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ON THE LEBESGUE FUNCTION FOR
LAGRANGE INTERPOLATION WITH EQUIDISTANT NODES
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Abstract

Properties of the Lebesgue function associated with interpolation at the equidistant nodes
xk,n

 =k< fc = 0, 1, 2, . . . , n,

are investigated. In particular, it is proved that the relative maxima of the Lebesgue function
are strictly decreasing from the outside towards the middle of the interval [0, n], and upper
and lower bounds, and an asymptotic expansion, are obtained for the smallest maximum when
n is odd.
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1. Introduction

S u p p o s e / is a r e a l - v a l u e d f u n c t i o n d e n n e d o n t h e i n t e r v a l [a, b], a n d let

M = {xk>B: fc = 0 , 1 , 2 , . . . , « ; « = 1 , 2 , 3 , . . . }

b e a t r i a n g u l a r m a t r i x s u c h t h a t , fo r e a c h n ,

Then, for each n , there is a unique polynomial Ln{f, x) of degree n (or
less) such that

LnW>Xk,n)=f(Xk.n)> * = 0, 1 , 2 , . . . , /I .
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We refer to Ln(f, x) as the Lagrange interpolation polynomial of degree n .
A formula for Ln(f, x) is given by

fc=o

where

and

(3) (o(x) = (x- xOn)(x -xliH)---(x- x n n ) .

In studying the error \Ln(f, x)-f(x)\, an important quantity is the Lebesgue
function

(4) ^ W = E l / * . » W I ' a<x<b.
k=0

This function is important because, for a < x < b, A.n(x) is the norm of the
linear functional

LH{.,x):C([a,b])-+& f~LH(f,x).

Further,
An := max{An(x): a < x < b},

which is known as the Lebesgue constant, is the norm of the linear operator

Ln:C([a,b])^C([a,b]) f ~ Ln(f).

The study of Lagrange interpolation polynomials has long had an impor-
tant place in approximation theory and numerical analysis. However, al-
though it might initially be expected that the matrix of equidistant nodes

xkn = a + k{b-a)/n, k = 0 , 1, 2 , . . . , « ,

would be the most commonly studied situation, the famous examples of
C. Runge [8] and S. N. Bernstein [1] have ensured that the choice of equidis-
tant nodes has been relatively unpopular in the study of interpolation polyno-
mials. More popular are node systems where the xk n (k — 0, 1, 2 , . . . , n)
are the zeros of some classical polynomials such as the Jacobi polynomials.
(See, for example, G. Szego [10].) However, the determination of these zeros
can often raise serious computational questions.

A. Schonhage [9] and P. O. Runck [6, 7] have studied the Lebesgue function
(4) for equidistant nodes. Since one system of equidistant nodes can be
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obtained from any other such system of nodes by a linear transformation
under which the Lebesgue function is invariant, we will, like Schonhage, let

Then, for j = 0 , 1, 2 , . . . , n - 1, it is known that

(i) Xn(x) is a polynomial on [7 ,7 + 1];
(ii) Xn(j) = Xn(j + 1) = 1 ;

(iii) Xn(x) > 1 if 7 < x < j + 1;
(iv) Xn{x) has precisely one local maximum on [7 ,7 + 1] (see [2, p. 271]);

we define

m j , n '•= m a x { A n ( x ) : j < x < j + l } ;

(v) Xn(n/2 + t) = An(n/2 - t) if 0 < t < n/2;
(vi) An = max{An(x): 0 < x < n} = max{Xn(x): 0 < x < 1} — m0 n.

Properties (i)-(v) are easy to prove; Schonhage proved (vi). In this paper we
establish the following two additional properties of Xn(x):

(vii) Xn{x) > Xn(x + 1) if 0 < x < [(» - l)/2] and x is not an integer;
(vi i i ) m O n > m , „ > m 2 „ > • • • > m [ ( n _ l ) / 2 h n .

Note that (viii), which is an immediate consequence of (vii), states that the
relative maxima of Xn(x) are strictly decreasing from the outside towards the
centre of the interval [0, n]. This situation is analogous to the behaviour
of the Lebesgue function for Lagrange interpolation based on the Cebysev
nodes (see Brutman [3]). Property (vii) follows from Theorem 1 below. In
the statement of the theorem, and elsewhere, the symbol {a)k is defined by

f 1, k = 0,
{a)x:={a(a+l)(a + 2)...(a + k-l) k=l 2 3

THEOREM 1. Suppose 0 < x < [(n - l ) /2] , and write x = m + h, where
m is an integer, and 0 < h < 1. Then

k=m+2

In his paper [9], Schonhage proved that, if y denotes Euler's constant
0.577... , then

2"+1

(6) K = mn „ ~ —TZ r , as n —> 00 ,K ' " °'n en(logn + y)

and

(7) w r n < ^ ( l o g ( r + 3/2) + 21og2 + y) , n = 2r + I.
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While it seems to be difficult to improve (6) (see Trefethen and Weideman
[11] for an account of attempts to estimate the Lebesgue constant for equidis-
tant nodes), we have been able to improve (7) considerably. The result
is stated in Corollary 1 below. In addition, in Corollary 2 we present an
asymptotic expansion for mr 2r+1 . Our results depend on the following rep-
resentation.

THEOREM 2. Denote the generalised hypergeometric function by

(ax,a2,...,ap \ . _ ^ {ax)k{a2)k •• • (<*p)k zk

p <\filtfi2,...,fit ) • fawMk-WkU
and the logarithmic derivative of the gamma function by

yf(x):=f(x)/r(x),

where F() is the gamma function. Then, if n — 2r + 1,

(8) m'-=k^k

n
3 / 2 , 3 / 2 , 1 , 1

'"/ A(\.I 1/^4*3 l *•-1-5/2 2 2

COROLLARY 1. If n = 2r + 1, then

(10) -(log(r+3/2)+2+log(8/3)-7t2/60) < m < I(log(r+l)+2+21og2).
n r'n n

COROLLARY 2. As n — 2r + 1 —> oo, then

V k=\ \r

where cx = -3 /4 , c2 = -43/192, c3 = -7/128, c4 = 619/122880, etc.

2. Proofs of the results

PROOF OF THEOREM 1. By Schonhage [9, p. 62], we know that if p is
an integer, and p - 1 < x < p, then Xn{x) = Ep(x), where Ep(x) is the
polynomial of degree n (or less) which satisfies
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From Lagrange's formulae (l)-(3) it follows that

P ^ A ! ( A ) ! kP ^ A : ! ( n - A : ) ! x - k ^ k \ { n - k ) \ x - k '

Now, if x is an integer, the theorem is true by the earlier-mentioned property
(ii) of An(x). On the other hand, if x — m + h , where m is an integer and
0 < h< 1, then

n\

(12) mk + h\k)
\k=0 K ' k=m+l

m+l+h fn

\k=0 x ' fc=m+2

Now write

n-m-h (n\\
k-m-h\k)J

(n\ A m+l+h (n\X\

m+l+h fn\ _ , v^ m+l+h ( n

and
Û n-m-h /n\ _ A n-m-h ( n \

^ k-m-h\k)~ I-* k - m - l - h \ k - l ) + '

and substitute these results in (12). We obtain, after some tidying up,

[ ^ ( : )
[n—m—l

The condition x <[(n - l)/2] ensures that m + 1 < n - m - 1, and hence
(5) is established.

PROOF OF THEOREM 2. Let n = 2r + 1. Then Schonhage [9, p. 64] has
proved

mr n = max{An(x): r < x < r + 1}
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The key step in the proof of the theorem is to obtain the representa-
tion (8) of mr n as a partial sum of the (divergent) hypergeometnc series

2Fl(
 ll2>ll2\\). This is done as follows, where on several occasions we use

standard results for the integral or sum of trigonometric functions—these
results can be found, for example, in [4].

We begin by rearranging Schonhage's formula (13). We have

7=0 fc=0

' " 1 1

k\{2r+l-k)\2r+l-2k
1

2^(ri)
2 £-j V fc / 2r + 1 - 2k '

Since

(2r+l\ _ 22r+2 r*l2 2r+i
V k J ~ n Jo

k = 0, 1, 2, . . . , r, wr>n

can be written as
n/2 I r cQ$(2,k + 1)0 \

COS r + 0 I ̂  —. : I dd

n22r-2(rl)2 Jo

c o s
z r + I d / \ ' d<j> dd.

n 2
2 r 2 ( r ! ) 2 7o

Interchanging the order of integration gives

\Z.Y ~r I )! / Sin ( Y ~T 1 )<p / Lr-ri n t/\ j A

i = — ^ — T — ^ - T / ^—i—^- / cos Odd do.
r'n 7i22r-2(r\)2 Jo *™<t> Jo

22r(r\)2 . , A (2ik)! 2k

2r+l
s- / =: ^ ^ — / CO"

Now,

/ cos 0 dO = ' sin <̂> 2 ^ - j j t — ^ c o s <t> >

and for fc = 0 , l , 2 , . . . , r , w e have

2A:
s i n ( r + l ) < £ c o s <j)d<j> = - = l [ 1 — c o s 2 ( r +

2
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Consequently we can write

y ((2k)\)2

which is (8).
Now let the truncated 2F{ hypergeometric series be denoted by

k=0

By noting that mr n =yr( '^2 ' 1 / 2 | l ) , and using the relations y/ (1) = - y and
y/( 1 /2) = —y - 2 log 2, we see that (9) follows immediately from the equation

- a )

which can be found in Luke [5, p. 109].

PROOF OF THE COROLLARIES. TO prove the corollaries, we note that

y/{r + 3/2) = Kl/2) + 1 > + 1/2)"1 =-y - 21og2 + 2 + £ > + 1/2)"1.
A;=0

Because

108

we have

Furthermore,

k+l

/ 3 / 2 , 3 / 2 , l , l
V r + 5 / 2 , 2 , 2

4(r + 3/2)

n2

4(r + 3/2)

<n2/60.
24(r + 3/2)

Upon substituting the bounds (14) and (15) into (9), we obtain the inequal-
ities (10) of Corollary 1.
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Finally, we can deduce the asymptotic expansion (11) of mr n from (9)
by using the asymptotic expansion [5, p. 33]

- fcrt 2kx2k

( w h e r e B 2 k d e n o t e s t h e (2A:)-th B e r n o u l l i n u m b e r ) , t o g e t h e r w i t h t h e e x p a n -

s i o n a s a se r i e s i n i n c r e a s i n g p o w e r s o f (r + 3 / 2 ) " 1 o f 4 F 3 ( ' ' 2 '21 | 1 ) .
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