing piecewise constant function in t. Hence Y1 is always contained in the image
of the function C. Moreover, the supremum equals the sum of all the positive heights of C:

Y1 =
∞∑

n=1

(Cdn − Cgn)+ d=
∞∑

n=1

(YLn − YLn−1)+.

Conditional on {Ln}n≥1, the random variables {YLn − YLn−1}n≥1 are independent and have the
same distribution as the respective Y�n . Hence, for an i.i.d. sequence {Zn}n≥1 with law S(α, ρ),
we have

(�n, YZn − YZn−1)n≥1
d= (�n, �

1/α
n Zn)n≥1,

implying

Y1
d=

∞∑
n=1

(YLn − YLn−1)+ d=
∞∑

n=1

�1/α
n Z+

n . (2.2)

https://doi.org/10.1017/apr.2019.39 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.39

Exact simulation of the extrema of stable processes 973

It is well known that {�n/(1 − �1)}n≥2 is a stick-breaking process on [0, 1], independent of
�1 ∼ U(0, 1) (and {Zn}n≥1). Hence by (2.2) we find the equality in law

Y1
d=

∞∑
n=2

(
�n

1 − �1

)1/α

Z+
n ,

which, together with (2.2), implies the perpetuity

Y1
d= �

1/α
1 Z+

1 + (1 − �1)1/αY1.

Finally, the uniqueness of solution follows from [5, Theorem 2.1.3]. �
Let S+(α, ρ) denote the law of Y1 conditioned on being positive. For n,m ∈Z define the

sets
Zn = {k ∈Z : k< n}, Zn

m =Zn\Zm. (2.3)

Proof of Theorem 1.1. Note that the random variable Z+ in Proposition 2.1 behaves like
the product of a Bernoulli random variable and a stable random variable conditioned on

being positive, that is, if B ∼ Ber (ρ) and S ∼ S+(α, ρ) are independent, then Z+ d= BS. Since
P(Z+ = 0) = 1 − ρ > 0, the idea behind the proof of Theorem 1.1 is to iterate perpetuity (2.1)
backwards in time until the first time we observe Z+ > 0.

More precisely, by Proposition 2.1 and Kolmogorov’s consistency theorem, we can
construct a stationary Markov chain {(Un, Zn, ζn)}n∈Z1 with invariant law U(0, 1) × S(α, ρ) ×
S(α, ρ), where {(Un, Zn)}n∈Z1 is an i.i.d. sequence with law U(0, 1) × S(α, ρ) and

ζn+1 = U1/α
n Z+

n + (1 − Un)1/αζn, n ∈Z0.

Define V0 = 1 and Vn = ∏
m∈Z0

n
(1 − Um) for n ∈Z0. Then the following equality holds:

ζ0 =
∑

m∈Z0
n

(UmVm+1)1/αZ+
m + V1/α

n ζn for all n ∈Z0. (2.4)

Let τ = sup{n ∈Z0 : Zn > 0} (with convention sup ∅= −∞) be the last time we see a positive
value in the sequence {Zn}n∈Z0 . Substituting n = τ in (2.4), we get

ζ0 = V1/α
τ+1((1 − Uτ)1/αζτ + U1/α

τ Zτ). (2.5)

This equality of course yields the same equality in law. It will hence imply the perpetuity in
(1.1), if we prove that the random variables involved have the desired laws and independence
structure.

The events {Zn > 0}, n ∈Z0, are independent with probability ρ, making τ a geometric
random variable on Z0 with parameter ρ. By construction, the coordinates of the vec-
tor (Un, Zn, ζn) are independent for any n ∈Z0. Hence we have (Uτ , Zτ , ζτ) ∼ U(0, 1) ×
S+(α, ρ) × S(α, ρ). Moreover, (Uτ , Zτ , ζτ) is independent of (τ, Vτ+1). Hence (2.5) will imply
the perpetuity in the theorem if we prove that � has the same law as Vτ+1. Put differently, as
τ and U0 are independent, it is sufficient to prove the following equality in law:

Vτ+1
d= 1τ=−1 + 1τ �=−1U1/ρ

0 = 1 + 1τ �=−1(U1/ρ
0 − 1). (2.6)

https://doi.org/10.1017/apr.2019.39 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.39

974 J. I. GONZÁLEZ CÁZARES ET AL.

Since − log (1 − U1) ∼ Exp (1) is exponential with mean one, − log (Vn) is gamma-
distributed with density x �→ x−n−1 e−x/(−n − 1)! for any n ∈Z0. Hence, on the event {τ �=
−1}, the density of the conditional law − log (Vτ+1)|τ is given by x �→ x−τ−2 e−x/(−τ − 2)!.
Thus, the conditional law − log (Vτ+1)|{τ �= −1} is exponential with density

x �→ 1

1 − ρ

∞∑
k=2

ρ(1 − ρ)k−1 xk−2

(k − 2)! e−x = ρ e−ρx, x> 0. (2.7)

Since − log (Vτ+1) takes the value 0 when τ = −1, which happens with probability ρ, and is
otherwise exponential with mean 1/ρ, the distributional identity in (2.6) follows.

Finally, the uniqueness of the solution for perpetuity (1.1) follows from [5, Theorem 2.1.3].
�

3. The Markov chain X and the dominating process D in Algorithm 1.1

Let A= (0,∞) × (0, 1) × (0, 1) × (0, 1] and define the function φ : (0,∞) ×A→ (0,∞)
by

φ(x, θ) = λ1/α(u1/αx + (1 − u)1/αs), x ∈ (0,∞), θ = (s, u,w, λ) ∈A. (3.1)

Note that the map x �→ φ(x, θ) is increasing and linear in x for all θ ∈A and does not depend on
w. Let W ∼ U(0, 1) be independent of random variables S, U, and � defined in Theorem 1.1.

Then, by Theorem 1.1, we have ζ
d= φ(ζ, �), where ζ ∼ S(α, ρ) is independent of �=

(S,U,W, �). Hence a Markov chain with the update function φ has the correct invariant law
but does not allow for coalescence: if for any x, y ∈ (0,∞) we have φ(x, �) = φ(y, �), by
(3.1) it follows that x = y. But the structure of φ and the additional randomness in W allow us
to modify the update function x �→ φ(x, θ) so that coalescence can be achieved, while keeping
the law of the chain unchanged.

Lemma 3.1. Define the functions ψ : (0,∞) ×A→ (0,∞) and a : A→ (0,∞) by the
formulae

ψ(x, θ) = 1{a(θ)≥x}w1/αρ(1 − u)1/αs + 1{a(θ)<x}λ1/α(u1/αx + (1 − u)1/αs), (3.2)

a(θ) = (λ−1/α − 1)

(
1 − u

u

)1/α

s. (3.3)

The map x �→ψ(x, θ) is non-decreasing in x for all θ ∈A. Moreover, for ζ and � as in the

paragraph above, we have φ(x, �)
d=ψ(x, �) for all x> 0 and S(α, ρ) is the unique solution

of the distributional equation ζ
d=ψ(ζ, �).

Proof. The function ψ takes constant value of w1/αρ(1 − u)1/αs for x ∈ (0, a(θ)] and
increases linearly on the interval (a(θ),∞) with the right limit satisfying limx↘a(θ) ψ(x, θ) =
(1 − u)1/αs>ψ(a(θ), θ). Hence the desired monotonicity follows.

We now prove that φ(x, �)
d=ψ(x, �) for all x> 0, that is, the transition probabilities for

the update functions φ and ψ coincide. Pick x> 0 and note that

{φ(x, �) =ψ(x, �)} ⊃ {a(�)< x}.
Thus, for any y> 0 we have

P(φ(x, �) ≤ y, a(�)< x) = P(ψ(x, �) ≤ y, a(�)< x).

https://doi.org/10.1017/apr.2019.39 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.39

Exact simulation of the extrema of stable processes 975

Define

v(u, s) =
(

(1 − u)1/αs

u1/αx + (1 − u)1/αs

)αρ
∈ (0, 1),

and note that {a(�) ≥ x} = {�ρ ≤ v(U, S)}. On this event, the definition of � in Theorem 1.1
implies the inequality �< 1, in which case �ρ is uniform on (0, 1). Hence the conditional
law of �, given (U, S) and {a(�) ≥ x}, is uniform on the interval (0, v(U, S)). Moreover, the
conditional law of v(U, S)W, given (U, S) and on {a(�) ≥ x}, is also uniform on (0, v(U, S)).
Hence, for any y> 0 the following equalities hold:

P(φ(x, �) ≤ y, a(�) ≥ x | U, S)

= P

(
�ρ ≤

(
y

U1/αx + (1 − U)1/αS

)αρ
, a(�) ≥ x | U, S

)

= P

(
v(U, S)W ≤

(
y

U1/αx + (1 − U)1/αS

)αρ
, a(�) ≥ x | U, S

)
= P(W1/(αρ)(1 − U)1/αS ≤ y, a(�) ≥ x | U, S)

= P(ψ(x, �) ≤ y, a(�) ≥ x | U, S).

Taking expectations in this identity yields the unconditional equality

P(φ(x, �) ≤ y, a(�) ≥ x) = P(ψ(x, �) ≤ y, a(�) ≥ x).

Hence we get
P(φ(x, �) ≤ y) = P(ψ(x, �) ≤ y) for all y> 0,

implying the equality in law φ(x, �)
d=ψ(x, �) for arbitrary x> 0.

Pick y> 0. Since � and ζ are independent, by Theorem 1.1 we have

P(ζ ≤ y) = P(φ(ζ, �) ≤ y)

=
∫

[0,∞)
P(φ(x, �) ≤ y)P(ζ ∈ dx)

=
∫

[0,∞)
P(ψ(x, �) ≤ y)P(ζ ∈ dx)

= P(ψ(ζ, �) ≤ y),

implying ζ
d=ψ(ζ, �). Moreover, if there exists some ζ ′ (independent of �) satisfying ζ ′ d=

ψ(ζ ′, �), this calculation implies the equality ζ ′ d= φ(ζ ′, �). By Theorem 1.1 we get ζ ′ d= ζ ,
as claimed. �

By Lemma 3.1 and Kolmogorov’s consistency theorem, there exists a probability space
supporting a sequence {�n}n∈Z of independent copies of � and a stationary Markov chain
{Xn}n∈Z, satisfying Xn+1 =ψ(Xn, �n) for all n ∈Z. In the rest of the paper, {(Xn, �n)}n∈Z
denotes the corresponding Markov chain on (0,∞) ×A. In order to detect coalescence in
Algorithm 1.1, we now construct a dominating process {Dn}n∈Z.

To this end, fix constants δ and d satisfying 0< δ < d< 1/(αρ). Let In
k = 1{Sk>eδ(n−1−k)} for

all n ∈Z, k ∈Zn (see (2.3) above), where Sk ∼ S+(α, ρ) is the first component of �k (see the

https://doi.org/10.1017/apr.2019.39 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.39

976 J. I. GONZÁLEZ CÁZARES ET AL.

first paragraph of Section 3). Fix γ > 0 such that ESγ1 <∞ (see (A.2)). Markov’s inequality
implies

p(m) = P(S1 ≤ eδm) ≥ 1 − e−δγm
ESγ1 , m ≥ 0, (3.4)

and hence
∑∞

m=0 (1 − p(m))<∞. Since {Sk}k∈Z are independent, the Borel–Cantelli lemma
ensures that, for a fixed n ∈Z, the events {Sk > eδ(n−1−k)} = {In

k = 1} occur for only finitely
many k ∈Zn a.s. Let χn be the smallest time beyond which the indicators In

k are all zero:

χn = (n − 1) ∧ inf{k ∈Zn : In
k = 1}, (3.5)

with convention inf ∅= ∞. Note that −∞<χn ≤ n − 1 holds a.s. for all n ∈Z. Since the
integers are countable, we have n − 1 ≥ χn >−∞ for all n ∈Z a.s.

Define the i.i.d. sequence {Fn}n∈Z by Fn = d + (1/α) log (�nUn), where Un and �n are
the second and fourth components of �n, respectively (see the first paragraph of Section 3).
Note that d − Fn has the same law as a sum of (random) geometrically many independent
exponential random variables and is hence exponentially distributed with mean E[d − Fn] =
1/(αρ). Let C = {Cn}n∈Z be a random walk defined by C0 = 0 and

Cn+1 = Cn − Fn, n ∈Z. (3.6)

Recall definition (2.3) and let R = {Rn}n∈Z be the reflected process of the walk {Cn}n∈Z, that is,

Rn = sup
k∈Zn+1

Ck − Cn, n ∈Z. (3.7)

For any n ∈Z, define the following random variables:

Dn = exp (Rn)

(
e(d−δ)(χn−n)

1 − eδ−d
+

∑
k∈Zn

χn

e−(n−1−k)dSk(1 − Uk)1/α
)
, (3.8)

D′
n = exp (Rn)

(
1

1 − eδ−d
+ D′′

n

)
, where D′′

n =
∑

k∈Zn

e−(n−1−k)dSk. (3.9)

The sum in (3.8) is taken to be zero if Zn
χn

=∅, i.e. if χn = n. Note that the series in D′′
n is

absolutely convergent by the Borel–Cantelli lemma, but D′
n cannot be simulated directly as

it depends on an infinite sum. Finally, define the random element
n = (�n, Rn,D′
n) for any

n ∈Z.

Lemma 3.2. (a) Xn ≤ Dn ≤ D′
n for all n ∈Z a.s.

(b) The processes R = {Rn}n∈Z and
= {
n}n∈Z are Markov, stationary, and ϕ-irreducible
(see definition [24, p. 82]) with respect to the respective invariant distributions.

Proof. (a) Since EF1 < 0, by the strong law of large numbers we have C−n → −∞ a.s. as
n → ∞. Hence Rn <∞ for all n ∈Z a.s. and a direct termwise comparison yields D′

n ≥ Dn for
all n ∈Z. It remains to prove that Xn ≤ Dn for all n ∈Z.

Recall that the function θ �→ a(θ) is defined in (3.3). Let τn = sup{k ∈Zn : Xk ≤ a(�k)}
(with convention sup ∅= −∞) be the last time the coalescence occurred before n ∈Z. If τn >

−∞, the value X1+τn does not depend on Xτn , and neither do the values of the chain taken at
subsequent times. In particular,

Xn =ψ(Xn−1, �n−1) =ψ(· · ·ψ︸ ︷︷ ︸
n−1−τn

(W1/αρ
τn

(1 − Uτn)1/αSτn , �τn+1), . . . , �n−1).

https://doi.org/10.1017/apr.2019.39 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.39

Exact simulation of the extrema of stable processes 977

In general, by (3.2) and (2.3), Xn can be expressed as

Xn =
∑

k∈Zn
τn+1

exp

(
1

α

∑
j∈Zn

k+1

log (�jUj)

)
�

1/α
k (1 − Uk)1/αSk

+ 1{τn>−∞} exp

(
1

α

∑
j∈Zn

τn+1

log (�jUj)

)
W1/αρ
τn

(1 − Uτn)1/αSτn , (3.10)

where sums over empty sets in (3.10) are defined to be equal to zero and, if τn = −∞, we
define Zn

τn+1 =Zn. A termwise comparison then yields

Xn ≤
∑

k∈Zn

eCk+1−Cn−(n−1−k)d(1 − Uk)1/αSk

≤ eRn
∑

k∈Zn

e−(n−1−k)d(1 − Uk)1/αSk for all n ∈Z a.s. (3.11)

Recall that Sk(1 − In
k) ≤ eδ(n−1−k)(1 − In

k) for all k ∈Zn. Since In
k = 0 for k<χn, we get∑

k∈Zn

e−(n−1−k)d(1 − Uk)1/αSk

≤
∑

k∈Zχn

e−(n−1−k)(d−δ)(1 − Uk)1/α +
∑

k∈Zn
χn

e−(n−1−k)d(1 − Uk)1/αSk

≤ e(χn−n)(d−δ)

1 − eδ−d
+

∑
k∈Zn

χn

e−(n−1−k)d(1 − Uk)1/αSk. (3.12)

The inequalities in (3.11)–(3.12) and the definition in (3.8) imply Xn ≤ Dn for all n ∈Z a.s.
(b) Note that Ck − Cn = ∑n−1

i=k Fi for all k ∈Zn. Hence Rn = sup{Ck − Cn : k ∈Zn+1} and
Fn are independent and the Markov property for {Rn}n∈Z follows from

Rn = max

{
sup

k∈Zn
Ck − Cn, 0

}
= max{Rn−1 + Fn−1, 0}.

By (3.9) we have D′′
n = Sn−1 + e−dD′′

n−1. Hence (Rn,D′
n) is a function of

n−1 = (�n−1, Rn−1,D′
n−1)

(recall that Sn−1 is the first component of the random vector�n−1). Since the random elements

n−1 and �n are independent, the process {
n}n∈Z is Markov.

The vector
n = (�n, Rn,D′
n) is in a bijective correspondence with (�n, Rn,D′′

n).
Since {�n}n∈Z are i.i.d., the following equality in law holds:

(Rn+1,D′′
n+1) =

(
sup
j∈Z1

∑
k∈Z1

j

Fn+k,
∑

k∈Z1

ekdSn+k

)
d=

(
sup
j∈Z1

∑
k∈Z1

j

Fk,
∑

k∈Z1

ekdSk

)
,

implying the stationarity of {(�n, Rn,D′′
n)}n∈Z and hence of R and
.

The process R can jump to 0 in a single step and has positive jumps of size at most 1/(αρ) −
d, both with positive probability. Hence it will hit any subinterval of its state space [0,∞) from

https://doi.org/10.1017/apr.2019.39 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.39

978 J. I. GONZÁLEZ CÁZARES ET AL.

any starting point in a finite number of steps with positive probability, making it ϕ-irreducible
[24, p. 82] with respect to its invariant law.

Since�n is independent of (Rn,D′′
n), the ϕ-irreducibility of {
n}n∈Z follows if, starting from

an arbitrary point, we can prove that the process {(Rn,D′′
n)}n∈Z hits any rectangle in the product

[0,∞) × (0,∞) with positive probability. Since we already know that R hits intervals and has
(arbitrarily) small positive jumps with positive probability, the independence of {D′′

n}n∈Z and R,
together with the fact that D′′

n has a positive density, imply the final statement of the lemma. �

Proof of Theorem 1.2. By Lemma 3.2(ii),
 is π -irreducible, where π denotes the invariant
law of
. Hence, by [24, Proposition 10.1.1],
 is recurrent, meaning that the expected
number of visits of the chain
 to any set charged by π is infinite for all starting points.
By [24, Theorem 9.0.1], the chain
 is Harris-recurrent on a complement of a π -null set. Put
differently, for any starting point, the number of visits
 makes to any set charged by π is
infinite almost surely.

Consider the Markov chain � = {�n}n∈N, where N= {0, 1, . . .} and �n =
−n. In the
language of [28], � is a chain dual to
 with respect to π . In particular, the invariant law
of � equals π . Since
 is Harris-recurrent on a state space with a countably generated σ -
algebra, [28, Theorem 8.1.1] implies that there exists a modification of � (again denoted by
�) that is also Harris-recurrent. Since P(a(�−n) ≥ D′−n)> 0 for any n ∈N, it follows that
the �-stopping time σ ′ = inf{n> 0: a(�−n) ≥ D′−n} is finite almost surely. Moreover, by [24,
Theorem 11.1.4] we have E[σ ′|�0]<∞ almost surely.

Recall that σ = inf{n> 0: a(�−n) ≥ D−n} is the number of steps taken backwards in time
in Algorithm 1.1. By Lemma 3.2(i) we have σ ≤ σ ′. Since, by definition, �0 =
0, the claim
follows. �

4. Backward simulation of {(Dn, �n)}n∈Z
A key step in Algorithm 1.1 consists of simulating the process {(Dn, �n)}n∈Z backwards

in time until the random time σ = inf{n> 0: a(�−n) ≥ D−n} (see (2.3) and (3.3) for the
definitions of Z1 and a(θ), respectively). The forthcoming Algorithm 4.1 is responsible for this
step. Recall that {�n}n∈Z is an i.i.d. sequence with�n = (Sn,Un,Wn, �n) having independent
components, where Sn, Un, and �n are distributed as in Theorem 1.1 and Wn ∼ U(0, 1).

At time n ∈Z, the dominating process D in (3.8) depends on three components: the sequence
(χn, {Sk}k∈Z0

χn
), the all-time maximum supk∈Zn+1{Ck} and Cn (via the reflected process R:

see (3.6)–(3.7)) and the uniform random variables {Uk}k∈Z0
χn

. The time χn in (3.5) is the last
time before n the random variables {Sk}k∈Z0 exceed a certain adaptive exponential bound.
Algorithm 4.2 for sampling (χn, {Sk}k∈Z0

χn
) is given in Section 4.1 below. A sample for (Rn,Cn)

requires the joint forward simulation of the dual random walk −C and its ultimate maximum.
This problem was solved in [4]. The algorithm in [4], stated for completeness as Algorithm 4.6
of Section 4.2 below for the random walk C in (3.6), requires the simulation of the walk under
the exponential change of measure.

Since the increments of C are shifted negative exponential random variables under the
original measure, they remain in the same class under the exponential change of measure,
making the simulation in Algorithm 4.6 simple. Finally, heaving simulated (R,C) backwards
in time, we need to recover the random variables �k and Uk, conditional on the values of
increments Fk = d + (1/α) log (Un�n) we have observed. Algorithm 4.7 in Section 4.3 below
describes this step.

https://doi.org/10.1017/apr.2019.39 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.39

Exact simulation of the extrema of stable processes 979

Algorithm 4.1. (Backward simulation of (σ, {(Dn, �n)}n∈Z0−σ).)

1. Sample χ−1 and {Sk}k∈Z0
χ−1

� Algorithm 4.2

2. Sample {(Rk,Ck, �k,Uk)}k∈Z0
N−1

for some N−1 ≤ χ−1 � Algorithms 4.6 and 4.7

3. Bundle up {�k}k∈Z0
χ−1

and compute D−1

4. Put n := −1

5. while Dn > a(�n) do

6. Put n := n − 1

7. Sample χn and {Sk}k∈Zχn+1
χn

conditional on (χn+1, {Sk}k∈Zχn+1
χn

) � Algorithm 4.2

8. Sample {(Rk,Ck, �k,Uk)}
k∈ZNn+1

Nn

for some Nn ≤ χn � Algorithms 4.6 and 4.7

9. Bundle up {�k}k∈Zχn+1
χn

, and compute Dn

10. end while

11. Put σ = −n

12. return (σ, {�k}k∈Z0−σ)

The number of steps N−1 (resp. Nn) in line 2 (resp. 8) of Algorithm 4.1 is random since
Algorithm 4.6, which outputs the all-time maximum of the random walk, may need more
values of the random walk than required to recover the previous value of the dominating
process D−1 (resp. Dn). (In the notation of Section 4.2 below, the integers Nn take the form
�(τm).) The running time of Algorithm 4.2 is random but has moments of all orders (see
Lemma 4.1 in Section 4.1 below). Algorithm 4.7 executes a loop of length equal to the number
of steps in the random walk C the algorithm is applied to, with each step sampling one Poisson
and one beta random variable (see Section 4.3 below). Hence both Algorithms 4.2 and 4.7 are
fast (see Section 5). Algorithm 4.6 of [4] (see Section 4.2 below) runs Algorithms 4.3, 4.4,
and 4.5 sequentially. Each of these algorithms is reliant on rejection sampling and has a finite
expected running time, which is easy to quantify in terms of the increments of the walk C.

4.1. Simulation of (χn, {Sk}k∈Z0
χn

)

Consider independent Bernoulli random variables {Jn}∞n=1 with computable pn = P(Jn =
0), n ≥ 1, satisfying

∑∞
n=1 (1 − pn)<∞. By the Borel–Cantelli lemma, the random time τ =

sup{n ≥ 0: Jn = 1}+ (with convention sup ∅= −∞) satisfies τ ∈N a.s. Clearly, Jn = 0 for all
n> τ , and {τ < n} = ⋂∞

k=n{Jk = 0} implies P(τ < n) = ∏∞
k=n pk. If there exists n∗ ≥ 1 such

that for all n ≥ n∗ we have a positive computable lower bound qn ≤ ∏∞
k=n pk, then we can

simulate (τ, {Jk}k∈{0,...,τ }) as follows.
Define the auxiliary function F : (0, 1) × (0, 1) → {0, 1} × (0, 1) by the formula

F(u, p) =

⎧⎪⎪⎨
⎪⎪⎩

(
0,

u

p

)
if u ≤ p,(

1,
u − p

1 − p

)
if u> p.

https://doi.org/10.1017/apr.2019.39 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.39

980 J. I. GONZÁLEZ CÁZARES ET AL.

The following observation is simple but crucial: for any p ∈ (0, 1) and U ∼ U(0, 1), the
components of the vector (J, V) = F(U, p) are independent, J is Bernoulli with P(J = 0) = p,
and V ∼ U(0, 1).

Sample {Jn}n∈Zn∗
1

and an independent U(n∗) ∼ U(0, 1). Let (Jn∗ ,U(n∗+1)) = F(U(n∗), pn∗).

Hence Jn∗ has the correct distribution and is independent of U(n∗+1) ∼ U(0, 1). Thus, Jn∗
is independent of F(U(n∗+1), pn∗+1) = (Jn∗+1,U(n∗+2)). Define recursively (Jn,U(n+1)) =
F(U(n), pn) for n ≥ n∗ + 2 and note that the sequence {Jn}n∈N of Bernoulli random variables is
i.i.d. Moreover, the sequence {U(n)}n≥n∗ detects the value of τ since

{U(n) ≤ qn} ⊆
{

U(n) ≤
∞∏

k=n

pk

}
= {τ < n}.

Algorithm 4.2. (Simulation of (τ, {Jk}k∈{1,...,τ }).)

1. Sample J1, . . . , Jn∗−1 and put n := n∗ − 1

2. Sample U ∼ U(0, 1)

3. loop

4. Put n := n + 1

5. if U > pn then

6. Put Jn := 1 and update U := (U − pn)/(1 − pn)

7. else if U ≤ qn then

8. Compute τ from J1, . . . , Jn−1 and exit loop

9. else

10. Put Jn := 0 and update U := U/pn

11. end if

12. end loop

13. return (τ, {Jk}k∈{1,...,τ })

Algorithm 4.2 samples a single uniform random variable and performs a binary search.
Its running time ς = inf{n ≥ n∗ : U(n) ≤ qn} ≥ τ + 1 (with convention inf ∅= ∞) has the
following properties.

Lemma 4.1.

(a) If limn→∞ qn = 1 then P(ς <∞) = 1.

(b) If
∑∞

n=n∗ (1 − qn)<∞ then Eς <∞.

(c) If
∑∞

n=n∗ (1 − qn) etn <∞ for some t> 0, then E etς <∞.

(d) If qnpn−1 ≥ qn−1 for n> n∗, then the converses of (a), (b), and (c) are also true.

Remark 4.1. At the cost of more operations, one may always construct a sequence {q′
n}∞n=n∗

that satisfies (d). Indeed, let q′
n∗ = qn∗ and define recursively q′

n = max{qn, q′
n−1/pn−1} for

https://doi.org/10.1017/apr.2019.39 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.39

Exact simulation of the extrema of stable processes 981

n> n∗; then these satisfy condition (d), are computable and inductively satisfy q′
n ≤ ∏∞

k=n pk

for n ≥ n∗. This consideration shows that our conditions are sharp.

Proof. (a) For all n ≥ n∗ we have {ς ≤ n} ⊇ {U(n) ≤ qn}; then P(ς > n) ≤ P(U(n) > qn) =
1 − qn. Hence P(ς = ∞) = limn→∞ P(ς > n) ≤ limn→∞ (1 − qn) = 0 and the sufficiency fol-
lows.

(b) Similarly,

Eς =
∞∑

n=0

P(ς > n) ≤ n∗ +
∞∑

n=n∗
(1 − qn)<∞

and the claim follows.
(c) Note that

(et − 1)
n−1∑
m=0

etm = etn − 1.

Exchanging the order of summation in the third equality of the following estimate implies (c):

E etς =
∞∑

n=0

P(ς = n) etn

=
∞∑

n=0

P(ς = n)

(
1 + (et − 1)

n−1∑
m=0

etm
)

= 1 + (et − 1)
∞∑

m=0

etm
P(ς >m)

≤ etn∗ + (et − 1)
∞∑

n=n∗
(1 − qn) etn

<∞.

(d) Condition (d) and the relation (τ + 1) ∨ n∗ = inf{k ≥ n∗ : U(k) ≤ ∏∞
j=k pj} imply for n ≥

k ≥ n∗

{(τ + 1) ∨ n∗ = k, ς ≤ n} =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{
U(k−1) ∈

[
pk−1, pk−1 + (1 − pk−1)qn

∏
j∈Zn

k

pj

]}
k> n∗,

{
U(n∗) ∈

[
0, qn

∏
j∈Zn

n∗

pj

]}
k = n∗.

Thus, a simple calculation yields

P(ς ≤ n) = qn

∏
j∈Zn

n∗

pj +
∑

k∈Zn
n∗

qn(1 − pk)
∏

j∈Zn
k+1

pj = qn,

and the result follows from standard probability theory. �
In Algorithm 4.1 we are required to sample (χ0, {Sk}Z0

χ0
), and then, iteratively for n ∈Z0,

χn and the remaining {Sk}k∈Zχn+1
χn

, given the known values (χn+1, {Sk}k∈Z0
χn+1

). To apply

https://doi.org/10.1017/apr.2019.39 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.39

982 J. I. GONZÁLEZ CÁZARES ET AL.

Algorithm 4.2, we need a computable lower bound on the product of probabilities p(m) =
P(S1 ≤ eδm), m ∈N. Recall the exponential lower bound on p(m) in (3.4) and define

m∗ =
⌊

1

δγ
log ESγ1

⌋+
+ 1

(here �x� = sup{n ∈Z : n ≤ x} for any x ∈R). Note that for any m ≥ m∗ we have e−δγm
ESγ1 < 1

and may hence define

p(m) = exp

(
− 1

1 − e−δγ
e−δγm

ESγ1
1 − e−δγmESγ1

)
∈ (0, 1).

The inequality in (3.4) implies

∞∏
j=m

p(j) ≥
∞∏

j=m

(1 − e−δγ j
ESγ1)

= exp

(∞∑
j=m

log (1 − e−δγ j
ESγ1)

)

= exp

(
−

∞∑
j=m

∞∑
k=1

1

k
e−δγ jk(ESγ1)k

)

≥ exp

(
−

∞∑
k=1

e−δγmk(ESγ1)k

1 − e−δγ k

)
≥ p(m).

Since for any k ∈Z0
χ0

we have

P(I0
k = 0) = P(Sk ≤ e−(k+1)δ) = p(−(k + 1)),

Algorithm 4.2 can be applied (with n∗ = m∗) to sample the sequence {I0
k }k∈Z0

χ0
. Moreover, for

m ∈N we get

p(m∗ + m) ≥ exp (−r e−δγm) ≥ 1 − r e−δγm, where r = e−δγm∗
ESγ1

(1 − e−δγ)(1 − e−δγm∗
ESγ1)

> 0.

Hence, for any t ∈ (0, δγ), Lemma 4.1(c) implies that the running time ς satisfies E[eς t]<∞
and therefore possesses moments of all orders. Having obtained (χ0, {I0

k }k∈Z0
χ0

), for k ∈Z0
χ0

,

we sample Sk as S+(α, ρ) conditional on Sk ≤ e−δ(k+1) (if I0
k = 0) or Sk > e−δ(k+1) (if I0

k = 1),
yielding a sample of (χn, {Sk}k∈Z0

χn
).

Assume now that we have already sampled (χn+1, {Sk}k∈Z0
χn+1

). The adaptive exponential

bounds in the indicators In+1
k and In

k are different (see Figure 1) and the relevant probabilities
take the form

p′(m) = P(S1 ≤ eδm | S1 ≤ eδ(m+1)), m ∈N.

Since {S1 ≤ eδm} ⊂ {S1 ≤ eδ(m+1)}, the inequality p′(m) ≥ p(m) holds for any m ∈N. Thus

∞∏
j=m

p′(j) ≥
∞∏

j=m

p(j) ≥ p(m),

https://doi.org/10.1017/apr.2019.39 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.39

Exact simulation of the extrema of stable processes 983

S–7

S–2

S–10

χ–1χ–2 χ0 k

k
Ske–δ(k+1)

e–δ(k+2)

e–δ(k+3)

k

k

FIGURE 1: The adaptive exponential bounds k �→ eδ(n−k−1) for n ∈ {0,−1,−2} with the corresponding
stable random variables conditioned to be positive {Sk}k∈Z0 and the times {χk}k∈Z1 used for the

construction of the dominating process {Dn}n∈{0,−1,−2} in (3.8).

and Algorithm 4.2 can be applied with n∗ = max{m∗, n − χn+1}. The same argument as above
shows that the running time ς has moments of all orders.

4.2. Simulation of the random walk and its reflected process from [4]

In this section we present an overview of the algorithm in [4] for the joint simulation of
(C, R) defined in (3.6)–(3.7). We refer to [4] and [17] for the proofs (the latter paper contains
the simulation algorithm for the ultimate maximum of a random walk with negative drift and
provides a basis for the simulation algorithm in [4]).

Let η= η(d) be the unique positive root of ψd(η) = 0, where ψd(t) = log (E etF0) = dt −
log (1 + t/(αρ)). Note that

ψ ′
d(η) = d − 1

αρ + η
> 0

and η= −αρ − W−1(−αρd e−αρd)/d, where W−1 is the secondary branch of the Lambert
W function. Since E[exp (ηFn)] = 1 for all n ∈Z, the process {exp (ηCn)}n∈Z1 is a positive
backward martingale started at one, thus inducing a probability measure P

η on σ -algebras
σ (Ck; k ∈Z1

n), n ∈Z1, by the formula P
η(A) =E[1A eηCn] where A ∈ σ (Ck; k ∈Z1

n). Under
P
η, the process C remains a random walk with i.i.d. increments satisfying (αρ + η)(d − Fn) ∼

Exp (1). Hence E
η[C−1] =ψ ′

d(η)> 0, implying limn→−∞ Cn = ∞, Pη-a.s. by the strong law
of large numbers.

For any k ∈Z define (with convention sup ∅= −∞)

Tk
x =

{
sup{n ∈Zk : Cn − Ck > x} if x> 0,

sup{n ∈Zk : Cn − Ck < x} if x< 0.
(4.1)

For ease of notation we let Tx = T0
x . Let E be an independent exponential random variable with

mean one. Then, for x> 0, we have P(R0 > x) = P
η(LE/η > x), where Lx = inf{y ≥ 0: CTy > x}

is the right inverse of x �→ CTx ; see e.g. [17]. Hence, for x ∈ (0, x′), where x′ ≤ ∞, sampling
1{R0>x} = 1{Tx>−∞}, conditional on 1{R0≤x′} = 1{Tx′=−∞}, in finite time amounts to sampling E
and C−1, . . . ,CTE/η under Pη; see Algorithm 4.3 below.

Algorithm 4.3. (Simulation of 1{R0>x} conditional on {R0 ≤ x′}.)
Require: ∞ ≥ x′ > x> 0

1. loop

2. Sample E ∼ Exp (1)

https://doi.org/10.1017/apr.2019.39 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.39

984 J. I. GONZÁLEZ CÁZARES ET AL.

3. if E/η≤ x then

4. return 0

5. else

6. Sample C0 = 0,C−1, . . . ,CTE/η under Pη

7. Compute LE/η

8. if LE/η ≤ x′ then � Accept sample

9. return 1{LE/η>x}
10. end if

11. end if

12. end loop

Remark 4.2. Since Lx ≤ x, then the condition E/η≤ x implies LE/η ≤ x, thus identifying
1{LE/η>x} = 0 (see line 3) and saving the computational effort of running all subsequent lines.
This algorithm repeats independent experiments with success probability P

η(LE/η ≤ x′)> 0.
The expected running time of each iteration in the loop is bounded above by (η−1 + d)/ψ ′

d(η);
see [17, equation (2.3)]. Hence the expected running time of Algorithm 4.3 is finite.

In Algorithm 4.6 below we need to sample the path of the random walk {Ck}k∈Z1
Tx

conditioned on the event {R0 ∈ (x, x′)}, where 0< x< x′ ≤ ∞. By a rejection sampling method
under Pη and Algorithm 4.3 (see [4, Lemma 3]), this can be achieved as follows.

Algorithm 4.4. (Simulation of C0, . . . ,CTx conditional on {Tx >−∞ = Tx′ }.)
Require: ∞ ≥ x′ > x> 0

1. loop

2. Sample C0 = 0,C−1, . . . ,CTx under Pη

3. Given CTx , sample independent 1{R′
0≤x′−CTx } and U ∼ U(0, 1) � Algorithm 4.3

4. if U ≤ exp (−ηCTx) and 1{R′
0≤x′−CTx } = 1 then � Accept sample

5. return {Cn}n∈Z1
Tx

6. end if

7. end loop

Remark 4.3. Since Lx ≤ x, we have P(R0 ≤ z) ≥ P(E/η≤ z) = 1 − exp (−zη) for all z ≥ 0.
Since the overshoot CTx − x is in the interval (0, d), the expected running time of Algorithm 4.4
(i.e. one over the acceptance probability) is smaller than exp (η(x + d))/(1 − exp (−η(x′ − x −
d)) if x′ > x + d.

In Algorithm 4.6 we also need to simulate the path of the walk reaching a negative level
−x, while staying below a given positive level forever. Algorithm 4.5 achieves this (see [4,
Lemma 3]). Its expected running time is bounded above by

1/((1 − exp (−η(x′ + x)))P(T−x < Tx′))<∞.

https://doi.org/10.1017/apr.2019.39 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.39

Exact simulation of the extrema of stable processes 985

Algorithm 4.5. (Simulation of C0, . . . ,CT−x conditional on {Tx′ = −∞}.)
Require: x ∈ (0,∞) and x′ ∈ (0,∞]

1. loop

2. Sample C0 = 0,C−1, . . . ,CT−x under P

3. Given CT−x , sample an independent 1{R′
0≤x′−CT−x } � Algorithm 4.3

4. if 1{R′
0≤x′−CT−x } = 1 and maxn∈Z1

T−x
{Cn} ≤ x′ then � Accept sample

5. return {Cn}n∈Z1
T−x

6. end if

7. end loop

We now give a brief overview of the algorithm in [4] for the simulation of {(Cn, Rn)}n∈Z1 .
Pick κ >max{log (2)/(3η), 1/(αρ)} (see assumption in [4, Proposition 3]). Blanchet and
Sigman [4] constructed sequences �= {�(k)}k≥0 and τ = {τk}k≥0 of decreasing negative and
increasing positive times, respectively.

(i) At the start of each iteration of the algorithm we are given(
{τk}k∈{0,...,m}, {�(k)}k∈{0,...,τm}, {Cn}n∈Z1

�(τm)
, {Rn}n∈Z1

�(τm−1)

)
.

(ii) At each iteration we sample(
τm+1, {�(k)}k∈{τm+1,...,τm+1}, {Cn}n∈Z�(τm)

�(τm+1)
, {Rn}n∈Z�(τm−1)

�(τm+1−1)

)
.

Note that at the mth iteration we have �(τm) −�(τm − 1) more values of the walk than of
the reflected process. More precisely, the algorithm starts by setting �(0) = 0 and repeats the
following steps: given {τk}k∈{0,...,m} and {�(k)}k∈{0,...,τm}, then put �(τm + 1) = T�(τm)

−2κ . Next,

if �(k) is the last known value of � and if R�(k) > κ , then put �(k + 1) = T�(k)
κ and �(k +

2) = T�(k+1)
−2κ . If instead R�(k) ≤ κ , then put τm+1 = k. Repeat the previous two steps until we

can compute τm+1, that is, until R�(k) ≤ κ . After computing τm+1 go back and repeat. By
construction (see Proposition 3 in [4]), we have

sup
n∈Z�(τm)+1

{Cn} ≤ C�(τm−1) − κ, implying Rn = max
k∈Zn+1

�(τm)+1

{Ck} − Cn, n ∈Z�(τm−1)
�(τm−1).

Hence, we may compute Rn, n ∈Z1
�(τm−1), from the simulated values

τm, �(τm−1), �(τm), {Cn}n∈Z1
�(τm)

.

Algorithm 4.6. (Simulation of the random walk and its reflected process.)
Require κ >max{log (2)/(3η), 1/(αρ)}, d ∈ (0, 1), ∞ ≥ x> 0 and m ≥ 1 � x is an upper
bound for R0

1. Put t := C0 :=�(0) := τ0 := 0

2. for k ∈ {1, . . . ,m} do

https://doi.org/10.1017/apr.2019.39 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.39

986 J. I. GONZÁLEZ CÁZARES ET AL.

3. Put t := τk−1

4. loop

5. Sample C�(t)−1, . . . ,C
T�(t)

−2κ
conditioned on {R�(t) < x − C�(t)} � Algorithm 4.5

6. Put �(t + 1) := T�(t)
−2κ and t := t + 1

7. Sample 1{R�(t)>κ} given {R�(t) < x − C�(t)} � Algorithm 4.3

8. if 1{R�(t)>κ} = 1 then

9. Sample C�(t)−1, . . . ,C
T�(t)
κ

from P
η � Algorithm 4.4

10. Put �(t + 1) := T�(t)
κ and t := t + 1

11. else

12. Put x := κ + C�(t), τk := t and exit loop

13. end if

14. end loop

15. end for

16. Compute {Rn}n∈Z1
�(τm−1)

17. return
(
{τk}k∈{0,...,m}, {�(k)}k∈{0,...,τm}, {Cn}n∈Z1

�(τm)
, {Rn}n∈Z1

�(τm−1)

)
4.3. Sampling (Un, �n) given Fn

Algorithm 4.1 requires knowledge of {(Un, �n)}n∈Z0 , given the increments {Fn}n∈Z0 of the
random walk C. Since log (Un�n) = α(Fn − d) for all n ∈Z, by independence, we may restrict

attention to n = 1. It follows from (2.6) above that�1
d= ∏T

i=2 Ui for an independent geometric
random variable T with parameter ρ on the positive integers (if T = 1 the right-hand side is

defined to equal one). Hence, by independence, we have U1�1
d= ∏T

i=1 Ui. By (2.7), − log�1
conditioned on being positive is exponential with mean 1/ρ. Hence, for any n ≥ 1 and y> 0
we obtain

P

[
T = n

∣∣∣∣ −
T∑

i=1

log (Ui) = y

]
=

(
ρ(1 − ρ)n−1 yn−1 e−y

(n − 1)!
)/

(ρ e−ρy)

= [(1 − ρ)y]n−1 e−(1−ρ)y

(n − 1)! .

Thus the conditional law of T − 1 given
∑T

i=1 log (Ui) = −y is Poisson with mean (1 − ρ)y. If
T = 1, then − log (U1) = y and �1 = 1. If T > 1, then for x ∈ (0, y) we get

P

[
− log (U1) ∈ dx

∣∣∣∣ T = n,−
T∑

i=1

log (Ui) = y

]
=

(
e−x (y − x)n−2 e−(y−x)

(n − 2)!
)/(

yn−1 e−y

(n − 1)!
)

dx

= (n − 1)
(y − x)n−2

yn−1
dx.

https://doi.org/10.1017/apr.2019.39 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.39

Exact simulation of the extrema of stable processes 987

Hence, conditional on T = n and log (
∏T

i=1 Ui) = −y, the law of −(1/y) log (U1) is
beta(1, n − 1) (understood as the Dirac measure δ1 when n = 1). Finally we set �1 =
exp (α(F1 − d))/U1.

Algorithm 4.7. (Simulation of {(Uk, �k)}k∈Zn
m

given {Fk}k∈Zn
m

.)
Require: {Fk}k∈Zn

m
for m, n ∈Z and m< n.

1. for k ∈Zn
m do

2. Sample T − 1 ∼ Poisson(−α(Fk − d)(1 − ρ))

3. Sample L ∼ beta(1, T − 1)

4. Let Uk := exp (Lα(Fk − d)) and �k := exp ((1 − L)α(Fk − d))

5. end for

6. return {(Uk, �k)}k∈Zn
m

5. Implementation

Recall the definitions of the process {(Cn, Fn)}n∈Z in 3.6, of {�n}n∈Z in the first paragraph
of Section 4 and of Pη in the second paragraph of Section 4.2. Before providing a concrete and
concise algorithm and testing it, we will introduce a practical improvement based on a simple
consideration.

Note that simulating the i.i.d. variables {�n}n∈Z0 is clearly quicker and easier than
employing the full machinery of our algorithms. Recall that the dominating process was
introduced only to detect coalescence for the chain {Xn}n∈Z0 . Thus, given {�n}n∈Z0

�(0)
for some

burn-in parameter �(0) ∈Z0 and an upper bound X′
�(0) = D�(0) ≥ X�(0) (recall the definition

of {Dn} in (3.8)), one could recursively construct X′
n+1 =ψ(X′

n, �n) for n ∈Z0
�(0), and if any

coalescence were detected, we would be certain that X′
0 = X0. Our objective is hence to take

an appropriate�(0) that increases the probability P(X′
0 = X0). Algorithm 5.1 is a complete and

compact simulation algorithm of X0, which makes use of this.
It is known that spectrally negative stable processes of infinite variation (α > 1 and ρ = 1/α)

satisfy S(α, ρ) = S+(α, ρ) [25, Theorem 1]. As a simple application and sanity check, we now
present a comparison between the empirical distribution function of N = 104 samples and the
actual distribution function in this case. To validate the samples, we compute the Kolmogorov–
Smirnov statistic and test the hypothesis. (These graphs can be replicated following the guide
available in [19].) In all three cases the null hypothesis of all samples coming from their
respective distribution functions is not rejected (see Figure 2).

5.1. Parameter choice and numerical performance

As explicitly stated in Algorithm 5.1, and if one allows m∗ (recall its definition in
paragraph 1, p. 14) to vary over �(1/(δγ)) log ESγ1 �+ +N, our simulation procedure has six
different parameters. A full theoretical optimization is infeasible as it heavily depends on,
among other things, the way the algorithm is coded, the computational cost of simulating
each variable, the cost of each calculation, memory accessing cost, the quality and state of
the RAM and (α, ρ). However, for the sake of presenting its practical feasibility, we have
implemented the algorithm in the Julia programming language (see [19]) and run it on a
macOS Mojave 10.14.3 (18D109) with a 4.2 GHz Intel R© CoreTM i7 processor and an 8 GB

https://doi.org/10.1017/apr.2019.39 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.39

988
J.I.G

O
N

Z
Á

L
E

Z
C

Á
Z

A
R

E
S

E
T

A
L

.

0.2

0.2

1 1 1

–1 –1 –1

0.1 0.1 0.10.2 0.2 0.20.3 0.3 0.30.4 0.4 0.40.5 0.5 0.50.6 0.6 0.60.7 0.7 0.70.8 0.8 0.80.9 0.9 0.91 1 1

0.2 0.2

0.4

n(Fn(t) – F(t)) n(Fn(t) – F(t))n(Fn(t) – F(t))

0.4 0.4 0.4

0.6

0.6 0.6 0.6

0.8

0.8 0.8 0.8

1

1 1 1

1.2 1.4 1.6 2.6 3.52.521.510.5 32.42.221.81.61.41.210.80.60.40.2

Real
Estimate

Real
Estimate

Real
Estimate

x x x

α = 1.1 α = 1.5 α = 1.9
F (x)

F(t) F (t) F (t)

F (x) F(x)

FIGURE 2: Empirical distribution functions for spectrally negative infinite variation stable process with parameters ρ = 1/α and, from left to right, α= 1.1,
α = 1.5, and α= 1.9. The top graphs show the empirical distribution function FN for N = 104 samples and compare it to the distribution function F = S(α, ρ) =
S+(α, ρ) [25, Theorem 1]. The bottom graphs show s �→ √

N(FN ◦ F−1(s) − s) on [0, 1] (or equivalently, the curve t �→ (F(t),
√

N(FN (t) − F(t))) in R
2 for

t> 0), which converges weakly to a Brownian bridge. The dashed lines are the 0.05 and 0.95 quantiles of the Kolmogorov–Smirnov statistic, derived from the
distribution of the signed maximum modulus of the Brownian bridge.

https://doi.org/10.1017/apr.2019.39 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/apr.2019.39

Exact simulation of the extrema of stable processes 989

2400 MHz DDR4 memory. This implementation is far from optimal, but still outputs 104

samples in approximately 1.15 seconds (without multi-threading) for the suggested parameters
(d, δ, γ, κ, �(0),m∗) =� where

� =� (α, ρ)

=
(

2

3αρ
,

1

3αρ
,

19

20
α, 4 + max

{
log (2)

3η(2/(3αρ))
,

1

αρ

}
, 40, 12 +

⌊
60

19
ρ log ES

19
20α

1

⌋+)
.

This performance varies slightly for different choices of (α, ρ). To put things in perspective,
Algorithm 4.7 outputs, for the parameter choice � , 106 samples in approximately 0.4322
seconds and drawing 106 samples from S+(α, ρ) takes 0.1833 seconds. On the other hand, the
first iteration of Algorithm 4.2 (which simulates the indicators {I0

k }k∈Z0
χ0

and the conditionally

positive stable random variables {Sk}k∈Z0
χ0

) simulates 104 samples in about 0.8125 seconds

and is, although fast, the most computationally costly component of Algorithm 5.1. The main
sources of this cost are the calculation of the probabilities {p(m)} (see their definition in (3.4))
and the simulation of {Sk}k∈Z0

χ0
conditioned on the values of {I0

k }k∈Z0
χ0

.

Algorithm 5.1. (Perfect simulation of X0
d= Y1.)

Require: Parameters

0< δ < d<
1

αρ
, κ >max

{
log (2)

3η
,

1

αρ

}
, γ > 0, �(0) ∈Z0

1. Put x := ∞, t := 1, s :=�(0), and m := n :=�(0) + 1
� x is an upper bound on {Ck}k∈Z�(0)

2. Sample {�k}k∈Z0
�(0)

� Recall its definition in Section 4, paragraph 1

3. loop

4. Sample (χm−1, {Sk}k∈Zs
χm−1

) � Algorithm 4.2

5. while n = m or �(t)>χm−1 do

6. Sample C�(t), . . . ,C
T�(t)

−2κ
conditional on {R�(t) < x − C�(t)} � Algorithm 4.5

7. Put �(t + 1) := T�(t)
−2κ and t := t + 1 � Recall its definition in (4.1)

8. Sample 1{R�(t)>κ} given {R�(t) < x − C�(t)} � Algorithm 4.3

9. if 1{R�(t)>κ} = 0 then

10. Compute {Rk}k∈Zn
�(t−1)

and put n :=�(t − 1) and x := C�(t) + κ

11. else

12. Sample C�(t)−1, . . . ,C
T�(t)
κ

from P
η � Algorithm 4.4

13. Put �(t + 1) := T�(t)
κ and t := t + 1

14. end if

https://doi.org/10.1017/apr.2019.39 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.39

990 J. I. GONZÁLEZ CÁZARES ET AL.

15. end while

16. Sample {(Uk, �k)}k∈Zs
χm−1

from {Fk}k∈Zs
χm−1

and put s := χm−1 � Algorithm 4.7

17. Compute Dm−1 and put m := m − 1 � Recall its definition in (3.8)

18. if Dm ≤ a(�m) then

19. return X0 :=ψ(· · ·ψ(Dm, �m), . . . , �−1) � In this case σ = m

20. else if m =�(0) then

21. Put X0 :=ψ(· · ·ψ(Dm, �m), . . . , �−1)

22. if coalescence was detected then

23. return X0

24. end if

25. end if

26. end loop

Next we show the local marginal behaviour of the number of samples output with
confidence intervals, for a few different choices of parameters (α, ρ). We will see that, although
� may not be optimal, it is a simple and yet efficient choice. Moreover, the variation in
performance for parameters close to this one is small, thus showing that this choice is relatively
robust.

It should be noted that the data presented in Figure 3 are dependent on the characteristics
of the hardware and software used. Hence, these exact numbers are not easily replicated. For
instance, these times scale sublinearly as a function of the batch size, and are not replicated
despite using the garbage collector and the same random seed. It is readily seen that the exact
value of the parameters d, δ, �(0), and m∗ is not too important in so far as they remain at
a reasonable distance from their boundaries (where ∞ is a right-boundary for �(0) and m∗).
The value of κ is slightly more sensitive, as is γ . Other choices of (α, ρ) have slightly different
behaviours. The shapes of these curves are similar, but the apparent minima change. Thus, we
argue that � is a simple yet sensible choice.

Appendix A. Sampling the marginals of stable processes

A Lévy process Y = (Yt)t∈[0,∞) in R is strictly stable with index α ∈ (0, 2] if, for any
constant c ≥ 0, the processes (Yct)t∈[0,∞) and (c1/αYt)t∈[0,∞) have the same law. For brevity,
we call Y a stable process. Sampling the increments of Y hence reduces to sampling Y1.
Using Zolotarev’s (C) form [30], up to a scaling constant the law of Y1 is parametrized by
(α, β) ∈ (0, 2] × [− 1, 1] via

E eitY1 = exp (−|t|α e−i((πα)/2)θsgn(t)), where t ∈R, θ = β

(
1α≤1 + α − 2

α
1α>1

)
, (A.1)

and sgn(t) equals 1 (resp. −1) if t ≥ 0 (resp. t< 0). The Mellin transform of Y1 equals

EYs
11Y1>0 = ρ

�(1 + s)�(1 − s/α)

�(1 + sρ)�(1 − sρ)
, (A.2)

https://doi.org/10.1017/apr.2019.39 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.39

E
xactsim

ulation
ofthe

extrem
a

ofstable
processes

991

1.3 1.3

1.25 1.25

1.2 1.2

1.15

1.22

1.2

1.18

1.16

1.14
5.5 90 22

10.950.90.850.80.750.70.650.6

2018161412108642

1.3

1.25

1.2

1.15

807060504030201054.543.532.521.510.5

1.15

0.4 0.5 0.6 0.7 0.8

�(0)

d × αρ δ × αρ

0.9 5.10–2 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

21

22

21

20

20

22

23

24

FIGURE 3: Time taken (in seconds) to simulate N = 104 samples of S(1.3, 1/2) with parameters moving about � . In each plot, one parameter moves and all
others are kept constant at the respective value of � . We took 100 batches of samples, each with N = 104 independent simulations, to construct asymptotic

95% confidence intervals based on the central limit theorem.

https://doi.org/10.1017/apr.2019.39 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/apr.2019.39

992 J. I. GONZÁLEZ CÁZARES ET AL.

where ρ = (1 + θ)/2 and �(·) denotes the gamma function (see [30] Section 5.6). Taking s = 0
in (A.2) implies that the stable law is uniquely determined by α and its positivity parameter
ρ = P(Y1 > 0). If α > 1, the pair (α, ρ) ∈ (0, 2] × [0, 1] must satisfy ρ ∈ [1 − 1/α, 1/α], since
θ ∈ [1 − 2/α, 2/α − 1].

Let S(α, ρ) and S+(α, ρ) denote the laws of Y1 and Y1 conditioned on being positive,
respectively. As ρ, αρ ∈ [0, 1] and the Mellin transform determines the law uniquely, (A.2)
implies that (Z′/Z′′)ρ follows S+(α, ρ), where Z′ ∼ S(αρ, 1) and Z′′ ∼ S(ρ, 1) are independent.
Since P′B + P′′(1 − B) follows S(α, ρ), where P′ ∼ S+(α, ρ), P′ ∼ S+(α, 1 − ρ), and B ∼
Ber (ρ) are independent, we only need to be able to simulate a positive stable random variable
with law S(α, 1) for any α ∈ (0, 1]. If α = 1, then by (A.1), Y1 is a constant equal to one. If
α ∈ (0, 1), Kanter’s factorization states

(sin (απU)α sin ((1 − α)πU)1−α/ sin (πU))1/αE1−1/α ∼ S(α, 1),

where E is exponential with mean one, independent of U, which is uniform on (0, 1) (see [30,
Section 4.4]). For alternative ways of sampling from the laws S(α, ρ) and S+(α, ρ) we refer to
[15].

Acknowledgements

JGC and AM are supported by The Alan Turing Institute under EPSRC grant
EP/N510129/1; AM is supported by EPSRC grant EP/P003818/1 and the Turing Fellowship
funded by the Programme on Data-Centric Engineering of Lloyd’s Register Foundation; GUB
is supported by CoNaCyT grant FC-2016-1946 and UNAM-DGAPA-PAPIIT grant IN115217;
JGC is supported by CoNaCyT scholarship 2018-000009-01EXTF-00624. We thank Stephen
Connor for the reference [9].

References

[1] BERNYK, V., DALANG, R. C. AND PESKIR, G. (2008). The law of the supremum of a stable Lévy process
with no negative jumps. Ann. Prob. 36, 1777–1789.

[2] BERNYK, V., DALANG, R. C. AND PESKIR, G. (2011). Predicting the ultimate supremum of a stable Lévy
process with no negative jumps. Ann. Prob. 39, 2385–2423.

[3] BERTOIN, J. (1996). Lévy Processes (Cambridge Tracts Math. 121). Cambridge University Press, Cambridge.
[4] BLANCHET, J. H. AND SIGMAN, K. (2011). On exact sampling of stochastic perpetuities. J. Appl. Prob. 48A,

165–182.
[5] BURACZEWSKI, D., DAMEK, E. AND MIKOSCH, T. (2016). Stochastic Models with Power-Law Tails

(Springer Series in Operations Research and Financial Engineering). Springer, Cham.
[6] CHI, Z. (2012). On exact sampling of nonnegative infinitely divisible random variables. Adv. Appl. Prob. 44,

842–873.
[7] CHI, Z. (2012). On exact sampling of the first passage event of Lévy process with infinite Lévy measure and

bounded variation. Stoch. Process. Appl. 126, 1124–1144.
[8] CHI, Z. (2018). Law and exact sampling of the first passage of a spectrally positive strictly stable process.

Available at arXiv:1801.06891v1.
[9] CLOUD, K. AND HUBER, M. (2017). Fast perfect simulation of Vervaat perpetuities. J. Complexity 42, 19–30.

[10] DASSIOS, A., LIM, J. AND QU, Y. (2019). Exact simulation of generalised Vervaat perpetuities. J. Appl. Prob.
56, 57–75.

[11] DEVROYE, L. (1986). Non-Uniform Random Variate Generation. Springer.
[12] DEVROYE, L. (2001). Simulating perpetuities. Methodology Comput. Appl. Prob. 3, 97–115.
[13] DEVROYE, L. AND FAWZI, O. (2010). Simulating the Dickman distribution. Statist. Prob. Lett. 80, 242–247.
[14] DEVROYE, L. AND JAMES, L. F. (2011). The double CFTP method. ACM Trans. Model. Comput. Simul. 21,

10:1–10:20.
[15] DEVROYE, L. AND JAMES, L. (2014). On simulation and properties of the stable law. Statist. Methods Appl.

23, 307–343.

https://doi.org/10.1017/apr.2019.39 Published online by Cambridge University Press

https://arXiv.org/abs/1801.06891v1
https://doi.org/10.1017/apr.2019.39

Exact simulation of the extrema of stable processes 993

[16] DONEY, R. A. (2008). A note on the supremum of a stable process. Stochastics 80, 151–155.
[17] ENSOR, K. B. AND GLYNN, P. W. (2000). Simulating the maximum of a random walk. J. Statist. Planning

Infer. 85, 127–135.
[18] FILL, J. A. AND HUBER, M. L. (2010). Perfect simulation of Vervaat perpetuities. Electron. J. Prob. 15 (4),

96–109.
[19] GONZÁLEZ CÁZARES, J., MIJATOVIĆ, A. AND URIBE BRAVO, G. (2018). Code for the simulation of the

stable supremum. Available at the GitHub repository: https://github.com/jorgeignaciogc/SupStable.jl.
[20] HUBER, M. L. (2016). Perfect Simulation (Monogr. Statist. Appl. Prob. 148). CRC Press, Boca Raton, FL.
[21] KENDALL, W. S. AND MØLLER, J. (2000). Perfect simulation using dominating processes on ordered spaces,

with application to locally stable point processes. Adv. Appl. Prob. 32, 844–865.
[22] KUZNETSOV, A. (2011). On extrema of stable processes. Ann. Prob. 39, 1027–1060.
[23] KUZNETSOV, A. (2013). On the density of the supremum of a stable process. Stoch. Process. Appl. 123, 986–

1003.
[24] MEYN, S. AND TWEEDIE, R. L. (2009). Markov Chains and Stochastic Stability, 2nd edn. Cambridge

University Press, Cambridge.
[25] MICHNA, Z. (2013). Explicit formula for the supremum distribution of a spectrally negative stable process.

Electron. Commun. Prob. 18 (10), 6.
[26] MURDOCH, D. J. AND GREEN, P. J. (1998). Exact sampling from a continuous state space. Scand. J. Statist.

25, 483–502.
[27] PITMAN, J. AND URIBE BRAVO, G. (2012). The convex minorant of a Lévy process. Ann. Prob. 40, 1636–

1674.
[28] REVUZ, D. (1984). Markov Chains, 2nd edn (North-Holland Math. Library 11). North-Holland, Amsterdam.
[29] SONG, R. AND VONDRAČEK, Z. (2008). On suprema of Lévy processes and application in risk theory. Ann.

Inst. H. Poincaré Prob. Statist. 44, 977–986.
[30] UCHAIKIN, V. V. AND ZOLOTAREV, V. M. (1999). Chance and Stability (Modern Probab. Statist.). VSP,

Utrecht.

https://doi.org/10.1017/apr.2019.39 Published online by Cambridge University Press

https://github.com/jorgeignaciogc/SupStable.jl
https://doi.org/10.1017/apr.2019.39

	Introduction
	Exact simulation algorithm
	Related literature

	Stochastic perpetuities
	 The Markov chain X and the dominating process D in Algorithm 1.1
	Backward simulation of { (Dn,n) } nZ
	Simulation of (n, { Sk} kZn0)
	Simulation of the random walk and its reflected process from MR2865624
	Sampling (Un,n) given Fn

	Implementation
	Parameter choice and numerical performance

	Sampling the marginals of stable processes
	Acknowledgements
	References

